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Abstract

In the following text a proper subclass of Alexandroff topological spaces,
namely functional Alexandroff topological spaces, is introduced. We
discuss relation between Alexandroff spaces and functional Alexandroff
spaces, functional Alexandroff spaces as dynamical systems, and other
related topics.
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1. Introduction

As it has been mentioned in [2] and several other papers such as [4] and [3], Alexandroff
spaces have been introduced in [1] (under the name Diskrete Räume) for the first time.
Diskrete Räume (e.g. in [1]), A-space (e.g. in [7]), principal topology (e.g. in [6]), and
Alexandroff space (e.g. in [2]) are just several of the names for a topological space for
which the intersection of every nonempty collection of its open sets is open, in this paper
we will name such a space an Alexandroff space. Without any doubt one of the best and
most important examples of Alexandroff spaces are the finite topological spaces, in this
area several authors have worked (e.g. [5] as one of the oldest related papers).

Using the definition in Alexandroff space X, for every a ∈ X, V (a) :=
⋂

{U ⊆ X : U is
an open neighborhood of a} is the smallest open neighborhood of a inX. It is evident that
X is Alexandroff if and only if for each a ∈ X there exists smallest open neighborhood
of a in X. Therefore the set of all maps f : X → P(X) such that:

A1- ∀ a ∈ X a ∈ f(a)
A2- ∀ a ∈ X ∀ b ∈ f(a) f(b) ⊆ f(a)
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coincides with all Alexandroff topologies on X (for such an f consider the topological
basis {f(a) : a ∈ X}); some authors prefer to use this view (e.g. in [6], f(x) is the orbit
of x under S, where S is a semigroup with identity and acts on X).

Moreover if (X,≤) is a poset, then f : X → P(X) with f(a) = {x ∈ X : x ≤ a} =:
(−∞, a]≤ satisfies the above conditions and generates an Alexandroff topology on X
with topological basis {(−∞, a]≤ : a ∈ X}.

On the other hand if X is an Alexandroff T0 space, for each a, b ∈ X define “a ≤ b
if and only if a ∈ V (b)”, in this way (X,≤) is a poset and the topology generated by
{(−∞, a]≤ : a ∈ X} is the same topology of X. Therefore there exists a bijection between
Alexandroff T0 topologies on X and partial orders on X, some authors also prefer to use
this view (e.g. [1]).

In this paper we will introduce the class of functional Alexandroff spaces (a proper
subclass of Alexandroff spaces) which arises by considering self-maps.

Let α : X → X be an arbitrary map. Then α∗ : X → P(X) with α∗(x) = {x} ∪
α−1(x)∪α−2(x)∪· · · (for x ∈ X) satisfies (A1) and (A2), so corresponds to an Alexandroff
topology on X, we name this Alexandroff space the functional Alexandroff space (induced
by α). Moreover if α has no periodic points other than fixed points then this Alexandroff
space is T0 too, and the corresponding partial order relation on X is defined as “a ≤ b if
and only if there exists n ≥ 0 with αn(a) = b”.

Consider X = {1, 2, 3} under the topology {∅, {1, 2}, X}. This Alexandroff space
is not functional Alexandroff. Thus for |X| ≥ 3, the set of all functional Alexandroff
topologies on X is a proper subset of the set of all Alexandroff topologies on X. In this
text by A ⊂ B we mean A ⊆ B and A 6= B.

2. Basic properties of functional Alexandroff spaces

From now on for α : X → X, let τα be the topology on X generated by the topological
basis {↓α x : x ∈ X}, where for each x ∈ X, ↓α x :=

⋃

{α−n(x) : n ≥ 0}. We have the
following facts on the topological space (X, τα):

• for each x, y ∈ X, ↓α x ⊆↓α y or ↓α y ⊆↓α x or ↓α y∩ ↓α x = ∅;
• for each x ∈ X, ↓α x is the smallest open neighborhood of x;
• α : X → X is continuous.

We recall that under the topology τα, X is called the functional Alexandroff space (in-
duced by α).

2.1. Theorem. [Elementary Properties] Let α : X → X be a map. In the topological
space (X, τα), we have the following facts:

(1) X 6= ∅ is compact if and only if there exist a1, . . . , an ∈ X, such that X =
⋃

1≤i≤n

↓α ai (one may suppose the ↓α ais are disjoint too).

(2) For D ⊆ X with α(D) ⊆ D, we have τα|D is the same as the induced topology
on D from X.

(3) For each n ∈ N, τα ⊆ ταn .
(4) For each Y ⊆ X, Y is closed if and only if Y is invariant under α (i.e., α(Y ) ⊆

Y ).

(5) For each Y ⊆ X, Y =
⋃

{αn(Y ) : n ≥ 0}.
(6) α : X → X is closed.
(7) Each connected component of X is open (hence clopen).
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(8) For each a, b ∈ X, let a ∼ b if and only if there exist n,m ∈ N with αn(a) =
αm(b), then ∼ is an equivalence relation on X and X/ ∼ is the set of all con-
nected components of X.

Proof. (2) Since for each x ∈ D,
⋃

{α−n(x) : n ≥ 0} ∩D =
⋃

{(α|D)−n(x) : n ≥ 0}.

(4) Let Y be a closed subset of X. For each x ∈ X−Y , α−1(x) ⊆↓α x ⊆ X−Y (since
X − Y is open and ↓α x is the smallest open neighborhood of x), so α−1(x)∩ Y = ∅ and
x /∈ α(Y ). By x /∈ α(Y ) (∀x ∈ X − Y ), we have α(Y ) ⊆ Y .

On the other hand if α(Y ) ⊆ Y , then for each x ∈ X − Y , ↓α x ⊆ X − Y and Y is
closed.

(5) Use (4) and the fact that
⋃

{αn(Y ) : n ≥ 0} is the smallest α−invariant subset of
X containing Y .

(6) Use (5).

(7) It is enough to show ↓α a is connected for each a ∈ X. But this is evident since
↓α a is the smallest open subset of ↓α a containing a.

(8) Let a ∈ X and C denotes the connected component of a. By (7), C ⊇ U :=
⋃

{↓α c : a ∈↓α c}, moreover U is a nonempty clopen subset of C, since if b ∈ C −U and
x ∈↓α b∩U , then there exists c ∈ U such that a, x ∈↓α c, hence ↓α b ⊆↓α c or ↓α c ⊆↓α b,
which are both contradictions. So ↓α b ⊆ C − U and U is a closed subset of C. Hence
C = U and therefore b ∈ C if and only if there exists c ∈ X such that a, b ∈↓α c, i.e.,
there exist n,m ∈ N and c ∈ X such that αn(a) = αm(b) = c. �

If α : X → X is a map, then as mentioned in Theorem 2.1. when X is considered
under topology τα, α : X → X is closed. The following theorem indicates the conditions
under which α : X → X is open.

2.2. Theorem. Let α : X → X be a map. In the topological space (X, τα), we have:

(1) α : X → X is open if and only if for all x ∈ X we have α(↓α x) =↓α α(x).
(2) If α : X → X is open, then it is onto.
(3) α : X → X is a homeomorphism if and only if it is one to one and open.
(4) α : X → X is a homeomorphism if and only if it is a bijection.

Proof. (1) Let α : X → X be open and x ∈ X. It is clear that α(↓α x) ⊆↓α α(x). Since
α : X → X is open so α(↓α x) is an open neighborhood of α(x), therefore ↓α α(x) ⊆
α(↓α x).

On the other hand if for all x ∈ X we have α(↓α x) =↓α α(x), since {↓α x : x ∈ X} is
a basis for τα, thus α : X → X is open.

(2) Let x ∈ X, by (1) we have x ∈↓α α(x) = α(↓α x) ⊆ α(X). �

2.3. Note. Let α : X → X be an arbitrary map, then φ : (X, τα) → (X×X, τα×α) with
φ(x) = (x, x) an embedding.

Proof. Using Theorem 2.1 (2), {(x, x) : x ∈ X} is an invariant subset of X × X under
α× α. �

2.4. Note. Define λi : Ai → Ai by setting A0 = N, A1 = Z, An+1 = {1, . . . , n} (for
n ∈ N), and also let λ0(k) = k + 1, λ1(k) = k + 1, and λn+1(k) ≡ k + 1(mod n). Thus
τλi

= {Ai, ∅} for i > 1 and τλi
= {{n ∈ Ai : n < k} : k ∈ Ai} ∪ {Ai} for i = 0, 1.

If λ : A → A is one-to-one, then the topological space A is a disjoint union of copies
of the Ai s.
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If λ : A → A is one-to-one without any periodic point, then the topological space A
is a disjoint union of copies of the Ai s for i = 0, 1, 2.

If λ : A → A is a bijection without any periodic point, then the topological space A
is a disjoint union of copies A1.

2.5. Remark. In an Alexandroff space X, the smallest open neighborhood of x ∈ X is
denoted by V (x) [2]. By [2, Theorem 2.3] the Alexandroff space X is T0 if and only if

∀ x, y ∈ X (V (x) = V (y) ⇒ x = y).

The following theorem deals with conditions under which a functional Alexandroff
space is T0 or T1.

2.6. Lemma (T0 and T1 spaces). Let α : X → X be an arbitrary map. Then (X, τα)
is:

(1) T0 if and only if α does not have any periodic point except fixed points;
(2) T1 if and only if α = idX .

Proof. Since for x, y ∈ X with x 6= y we have ↓α x =↓α y if and only if there exists n ≥ 2
such that y ∈ {x, α(x), . . . , αn−1(x), αn(x) = x}, using Remark 2.5, (1) is established.
Moreover X is T1 if and only if for each x ∈ X, {x} is a closed subset of X, which is
equivalent to α(x) ∈ {x} (by Theorem 2.1 (4)), i.e., for each x ∈ X we have α(x) = x
and α = idX . �

3. Functional Alexandroff spaces as a proper subclass of Alexan-

droff spaces

The main aim of this section is to find some topological properties which characterize
functional Alexandroff spaces amongst all Alexandraff spaces (Main Theorem).

3.1. Lemma. Let α : X → X be a map and {xn}n∈N a sequence in X.

(1) If n,m ∈ N are such that ↓α x1 ⊂↓α x2 ⊂↓α x3, α
n(x1) = x2 and αm(x1) = x3,

then n < m.
(2) If ↓α x1 ⊃↓α x2 ⊃ · · · , then

⋂

n∈N
↓α xn = ∅.

(3) If ↓α x1 ⊂↓α x2 ⊂ · · · , then for all y ∈ X,
⋃

n∈N
↓α xn 6⊆↓α y.

(4) For all x ∈ X, {z ∈ X :↓α z =↓α x} is finite.
(5) Let x, y ∈ X. If ↓α x ⊂↓α y, then for all z ∈ X − {x} we have ↓α x 6=↓α z.
(6) If x ∈ X is such that for all y ∈ X−{x}, ↓α x 6=↓α y, then ↓α x is a T0 subspace

of X.

Proof. (1) If n ≥ m, then x2 = αn(x1) = αn−m(x3) and x3 ∈↓α x2, so ↓α x3 ⊆↓α x2,
which is a contradiction.

(2) If x ∈
⋂

n∈N
↓α xn, then ↓α x ⊆ · · · ⊂↓α x2 ⊂↓α x1, so for each n ∈ N there

exists mn ∈ N such that αmn(x) = xn. By (1) we have · · · < m2 < m1, which is a
contradiction.

(3) If y ∈ X is such that
⋃

n∈N
↓α xn ⊆↓α y, then there exists k ∈ N such that

αk(x1) = y and for all n ≥ 2 there exists mn ∈ N with αmn (x1) = xn. By (1) we have
m2 < m3 < · · · < k, which is a contradiction.

(4) If z 6= x is such that ↓α x =↓α z, then there exist n,m ∈ N such that αn(x) = z
and αm(z) = x. It is easy to show {w ∈ X :↓α w =↓α x} = {x, α(x), . . . , αn+m−1(x)},
and αn+m(x) = x.

(5) Let ↓α x ⊂↓α y and z ∈ X − {x} be such that ↓α x =↓α z. Using the same
method as in (4), there exists p ∈ N such that αp(x) = x and z ∈ {α(x), . . . , αp(x) = x},
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moreover it is evident that ↓α x =↓α αi(x) for all i ∈ {1, . . . , p}. Since x ∈↓α y, thus
there exists q ≥ 0 such that αq(x) = y, by αp(x) = x we may choose q ∈ {1, . . . , p},
which leads to the contradiction ↓α x =↓α y.

(6) Use (5) and [2, Theorem 2.3]. �

3.2. Lemma. Let X be an Alexandroff space such that for all x, y ∈ X we have

V (x) ⊆ V (y) ∨ V (y) ⊆ V (x) ∨ V (x) ∩ V (y) = ∅.

Then the following statements are equivalent:

(1) For all x, y ∈ X, {V (z) : z ∈ X ∧ V (x) ⊂ V (z) ⊂ V (y)} is finite.
(2) For all sequences {xn}n∈N in X we have:

i. if V (x1) ⊃ V (x2) ⊃ · · · , then
⋂

n∈N

V (xn) = ∅;

ii. if V (x1) ⊂ V (x2) ⊂ · · · , then for all y ∈ X,
⋃

n∈N
V (xn) 6⊆ V (y).

Proof. Let for all x, y ∈ X, {V (z) : z ∈ X ∧ V (x) ⊂ V (z) ⊂ V (y)} is finite. If

V (x1) ⊃ V (x2) ⊃ · · · is such that
⋂

n∈N
V (xn) 6= ∅, then for w ∈

⋂

n∈N

V (xn) we have

V (w) ⊆
⋂

n∈N

V (xn) and {V (xi) : i ≥ 2} ⊆ {V (z) : V (w) ⊂ V (z) ⊂ V (x1)}, which is a

contradiction since {V (xi) : i ≥ 2} is infinite. Moreover if V (x1) ⊂ V (x2) ⊂ · · · and
⋃

n∈N
V (xn) ⊆ V (y), then {V (xi) : i ≥ 2} ⊆ {V (z) : V (x1) ⊂ V (z) ⊂ V (y)}, which is

again a contradiction since {V (xi) : i ≥ 2} is infinite. Thus (i) and (ii) are valid.

Conversely suppose (i) and (ii) are valid. If V (x) ⊂ V (y), then ({V (z) : V (x) ⊂
V (z) ⊂ V (y)},⊆) is a chain, using (i) and (ii) it is a finite chain, which leads to (1). �

3.3. Corollary. In a functional Alexandroff space X, for any x, y ∈ X, {z ∈ X : V (x) ⊆
V (z) ⊆ V (y)} is finite.

Proof. By Lemma 3.1, any functional Alexandroff space X satisfies Lemma 3.2 (2), there-
fore it satisfies Lemma 3.2 (1), in particular for any x, y ∈ X, {z ∈ X : V (x) ⊆ V (z) ⊆
V (y)} is finite, again by using Lemma 3.1. �

3.4. Lemma. Disjoint unions of functional Alexandroff spaces are functional Alexan-
droff.

Proof. Let {Xt : t ∈ Γ} be a collection of disjoint functional Alexandroff spaces such that
for each t ∈ Γ, the topology on Xt is that induced by ft : Xt → Xt. Then the disjoint
topology on X :=

⋃

t∈Γ
Xt (i.e. {U ⊆ X : ∀t ∈ Γ U ∩ Xt is an open subset of Xt}) is

the functional Alexandroff topology induced by
⋃

t∈Γ
ft. �

3.5. Theorem. [Main Theorem] Let X be an Alexandroff space. Then, X is a functional
Alexandroff space if and only if the following statements hold:

(C1) ∀ x, y ∈ X V (x) ⊆ V (y) ∨ V (y) ⊆ V (x) ∨ V (x) ∩ V (y) = ∅;
(C2) For x ∈ X, if there exists y ∈ X with V (x) ⊂ V (y) then for all z ∈ X − {x} we

have V (x) 6= V (z);
(C3) For all x, y ∈ X, {z ∈ X : V (x) ⊆ V (z) ⊆ V (y)} is finite.

Proof. If X is a functional Alexandroff space, then by Lemma 3.1 and Lemma 3.2, X
satisfies (C1), (C2) and (C3).

Now suppose X is an Alexandroff space that satisfies (C1), (C2) and (C3). We distin-
guish the following cases:
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First case: ({V (x) : x ∈ X},⊆) has a maximum element, (i.e.,there exists a ∈ X such
that V (a) = X).

By (C3) there exist distinct elements a1, . . . , an ∈ X such that {a1, . . . , an} = {x ∈
X : V (x) = X} =: A. For all x ∈ X\A, {z ∈ X : V (x) ⊂ V (z)} 6= ∅. By (C3) and (C1)
there exist b1, . . . , bp ∈ X such that V (x) ⊂ V (b1) ⊂ · · · ⊂ V (bp) and {V (z) : V (x) ⊂
V (z)} = {V (bi) : i ∈ {1, . . . , p}} (note that if b1 ∈ X\A, then b1 is determined uniquely
by (C1)), define:

x̂ =

{

a1 if b1 ∈ A,

b1 if b1 ∈ X\A.

Define α : X → X by α(x) = x̂ for x ∈ X\A, α(a1) = a2, α(a2) = a3,. . . , α(an−1) = an,
α(an) = a1. We claim that τα coincides with the topology on X.

It is enough to show for each x ∈ X we have V (x) =↓α x, with this aim we follow the
steps below:

• By the definition of α, for all x ∈ X\A we have V (x) ⊂ V (α(x)).
• For x ∈ X\A and z ∈↓α x − {x} there exists m ≥ 1 such that αm(z) = x,

therefore z ∈ V (z) ⊂ V (α(z)) ⊂ · · · ⊂ V (αm(z)) = V (x). Thus ↓α x ⊆ V (x).
• For x ∈ X and z ∈ V (x) − {x} we have V (z) ⊆ V (x) using (C1), (C3) and the

definition of α, there exists m ≥ 1 such that αm(z) = x and z ∈↓α x. Therefore
V (x) ⊆↓α x.

Second case: ({V (x) : x ∈ X},⊆) does not have a maximal element.

By (C1) and (C2), X is T0. Suppose x ∈ X. There exists y ∈ X such that V (x) ⊂ V (y).
By (C1) and (C3) there exist b1, . . . , bp ∈ X such that V (x) ⊂ V (b1) ⊂ · · · ⊂ V (bp) = V (y)
and {V (z) : V (x) ⊂ V (z) ⊆ V (y)} = {V (bi) : i ∈ {1, . . . , p}}. Set x̂ := b1. Define
α : X → X by α(x) = x̂. Using a similar method to that described in the first case, we
have V (x) =↓α x.

Third case: The general case.

Let

A := {y ∈ X : V (y) be a maximal element of ({V (x) : x ∈ X},⊆)}.

Set Y := X\
⋃

{V (y) : y ∈ A}. By (C1) and the definition of A, Y is an open subset of X.
Clearly, ({V (x) : x ∈ Y },⊆) does not have a maximal element, so using the second case, Y
is a functional Alexandroff space. For all y ∈ A, using the first case, V (y) is an functional
Alexandroff space. But X is a disjoint union of elements of {V (y) : y ∈ A} ∪ {Y }. So X
is a functional Alexandroff (use Lemma 3.4). �

3.6. Counterexamples. In Theorem 3.5:

• Consider X = {1, 2, 3} under the topology τ = {∅, X, {1}, {1, 2}, {1, 3}}. Then,
(X, τ ) is a T0 Alexandroff space, but is not a Functional Alexandroff space.
Indeed, (X, τ ) satisfies items (C2) and (C3), but does not satisfy (C1).

• Consider X = {1, 2, 3} under the topology τ = {∅, X, {1, 2}}. Then, (X, τ ) is
an Alexandroff space, but is not a Functional Alexandroff space. Indeed, (X, τ )
satisfies items (C1) and (C3), but does not satisfy (C2).

• Let X = {0, 1, 2, . . . }, V (0) = {0}, V (n) = {0, n, n+1, . . .}(n ∈ N). Consider X
under the topology τ generated by the topological basis {V (n) : n = 0, 1, 2, . . .}.
Then (X, τ ) is a T0 Alexandroff space, but is not Functional Alexandroff space.
Indeed, (X, τ ) satisfies items (C1) and (C2), but it does not satisfy (C3).

3.7. Corollary. In an infinite functional Alexandroff space X, w(X) = |X| (where
w(X) = min

{

|B| : B is a basis for a topological space X
}

is the weight of X).
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Proof. In an Alexandroff space X, w(X) = |{V (x) : x ∈ X}| ≤ |X|. If X is an infinite
functional Alexandroff space, then by (C3) in Theorem 3.5 (Main Theorem), for each
x ∈ X, {z ∈ X : V (z) = V (x)} is finite, which leads to |{V (x) : x ∈ X}| = |X| and
w(X) = |X|. �

4. A functional Alexandroff space as a dynamical system

For an arbitrary map α : X → X, when X is endowed with the topology τα, α :
X → X is continuous and one may be interested in the dynamical system (X,α). In this
section we will study such dynamical systems.

Let (X,α) and (Y, β) be two dynamical systems. A continuous function ϕ : (X,α) →
(Y, β) is called a homomorphism if ϕα = βϕ, moreover if it is a homeomorphism too,
then it is called an isomorphism. The following theorem characterizes all of these homo-
morphisms and isomorphisms.

4.1. Theorem. In dynamical systems (X,α) and (Y, β), when X is considered under
the topology τα and Y under the topology τβ, we have:

(1) ϕ : (X,α) → (Y, β) is a homomorphism of dynamical systems if and only if
ϕα = βϕ.

(2) A bijection ϕ : (X,α) → (Y, β) is an isomorphism of dynamical systems if and
only if ϕα = βϕ.

Proof. Let ϕ : X → Y be such that ϕα = βϕ. We claim that ϕ : X → Y is continuous.
Let {xλ}λ∈Λ be a net in X converging to x. Then there exists λ0 ∈ Λ such that for all λ ≥
λ0 we have xλ ∈↓α x; therefore for all λ ≥ λ0 there exists nλ ≥ 0 such that αnλ (xλ) = x,
so ϕ(x) = ϕ(αnλ (xλ)) = βnλ (ϕ(xλ)) and ϕ(xλ) ∈↓

β (ϕ(x)), hence {ϕ(xλ)}λ∈Λ converges
to ϕ(x) and ϕ : X → Y is continuous, which completes the proof of (1).

Moreover, if ϕ : (X,α) → (Y, β) is a bijection such that ϕα = βϕ, then since αϕ−1 =
ϕ−1β and using (1) we see that both ϕ : (X,α) → (Y, β) and ϕ−1 : (Y, β) → (X,α) are
continuous homomorphisms, which leads to (2). �

4.2. Note. In the dynamical system (X,α), when X is endowed with the topology τα,
calculation of the orbit closure of a point is easy by Theorem 2.1, moreover orbit closure
and the orbit of a point are the same, i.e., for each x ∈ X,

{x} = {αn(x) : n ≥ 0} = {αn(x) : n ≥ 0}.

In the dynamical system (X,α), we call (x, y) ∈ X ×X a proximal pair if there exists a
net {nλ}λ∈Λ in N ∪ {0} and z ∈ X such that {αnλ (x)}λ∈Λ and {αnλ (y)}λ∈Λ converge
to z. The set of all proximal pairs is denoted by P(X). We call (X,α) distal (resp.
proximal), if P(X) = ∆X (resp. P(X) = X ×X).

4.3. Theorem. In the dynamical system (X,α), when X is endowed with the topology
τα, we have

P(X) = {(x, y) ∈ X ×X : ∃z ∈ X x, y ∈↓α z}

= {(x, y) ∈ X ×X : x, y belong to a connected component of X}.

Proof. Let x, y, z ∈ X and suppose the net {nλ}λ∈Λ in N∪{0} is such that {αnλ (x)}λ∈Λ

and {αnλ (y)}λ∈Λ converge to z. Then

z ∈ {αn(x) : n ≥ 0} ∩ {αn(y) : n ≥ 0} = {αn(x) : n ≥ 0} ∩ {αn(y) : n ≥ 0},

and there exist n,m ≥ 0 such that αn(x) = z = αm(y). Therefore

P(X) ⊆ {(x, y) ∈ X ×X : ∃z ∈ X x, y ∈↓α z}.
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On the other hand suppose x, y, z ∈ X are such that x, y ∈↓α z, thus there exist n,m ≥ 0
such that αn(x) = z = αm(y). Let n ≤ m. The constant sequences {αn(x)}k∈N and
{αn(y)}k∈N converge to z, therefore (x, y) ∈ P(X). �

4.4. Corollary. A dynamical system (X,α), when X is endowed with the topology τα,
is distal if and only if α = idX .

Proof. By Theorem 4.3, (X,α) is distal if and only if for each z ∈ X we have ↓α z = {z}.
So if (X,α) is distal, then for each z ∈ X we have z ∈↓α α(z) = {α(z)}, which shows
α(z) = z. �

4.5. Corollary. A dynamical system (X,α), when X is endowed with the topology τα,
is proximal if and only if X is connected.

Proof. Use Theorem 4.3. �
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