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Abstract

We review the notion of generalized topological space and introduce
generalized spatial locales (gs-locales) and their density, describe ho-
momorphisms and isomorphisms of gs-locales, provide representation
theorems for generalized topological spaces and gs-locales and show
the categorical relations between gs-locales and T0 topological spaces.
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1. Motivation

The concept of topological space modulo ideal was introduced in [4]. Later we devel-
oped the notion of generalized topological space (gt-space for short) [5]. The generalized
topology of a gt-space is a frame. The join and meet operations of a generalized topology
may not coincide with the usual union and intersection operations for sets, in fact the
join and meet operations are union and intersection operations modulo small sets. The
family of small sets of a gt-space possesses the structure of an ideal and contains no open
sets, the only exception being the empty set which is both open and small.

In order to better understand the nature of generalized topological spaces we decided
to look at them from the point of view of locale theory.

The second motivation for our research follows from the following observation. Locale
theory study the isomorphism between the category of sober spaces and the category
of spatial locales [3]. But there exist topological spaces that are not sober and frames
that are not spatial. In Section 2, we provide the right arrow generalized topological
space. Obviously, this space has a nontrivial topological structure. On the other hand,
the generalized topology of this space is a frame but not a spatial frame and, moreover,
the family of all its principal prime ideals [3] is empty, which means this frame is not
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interesting from the point of view of locale theory. Thus, the notion of generalized locale

is needed to describe this and other gt-spaces in localic form.

In this paper, we review the notion of generalized topological space and introduce gen-
eralized spatial locales (gs-locales) and its density, describe homomorphisms and isomor-
phisms of gs-locales, provide representation theorems for generalized topological spaces
and gs-locales and show the categorical relations between gs-locales and T0 topological
spaces.

2. Generalized topological spaces (gt-spaces)

All notions and results from this section are introduced in [5].

2.1. Proposition. Let a nonempty set X and an ideal I ⊆ 2X be given. Then the relation

�, defined as follows, is a preorder on 2X , that means it is reflexive and transitive:

A � B iff A \ B ∈ I.

The relation ≈, defined as follows, is an equivalence on 2X , that means it is reflexive,

transitive and symmetric:

A ≈ B iff A \ B ∈ I and B \ A ∈ I.

The relations � and ≈ are called the preorder generated by the ideal I and the equiva-
lence generated by the ideal I, respectively.

2.2. Theorem. Let X be a nonempty set. Assume that T ⊆ 2X forms a frame with

respect to ⊆ and ∅, X ∈ T . Then there exists the least ideal I ⊆ 2X such that:

(1)
∨

U \
⋃

U ∈ I for every U ⊆ T ;
(2) (V ∩W ) \ (V ∧W ) ∈ I for every V,W ∈ T ;
(3) T ∩ I = {∅};
(4) U � V implies U ⊆ V for every U, V ∈ T ;
(5) U ≈ V implies U = V for every U, V ∈ T ;
(6) the ideal I is compatible with T , write I ∼ T , i.e. A ⊆ X and U ⊆ T with

A ⊆
∨

U and A ∩ U ∈ I, for all U ∈ U, imply that A ∈ I.

2.3. Definition. Let X be a nonempty set. A family T ⊆ 2X is called a generalized

topology (or topology modulo ideal) and the pair (X,T ) is called a generalized topological

space (gt-space for short, or topological space modulo ideal) provided that:

(GT1) ∅, X ∈ T ;
(GT2) (T,⊆) is a frame.

An ideal J ⊆ 2X satisfying (1)-(6) of Theorem 2.2 is called suitable. If there is no chance
for confusion, we keep the notation I , sometimes with an appropriate index, to denote
the least suitable ideal. If the ideal is not specified in a definition or construction then it
is always the least suitable ideal.

If there is no specification or index, we use the symbols � and ≈ to denote the preorder
and equivalence, respectively, generated by the least suitable ideal. We keep the notations
∨ and ∧ for the frame operations of the generalized topology.

2.4. Definition. A gt-space (X,T ) is called T0 iff for every distinct x, y ∈ X there is
U ∈ T such that x ∈ U and y /∈ U or x /∈ U and y ∈ U .

A topological space is a trivial example of gt-space, where the least suitable ideal
consists only of the empty set. In order to distinguish between topological spaces and
gt-spaces that are not topological spaces, we provide the following classification.

2.5. Definition. A gt-space is called
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(1) crisp gt-space (crisp space for short) iff its least suitable ideal is {∅};
(2) proper gt-space iff it is not crisp.

2.6. Example (Right arrow gt-space). Consider the real line R and the family of “right
arrows”

A = { [a, b) | a, b ∈ R ∪ {−∞,+∞} and a < b } .

We say that a subfamily A
′ ⊆ A is well separated iff for all [a, b), [c, d) ∈ A

′ it holds that
b < c or d < a. Construct the family Tra as follows:

Tra = {∅,R } ∪
{

⋃

A
′ | A′ ⊆ A and A

′ is well separated
}

.

Then the pair (R, Tra) forms a gt-space. The respective least ideal for this gt-space is
the family D of nowhere dense subsets of the real line.

2.7. Definition. Let (X,TX) and (Y, TY ) be gt-spaces. A mapping f : X → Y is called a
generalized continuous mapping (or g-continuous mapping for short) provided that there
exists a frame homomorphism h : TY → TX such that h(U) ≈ f−1(U) holds for every
U ∈ TY .

The g-continuous mapping f is called a generalized homeomorphism (or g-homeomor-

phism for short) iff f is a bijection and f−1 is g-continuous.

2.8. Theorem. Given gt-spaces (X,TX) and (Y, TY ) and a g-continuous mapping f : X →
Y , the following hold:

(i) the corresponding frame homomorphism h : TY → TX is unique;

(ii) f−1(B) ∈ IX holds for all B ∈ IY .

2.9. Proposition. Given gt-spaces (X,TX), (Y, TY ) and (Z, TZ) and g-continuous map-

pings f : X → Y and g : Y → Z, the composition g ◦ f : X → Z is also a g-continuous

mapping.

3. Definition of gs-locale. Density

Let us recall some definitions from [1]. The subset P of a lattice L is called:

• proper iff P 6= L;
• lower iff a ≤ b and b ∈ P imply a ∈ P for all a, b ∈ L;
• prime iff P is lower and a ∧ b ∈ P implies a ∈ P or b ∈ P for all a, b ∈ L;
• ideal iff P is lower and a, b ∈ P implies a ∨ b ∈ P for all a, b ∈ L;
• principal iff P is lower and

∨

P ∈ P .

In what follows, we will use the following notations for a given frame T :

(1) L(T ) – the family of all nonempty proper lower subsets of T ;
(2) Pr(T ) – the family of all prime subsets of T ;
(3) pt(T ) – the family of all principal prime ideals of T .

3.1. Definition. Let T be a frame. We say that a subfamily L ⊆ L(T ) strongly separates

the elements of T iff for every u, v ∈ T with v � u there exists A ∈ L such that u ∈ A
and v /∈ A.

3.2. Proposition. Let T be a frame and L ⊆ L(T ) a subfamily that strongly separates

the elements of T . Define a mapping p : T → 2L as follows, for all u ∈ T :

p(u) = {A ∈ L | u /∈ A}.

Then the pair (L, p(T )) forms a T0 gt-space and the mapping p : T → p(T ) is a frame

isomorphism.
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Proof. The mapping p : T → p(T ) is one-to-one mapping due to its definition, and in-
jective since L strongly separates the elements of T . Indeed, consider different u, v ∈ T
and, without loss of generality, assume that v 6≤ u. Then there is A ∈ L such that u ∈ A
and v /∈ A. Hence, A /∈ p(u) and A ∈ p(v) and we conclude that p(u) 6= p(v). We have
shown that p is bijective.

Let us show that the mapping p is monotone. Consider u, v ∈ T such that u ≤ v
and A ∈ p(u). Then u /∈ A and we conclude that v /∈ A, since A is a lower set. Hence,
A ∈ p(v) and p(u) ⊆ p(v).

Since p is bijective, we can define the followings operations for p(T ), where U ⊆ T
and v, w ∈ T :

∨

u∈U

p(u) = p
(

∨

U
)

and p(v) ∧ p(w) = p(v ∧ w).

Since p is monotone, it is easy to see that p(T ) together with the defined operations forms
a frame and (L, p(T )) is a gt-space.

Let us show that (L, p(T )) is T0. Consider different A,B ∈ L. Without loss of
generality, assume that there is u ∈ T such that u ∈ B and u /∈ A. Hence, A ∈ p(u) and
B /∈ p(u), i.e. the points A and B are separated by the open set p(u).

We already showed that p is bijective. The fact that p preserves arbitrary joins and
finite meets is due to the definition of join and meet for p(T ). Hence, p is a frame
homomorphism. The proof is complete. �

3.3. Definition. Given a frame T and a subfamily L ⊆ L(T ), we call the pair (T,L)
a generalized spatial locale (gs-locale for short) provided that L strongly separates the
elements of T .

3.4. Example. It is known that in a distributive lattice two elements can be strongly
separated by a prime ideal [1]. Hence, given frame T , the pair (T,Pr(T )) forms a gs-
locale.

3.5. Proposition. Given a gs-locale (T,L) where T is finite, it holds that Pr(T ) =
pt(T ) ⊆ L.

Proof. Consider a prime ideal P ∈ Pr(T ). Since T is finite, u =
∨

P ∈ P , and, hence,
the prime ideal P is principal, that is P ∈ pt(T ). Take v =

∧

(T \ P ). Then v � u and
there exists A ∈ L such that u ∈ A and v /∈ A. We conclude that A = P and, hence,
P ∈ L. �

3.6. Definition. Let T be a frame. The least cardinal number of the form |S| where
S ⊆ L(T ) strongly separates the elements of T is called the density of T , and is denoted
by d(T ).

We know already (Example 3.4) that d(T ) ≤ |Pr(T )| for a given frame T , and if T is
finite then d(T ) = |Pr(T )| by Proposition 3.5. The following example demonstrates that
the later equality does not necessarily hold in an arbitrary frame.

3.7. Example. Consider the frame Tra (Example 2.6) and the subfamilies s(Q) and
s(R) of L(Tra) defined as follows:

s(Q) = { {U ∈ Tra | q /∈ U } | q ∈ Q } ,

s(R) = { {U ∈ Tra | r /∈ U } | r ∈ R } .

We claim that the family s(Q) strongly separates the elements of Tra. Let us prove it.
Consider U, V ∈ Tra, and assume that V * U . Then, since (R, Tra) is a gt-space and
the least suitable ideal is the family of nowhere dense subsets of R, it holds that V 6� U
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and the subset V \ U cannot be nowhere dense in R. Hence, there exists [a, b) ⊆ V \ U .
Fix a point q ∈ [a, b) ∩ Q. The family s(Q) separates U and V . Indeed, U ∈ s(Q) and
V /∈ s(Q).

On the other hand, it is not difficult to check that Pr(Tra) = s(R). Hence, we obtain
the following estimation

d(Tra) ≤ |Q| < |Pr(Tra)|.

4. Morphisms

4.1. Definition. Let (TY , Y ) and (TX , X) be gs-locales. A pair of mappings (h, f)
is called a homomorphism provided that h : TY → TX is a frame homomorphism, and
f : X → Y is such that pX(h(U))∆f−1(pY (U)) ∈ IX for every U ∈ TY .

(TY , Y )
h //

pY

��

(TX , X)

pX

��
(Y, p(TY ), IY ) oo

f
(X, p(TX), IX)

The homomorphism (h, f) is called an isomorphism provided that f is a bijection and h
is a frame isomorphism.

Note that for a given frame homomorphism h the corresponding mapping f (if it
exists) is not necessarily unique. This is illustrated by the following example.

4.2. Example. Consider the four element frame T = {a, b, c, d}

◦d

}}
}}
}}
}}

AA
AA

AA
AA

b◦

BB
BB

BB
BB

◦c

||
||
||
||

◦a

Let x = {a}, y = {a, b}, and z = {a, c}. Take two subfamilies of lower sets X =
{x, y, z} and Y = {y, z}. Then (T,X) and (T, Y ) form gs-locales and the corresponding
g-topological spaces look like this:

(X, {∅, X, {x, y}, {x, z}}) , IX = {∅, {x}},

and (Y, {∅, Y, {y}, {z}}) , IY = {∅}.

Set h : T → T to be the identity mapping and define mappings f1 and f2 as follows:

• y // • y • y // • y

f1 : • x

=={{{{{{{{
f2 : • x

""D
DD

DD
DD

DD

• z // • z • z // • z

Then (h, f1) and (h, f2) are homomorphisms of the gs-locales (T,X) and (T, Y ).
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4.3. Proposition. Given gs-locales (TZ , Z), (TY , Y ) and (TX , X); and homomorphisms

(hg, g) : (TZ , Z)→ (TY , Y ) and (hf , f) : (TY , Y )→ (TX , X); the pair (hf ◦ hg, g ◦ f) is a

homomorphism of the gs-locales (TZ , Z) and (TX , X).

Proof. Let us consider the following diagram:

(TZ , Z)
hg //

p

��

(TY , Y )
hf //

p

��

(TX , X)

p

��
(Z, p(TZ), IZ) oo g

(Y, p(TY ), IY ) oo
f

(X, p(TX), IX)

Clearly, hf ◦ hg is a frame homomorphism. We have to check that

p(hf (hg(U)))∆f−1(g−1(p(U))) ∈ IX

holds for every U ∈ TZ . This holds by Theorem 2.9. The symbol ∆ denotes here the
set-theoretic difference, that means A∆B = (A \B) ∪ (B \A) for sets A and B. �

5. Representation theorems

5.1. Proposition. Consider a T0 gt-space (X,T ) and a mapping s : X → 2T defined as

s(x) = {U ∈ T | x /∈ U}

for all x ∈ X. Then the pair (T, s(X)) forms a gs-locale and the mapping s : X → s(X)
is a bijection.

Proof. It follows from the definition of gt-space that T is a frame. The family s(X)
separates the elements of T since (X,T ) is T0. �

5.2. Theorem. A T0 gt-space (X,T ) is characterized up to g-homeomorphism by the

gs-locale (T, s(X)).

Proof. We start with the T0 gt-space (X,T ), and construct the gs-locale (T, s(X)) ac-
cording to Proposition 5.1. Then we construct the gt-space (s(X), p(T )) according
to Proposition 3.2. We have to verify that the gt-spaces (X,T ) and (s(X), p(T )) are
g-homeomorphic. This is shown in the following diagram:

(X,T ) oo //

s
%%K

KK
KK

KK
KK

(s(X), p(T ))

(T, s(X))

p

77ppppppppppp

The mapping s : X → s(X) is a bijection and the mapping p : T → p(T ) is a frame
isomorphism. Hence, to prove that s is a g-homeomorphism, it is enough to show that
s(U) = p(U) holds for all U ∈ T :

s(U) = {s(x) ∈ s(X) | x ∈ U}

= {s(x) ∈ s(X) | U /∈ s(x)}

= {s(x) ∈ s(X) | s(x) ∈ p(U)}

= p(U).

The proof is complete. �

5.3. Theorem. A gs-locale (T,L) is characterized up to isomorphism by the gt-space

(L, p(T )).



Introduction to generalized spatial locales 755

Proof. The proof is similar to the proof of the previous theorem. �

5.4. Proposition. Consider a gs-locale (T, L), the corresponding gt-space (L, p(T )), and
Y ∈ L. Then

(i) Y is prime iff Y ∈ U ∩ V implies Y ∈ U ∧ V for every U, V ∈ p(T );
(ii) Y is ideal iff Y ∈ U ∨ V implies Y ∈ U ∪ V for every U, V ∈ p(T );
(iii) Y is principal iff Y ∈

∨

U implies Y ∈
⋃

U for every U ⊆ p(T ). �

5.5. Proposition. Let (T,L) be a gs-locale. The following are equivalent:

(i) L ⊆ pt(T );
(ii) The mapping p : T → 2L is a frame homomorphism;

(iii) The pair (L, p(T )) is a T0 topological space.

5.6. Definition. A pair (T,L) is called a

(1) crisp gs-locale iff L ⊆ pt(T ),
(2) spatial locale iff L = pt(T ),
(3) proper gs-locale iff L \ pt(T ) 6= ∅.

6. Isomorphism of categories GTop0 and GSLoc.
Classification of subcategories

We use the categorical notions from [2].

6.1. Proposition. All T0 gt-spaces and g-continuous mappings between T0 gt-spaces

form a concrete category. We denote this category by GTop
0
.

Proof. The composition law is the natural composition of mappings. It is easy to check
that the matching and associativity conditions are satisfied. The identity morphisms
are the identity mappings. The smallness of morphism class condition is satisfied, since
homC(X,Y ) ⊆ Y X and Y X is a set for all setsX and Y . Hence, GTop

0
forms a category.

Clearly, the the function F that takes each T0 gt-space (X,T ) to the set X defines a
forgetful functor. The property (i) from Theorem 2.8 shows that the functor F is faithful.
Hence, the category GTop

0
is concrete. �

6.2. Proposition. All gs-locales and homomorphisms of gs-locales form a category. We

denote this category by GSLoc.

Proof. The composition law is the natural composition of mappings. Clearly, the match-
ing and associativity conditions are satisfied. The identity morphisms are identity map-
pings. The smallness of morphism class condition is also satisfied. Hence, GSLoc forms
a category. �

6.3. Theorem. The categories GTop
0
and GSLoc are isomorphic.

Proof. In Propositions 5.2 and 5.3, we showed that F : Obj(GTop
0
) → Obj(GSLoc) is

a bijection. Applying Theorem 2.8, we conclude that F is a faithful functor. The fact
that F is a full functor can be easily obtained using a similar argument to that used in
the proofs of Propositions 5.2 and 5.3. �

Consider the following categories:
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GTop
0

T0 gt-spaces,
Top

0
T0 topological spaces,

Sob sober spaces,
GSLoc gs-locales,
CGSLoc crisp gs-locales,
SLoc spatial locales.

The following chart provides the relations between these categories. The arrows of the
form −→ represent the relation “to be a subcategory”, e.g. CGSLoc is a subcategory of
GSLoc. The arrows of the form←→ represent the relation “to be isomorphic categories”,
e.g. the categories CGSLoc and Top

0
are isomorphic.

SLoc

4

��

5

&&MM
MM

MM
MM

MM
M
oo 7 // Sob

2

zztt
tt
tt
tt
tt

1

��

GSLoc oo 8 // GTop
0

CGSLoc

6

88rrrrrrrrrrr
oo 9 // Top

0

3

ddIIIIIIIII

Let us comment the considered relations.

1,7: These are known results from locale theory – sober spaces are T0 spaces, and
the categories of sober spaces and of spatial locales are isomorphic [3].

2,3: It follows from the definition of gt-space that every T0 topological space and,
hence, every sober space is a T0 gt-space.

4,5,6: According to our classification (Def. 5.6), every spatial locale is also a crisp
gs-locale, and spatial locales and crisp spatial locales are gs-locales.

8,9: The relation 8 is presented in Theorem 6.3. The relation 9 is a corollary from
this theorem and Proposition 5.5.
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