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Abstract: Diffuse optical tomography (DOT) utilizes wavelength range of 750-950 nm to map 

the spatial distribution of the tissue chromophores of breast tissue for cancer diagnosis or follow 

up prognosis. DOT allows tomographic reconstructions of tissue optical properties. Several 

reconstruction methods have been developed to minimize artifacts and obtain more realistic 

tomographic images. In order to compare four different reconstruction algorithms, data acquired 

from tissue phantoms using a DOT system.  Algebraic reconstruction technique (ART), 

simultaneous iteration reconstruction technique (SIRT), truncated singular value decomposition 

(TSVD) and truncated conjugate gradient (TCG) techniques have been compared in terms of 

location of inclusion in the tissue phantoms. It has been shown that images reconstructed by the 

subspace techniques, TSVD and TCG locating the inclusion position better than the algebraic 

methods ART and SIRT. Beside, images reconstructed by TSVD and TCG have less artifact 

when compared to images of ART and SIRT.  

 

Key words: Algebraic reconstruction technique, Simultaneous iteration reconstruction 

technique, Truncated singular value decomposition, Truncated conjugate gradient, Diffuse 

optical tomography 

 

Diffüz Optik Tomografi için Yeniden Yapılanma Algoritmalarının 

Karşılaştırılması 

 
Özet: Diffüz optik tomografi (DOT), kanser tanısı veya kanser takibi için meme dokusunun 

doku kromoforlarının uzaysal dağılımını görüntülemek için 750-950 nm dalga boyu aralığını 

kullanır. DOT, doku optik özelliklerinin geri çatım teknikleri ile tomografik olarak 

gösterilmesini sağlar. Görüntülerdeki gürültüleri en aza indirmek ve daha gerçekçi tomografik 

görüntüler elde etmek için çeşitli geri çatım teknikleri geliştirilmiştir. Dört farklı geri çatım 

tekniklerini karşılaştırmak için DOT sistemi ile doku fantomu kullanılarak veriler elde edildi. 

Doku fantomundaki inklüzyonun konumu belirleme açısından Cebirsel geri çatım tekniği 

(ART), eşzamanlı cebirsel geri çatım tekniği (SIRT), tekil nokta ayrışması (TSVD) ve kesikli 

eşlenik gradyent (TCG) teknikleri karşılaştırılmıştır. Alt uzay tekniklerinden TSVD ve TCG ile 

oluşturulan görüntülerdeki inklüzyonun konumu, cebirsel yöntemlerden ART ve SIRT' den daha 

iyi konumlandırıldığı gösterilmiştir. Ayrıca, TSVD ve TCG tarafından oluşturulan görüntüler, 

ART ve SIRT ile oluşturulan görüntülere göre daha az gürültü olarak elde edilmiştir. 

 

Anahtar kelimeler: Cebirsel geri çatım tekniği, Eşzamanlı cebirsel geri çatım tekniği, Tekil 

nokta ayrışması, Kesikli eşlenik gradyent, Diffüz optik tomografi 
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1. Introduction 

 

Over the past two decades, diffuse optical tomography (DOT) techniques have been 

developed to estimate optical properties of interior tissue for diagnostic proposes [1-6]. 

Near-infrared (NIR) light in the range of 750-900 nm, named as body window, has been 

used in DOT systems. Data in the DOT system were acquired in transmission or back 

reflection geometry [7]. Monte Carlo (MC) simulation results of DOT systems were 

also used to reconstruct object with similar optical properties to breast or brain tissues 

[8-10]. Results of the MC simulation may be noise free, or an amount of the noise may 

be added artificially as desired. Therefore, MC simulation has been used as a powerful 

tool to tests the reconstruction algorithms. 

 

Several groups have developed different reconstruction methods based on non-linear 

and back-propagation techniques [10-12]. Nonlinear models are computationally very 

expensive due to minimizing the number of assumptions regarding tissue optical 

properties. Back-propagation is computationally economical but have a poor spatial 

resolution in separating multiple absorbing objects [13, 14]. Linear methods of the 

forward model established by Born or Rytov approximations and have been explored by 

others [15-17]. Weight matrix in the linear model was obtained using Monte Carlo 

(MC) simulations for a homogeneous medium with similar optical properties of the 

tissues [8, 18, 19]. 

 

Previously, David Boas et al. published a comparison study of linear reconstruction 

techniques using MC simulations results [20]. Two class linear reconstruction 

techniques, algebraic and subspace methods were compared in simple back-reflection 

geometry. The ART and SIRT have been described [17] as algebraic techniques. The 

TSVD [21] and TCG algorithms have been described as subspace techniques [22, 23]. 

 

In the presented work, a diffuse reflection DOT system has been used to acquire data 

from breast tissue phantoms consist of Intralipid and Indocyanine green (ICG). In this 

paper, this is the first time we compare four algorithms which data are taken from tissue 

phantom. The tissue phantoms have been reconstructed using linear reconstruction 

techniques ART, SIRT, TCG, and TSVD and compared to each other in terms of 

artifacts and defining the correct location of the inclusions. 

 

2. Material and Method 

 

2.1 System design 

 

The DOT system consists of a continuous wave (CW) diode laser with wavelength of 

808 nm, a 1x49 optical switch, an optical fiber imaging probe with sources and detector 

fibers, a PC. The system electronics are composed of photodiodes and electronic boards 

[24]. Schematic representation of the system is shown in Figure 1. The optical switch 

directs the light to 49 optical fibers of the optical probe sequentially for a defined 

period. Diffuse back-reflected light from the tissue phantom is received by 49 optical 

fibers and delivered to the photodiodes. All source and detector fibers diameter are 1 

mm in Figure 2. The probe has a total of 22 different source-detector pair, so the light 

penetrates 22 different depths. 
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Figure 1. Schematic representation of the system. The optical switch directs the laser to the fiber of the 

probe used as sources. The back reflected light is received by the detector fibers of the probe and send to 

the photodiodes. Digitized data is transferred to the PC. 
      

Figure 2. Surface of the probe. All of the optical fibers with a core diameter of 1 mm located on a 10x10 

square matrix. Two of the matrix location is empty. There are 98 fibers on the probe surface. 

 

2.2 Tissue phantom experiments 

 

Tissue phantom was a mixture of 1% Intralipid solution and ICG with reduced 

scattering coefficient (μs’) and absorption (μa) coefficients of 10 cm
-1

 and 0.04 cm
-1

. A 

black rectangular container with dimensions 25 cm x 25 cm x 15 cm was filled with the 

mixture in order to prevent penetration of ambient light in the tissue phantom and back 

reflection of the laser light from the container. The probe was placed on the surface of 

the Intralipid and first measurement, Mhom, was acquired from the homogenous phantom 

with 2401 (49x49) data points, where for each source position the back reflected light 

received by the all 49 optical fibers used as detectors. Then, a spherical inclusion was 

prepared by filling a transparent balloon with 1% Intralipid solution and ICG with 

μs’=10 cm-1 and μa=0.16 cm
-1

 respectively. Absorption contrast is four times higher 

than the background. The diameter of the inclusion was 0.8 cm and placed depths of 0.7 

cm and 1.2 cm from the center of the inclusions of the tissue phantom and 

measurements, Mmes, were acquired. Measurement from the homogenous phantom Mhom 

is used for the calibration proposes [24]. The calibrated data is R = Mmes/Mhom. 
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2.3 The forward model for diffuse optical imaging 

 

The photon fluence rate Ø(r,t)(photons/(cm
2
.s)) obeys the following diffusion 

approximation to the radiative transport equation in scattering medium [25]. 

 

    ( )      ( ) ( )     ( )                             (1) 

 

where v is the speed of light in the material, S(r) is the anisotropic photon source and D 

is diffusion constant 

 

                                             [ (     
 
)]

  
                                                          ( ) 

 

In order to solve Equation 1 Rytov approximation is used [15, 26], where the total 

fluence defined as  

 

                                               ( )    ( )    [   ( )]                                                     ( ) 
 

where    is the homogenous part of the fluence rate and     is the perturbed fluence 

induced by the inclusion [3]. Substituting Equation 3 in Equation 1 gives a linear 

solution of 

 

                                                                                                                                 ( ) 
 

Where y is a 1D array with a dimension of m of the perturbation data. A is the weight 

matrix obtained from MC simulation with a dimension of m × n, where m, the number 

of the data in each acquisition and n, the number of the voxels. x is the in the absorption 

perturbation vector with a dimension of n. The weight matrix was obtained using MC 

simulations which have been described previously [24].   

 

2.4 Reconstruction techniques 

 

Generally, reconstruction techniques used in DOT systems are ART, SIRT [17], TSVD 

[23], and TCG [27]. Usually, reconstruction techniques are categorized into two groups, 

algebraic techniques, and subspace techniques. Two of the most popular algebraic 

techniques are ART and SIRT. ART reconstruct an image from a series of angular 

projections.  The projection starts with an initial guess, which is usually zero. After each 

iteration, the previous solution is used as an initial value, and every projection 

sequentially approaches into hyper planes. Below projection is used to estimate the 

solution for the next iterations.  

 

         
       

    
   

                               (       )     (5) 

 

Where xj is the j
th

 estimate of the unknown objects, ai is the i
th

 row of the m x n matrix 

A, and yi is the i
th

 measurement. w is a relaxation parameter which sets the step size for 

each iteration. Each iteration runs over one measured perturbation data and over all 

voxels parameter. If the iteration number is small, the relaxation parameter should be 

chosen close to 1. SIRT algorithm is different from the ART, each iteration run over all 

measured perturbation data to update the voxels unknown parameter, such as absorption 

coefficient. Though SIRT takes more time than ART, converges is much slower than 

ART and gives better images [17]. Mathematically this can be written as 
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          (6) 

 

Two of the subspace techniques are TSVD and TCG techniques. The TSVD algorithm 

is derived from the singular value decomposition (SVD) of the Nmes × Nvox weight 

matrix A. This theorem states [21]: 

 

                         
      (7) 

 

Where, the columns of U are the left singular vectors; S has singular values and is 

diagonal, and V
T
 has rows that are the right singular vectors. It represents an expansion 

of the original data in a coordinate system where the covariance matrix is diagonal. The 

calculation of SVD consists of finding the eigenvalue and eigenvectors of AA
T
 and A

T
A. 

The singular values are the diagonal entries of the S matrix and are arranged in 

descending order. The singular values are real numbers. If the matrix A is a real matrix, 

then U and V are real. 

 

               (8) 

 

Where σi is the singular value of A and r is the rank of A. TSVD algorithm uses the 

largest t non-zero singular values and singular vectors. This is formulated as 

 

              
    

         (9) 

 

Where Vt and Ut are the first t columns of V and U respectively, St
-1

 is the inverse of the 

square diagonal sub matrix of the largest t singular values. The value t is the truncation 

parameter which controls the degree of the solution. It has been provided in the 

literature about the SVD and TSVD [22, 28]. 

 

The TCG method for the numerical solution of linear equations given, so that the matrix 

is an algorithm for symmetric and positive definite. It is an iterative technique that has 

been used to solve a symmetric positive definite linear system. For ill condition 

problems, converging is a challenging issue so that iterations could be stopped [22]. The 

iteration number determines the degree of the solution. It technique can be applied to 

the normal equations given by  

 

                (10) 

 

A matrix is obtained using a Monte Carlo simulation of the light transport for the same 

source-detector distances as the optical probe. Obtaining the A is described in detail 

elsewhere [24]. Reconstruction was performed with a uniform mesh of 2250 voxels.  

 

3. Results 

 

All the measurements were acquired from the tissue phantoms without and with an 

inclusion. The volume of the region of interest in the Intralipid tank was 3.9cm × 3.9cm 

× 2.4cm and the number of the voxels is 15 × 15 × 10.  So, the dimension of a voxel is 

2.6 × 2.6 × 2.4 mm. After the calibration of the data, the reconstruction techniques were 

used to reconstruct the tissue phantoms with the inclusions at a depth of 0.7 cm and 1.2 

cm from the center of the inclusions.  
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All the reconstruction techniques find the inclusion roughly in true position for the 

depth of 0.7 cm as seen in Figure 3. However, artifacts of the images are different for 

each reconstruction technique as seen in the x-z plane. 

 

 
Figure 3.  Reconstructed the tissue phantom with inclusion at a depth of 0.7 cm with the reconstruction 

techniques of (a) ART with 10 iterations. (b) SIRT with the 70 iterations. (c) TSVD with 100 singular 

values, (d) TCG with three iterations. All the images show the x-z plane. 

 

Figure 3a is reconstructed by ART using 10 iterations, where there are lots of artifacts, 

and the location is not accurate, roughly center of the inclusion 3 mm deeper than the 

actual depth. Figure 3b is obtained using SIRT with 70 iterations.  SIRT gives more 

accurate location and shape of the inclusion closer to actual one than ART. Figure 3c 

displays the reconstructed image by the TSVD algorithm employing 100 singular 

values. For this image, 100 singular values are optimum value because under the 100 

singular values we cannot reconstruct a meaningful image and over 100 singular values 

artifacts are observed. Center of the inclusion is close to the actual location. Figure 3d 

shows the reconstructed image by TCG algorithm with three iterations.  
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Figure 4. Reconstructed images are presented in the x-y plane. (a) ART algorithm with 10 iterations. (b) 

SIRT algorithm with the 70 iterations. (c) TSVD algorithm with 100 singular values. (d) TCG algorithm 

with three iterations. 

 

Reconstructed images in Figure 3 are presented in the x-y plane in Figure 4 for the 

inclusion with the location coordinates of x=2 cm, y=2 cm and z=0.7 cm. As seen in 

Figure 4c and 4d, reconstructed image by TSVD and TCG are artifact free. However, 

the center of the inclusion position is shifted to the left in Figure 4c.  TCG algorithm 

gives a better location in Figure 4d. 

 

Reconstructed images of the tissue phantom with the inclusion at a depth of 1.2 cm 

from the center of the inclusion are shown in Figure 5. The shape of the inclusion’s 

image has been changed in the x-z plane. It doesn’t look like a sphere. It has been 

suppressed up and down.   

 

Figure 5a is the reconstruction image using six iterations of ART. Figure 5b is the 

reconstruction image using 15 iterations of SIRT. ART and SIRT have very similar 

reconstructed images. Figure 5c displays the reconstruction for the TSVD algorithm 

employing 408 singular values. Figure 5d shows the reconstruction for the TCG 

algorithm with 30 iterations.  
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Figure 5. Reconstructed tissue phantom with inclusion at a depth of 12 mm. All the images in the x-z 

plane.  Reconstruction performed by (a) ART algorithm with six iterations. (b) SIRT algorithm with the 

15 iterations. (c) TSVD algorithm with 408 singular values. (d) TCG algorithm with 30 iterations. 

  

Reconstructed images are presented in the x-y plane for the inclusion with the location 

coordinates of x=2 cm, y=2 cm and z=1.2 cm in Figure 6. As seen in Figures 6c and 6d, 

reconstructed image by TSVD and TCG are artifact free. Nevertheless, in Figure 6c the 

shape of the reconstructed image is bigger than the inclusions. Therefore, TCG 

algorithm has superiority over all other algorithms in estimating the location of the 

inclusion without artifacts.   
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Figure 6. Reconstructed images in Figure 5 are presented in x-y plane, images are reconstructed by (a) 

ART algorithm with 6 iterations. (b) SIRT algorithm with the 15 iterations. (c) TSVD algorithm with 408 

singular values. (d) TCG algorithm with 30 iterations. 

 

4. Conclusion and Comment 

 

The main purpose of this study was to investigate which reconstruction algorithm gives 

a better result. Boas, D.A., et al. showed that subspace techniques were superior to 

algebraic techniques from under-determined systems using results of MC simulations. 

Our system also shows that subspace techniques are superior to algebraic techniques. 

Since our system is over determined, algebraic techniques do not have a unique 

solution. Therefore, images reconstructed by ART and SIRT have more artifacts. Boas 

et al., find the iteration numbers of TCG and singular values of TSVD by using L-

curve. However, for ART and SIRT they choose the iteration numbers of the best image 

manually [20]. Since our system is over determined L-curve did not work to obtain the 

iteration number of the best image. Therefore, we manually defined the iteration 

numbers for all reconstruction algorithms. 

 

In this study, we know the location and shape of the inclusion, so we choose singular 

values and iteration numbers accordingly. For TCG, ART, and SIRT, the iteration 

number is selected by images created with different iteration numbers. These iteration 

numbers start from 1 and increase step by step. After a certain iteration number, the 

images started to blur. For each technique, we compared images and choose the best-

reconstructed one. We followed the same path for TSVD to find the best singular value. 

  

In our system, the matrix A is non-singular, so the images give less noisy and correct 

location of the inclusion [29]. For algebraic reconstruction techniques, if there are more 

equations than unknowns, then no unique solution exists, and the final solution 
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oscillates in the neighborhood of the correct solution. In our system, we have 2401 

equations and 2250 unknowns. SIRT gives less noisy images than ART because for one 

iteration ART update unknowns over one equation, SIRT algorithm updates the 

unknowns through all the equations. Therefore, at the expense of slower convergence, 

usually, SIRT leads to better images than those produced by ART. 

  

In this paper, we have compared reconstructed images of four linear reconstruction 

methods using the data acquired from the tissue phantoms by the back-reflection DOT 

system the first time. The images were obtained by linear reconstruction and the best 

image was obtained by the TCG algorithm. In our best knowledge, this is the first study 

that used data of a DOT system to compare the linear reconstruction techniques. One of 

the biggest drawbacks is of the presented study is defining the iteration number 

manually for all reconstruction methods. The iteration number may change from one 

DOT system to the other one. However, the presented study gives a rough idea about 

the iteration number for the four linear reconstruction algorithms in order to obtain the 

best image. We are currently working on development an automatic method to define 

the iteration number. 
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