ON SEMISYMMETRIC CUBIC GRAPHS OF ORDER 10p ${ }^{3}$

Mehdi Alaeiyan* ${ }^{* \dagger}$ and B. Naimeh Onagh ${ }^{\ddagger}$

Received 17:04:2010 : Accepted 09:11:2010

Abstract

Connected cubic graphs of order $10 p^{3}$ which admit an automorphism group acting semisymmetrically are investigated. We prove that every connected cubic edge-transitive graph of order $10 p^{3}$ is vertex-transitive, where p is a prime.

Keywords: Automorphism group, Regular cover, Semisymmetric graph.
2000 AMS Classification: 05 C 10, 05 C 25,20 B 25.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the group-theoretic concepts and notation not defined here we refer the reader to $[4,8,14]$. Given a graph X, we let $V(X), E(X), A(X)$ and Aut X be the vertex set, the edge set, the arc set and the automorphism group of X, respectively.

If a subgroup G of Aut X acts transitively on $V(X), E(X)$ and $A(X)$, then X is said to be G-vertex-transitive, G-edge-transitive and G-arc-transitive, respectively. It is easily seen that a graph X which is G-edge- but not G-vertex-transitive is necessarily bipartite, with the two parts of the bipartition coinciding with the orbits of G. In particular, if X is a regular, then these two parts have equal cardinalities, and such a graph is then referred to as being G-semisymmetric. In the case where $G=$ Aut X the symbol G may be omitted from the definitions above, so that X is called semisymmetric if it is regular and Aut X-edge-transitive but not Aut X-vertex-transitive.

An s-arc in a graph X is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i<s$. A graph X is said to be s-arc-transitive if $\operatorname{Aut}(X)$ is transitive on the set of s-arcs of X. In particular, 0 -arc-transitive means vertex-transitive, and 1 -arc-transitive means arc-transitive or symmetric.

The study of semisymmetric graphs was initiated by Folkman [7].

[^0]Semisymmetric graphs of order $2 p q$, and semisymmetric cubic graphs of orders $2 p^{3}$, $6 p^{2}$ and $2 p^{2} q$ are classified in $[5,10,9,13]$, where p and q are primes. Also in [1] it is proved that every edge-transitive cubic graph of order $8 p^{2}$ is vertex-transitive, where p is a prime. In [3] an overview of known families of cubic semisymmetric graphs is given.

Semisymmetric cubic graphs of orders $10 p$ and $10 p^{2}$ are special cases of the semisymmetric graphs in [5, 13]. The objective of this paper is to investigate all connected cubic semisymmetric graphs of order $10 p^{3}$. In particular, we have shown that there is no semisymmetric cubic graphs of order $10 p^{3}$. The main result of this paper is as follows:
1.1. Theorem. Let p be a prime. Then, every connected edge-transitive cubic graph of order $10 p^{3}$ is vertex-transitive.

As a result, we can conclude that every connected edge-transitive cubic graph of order $10 p^{3}$ is symmetric.

2. Preliminaries

Given a finite group G, consider pairs of groups (H, Z), where $Z \subseteq Z(H)$ and $H / Z \cong$ G. In this situation, we say H is a central extension of G. The largest possible second component of a pair (H, Z) associated with a given group G is called the Schur multiplier of G.

Let X be a graph, N a subgroup of $\operatorname{Aut}(X)$, and K a finite group. For $u, v \in V(\Gamma)$, denote by $\{u, v\}$ the edge incident to u and v in X, and by $N_{X}(u)$ the set of vertices adjacent to u in X. The quotient graph X / N or X_{N} induced by N is defined as the graph such that the set Σ of N-orbits in $V(X)$ is the vertex set of X / N and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u, v\} \in E(X)$.

A graph \tilde{X} is called a covering of a graph X with projection $\wp: \widetilde{X} \rightarrow X$ if there is a surjection $\wp: V(\widetilde{X}) \rightarrow V(X)$ such that $\wp_{N_{\widetilde{X}}(\tilde{v})}: N_{\tilde{X}}(\tilde{v}) \rightarrow N_{X}(v)$ is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in \wp^{-1}(v)$.

A covering \widetilde{X} of X with a projection \wp is said to be regular (or a K-covering) if there is a semiregular subgroup K of the automorphism group $\operatorname{Aut}(\widetilde{X})$ such that X is isomorphic to the quotient graph \widetilde{X} / K, say by h, and the quotient map $\widetilde{X} \rightarrow \tilde{X} / K$ is the composition $\wp h$ of \wp and h; to emphasize this we sometimes write \wp_{N} instead of just厄.

Let X be a graph and K a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or, K-voltage assignment) of X is a function $\xi: A(X) \rightarrow K$ with the property that $\xi\left(a^{-1}\right)=(\xi(a))^{-1}$ for each arc $a \in A(X)$. The values of ξ are called voltages, and K is the voltage group. The graph $X \times_{\xi} K$ derived from a voltage assignment $\xi: A(X) \rightarrow K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that an edge (e, g) of $X \times K$ joins a vertex (u, g) to $(v, g \xi(a))$ for $a=(u, v) \in A(X)$ and $g \in K$, where $e=\{u, v\}$. If $\xi(a)=1$ for each arc $a \in A(X)$, then the covering $X \times_{\xi} \mathbb{Z}_{2}$ is called the canonical double covering of X.

Let $\wp: \widetilde{X} \rightarrow X$ be a covering projection. The vertices in $\wp^{-1}(v)$ form the fibre over the vertex v; we similarly define the fibre over an edge $e \in E(X)$. If X is connected, as we assume in this paper, then any two vertex or edge fibres are of the same cardinality n. This number is called the fold-number of the covering, and we say that \wp is an n-fold covering. We remark that any covering of a bipartite graph is bipartite, but:
2.1. Proposition. [2] If \tilde{X} is a bipartite covering of a non-bipartite graph X, then the fold number is even.

The next proposition is a special case of [9, Lemma 3.2].
2.2. Proposition. Let X be a connected G-semisymmetric cubic graph with bipartition sets $U(X)$ and $W(X)$, where $G \leq \operatorname{Aut}(X)$. Moreover, suppose that N is a normal subgroup of G. If N is intransitive on bipartition sets, then N acts semiregularly on both $U(X)$ and $W(X)$, and X is an N-regular covering of a G / N-semisymmetric cubic graph.

We quote the following propositions.
2.3. Proposition. [10] The vertex stabilizers of a connected G-semisymmetric cubic graph X have order $2^{r} \cdot 3$, where $r \geq 0$. Moreover, if u and v are two adjacent vertices, then $G=\left\langle G_{u}, G_{v}\right\rangle$, and the edge stabilizer $G_{u} \cap G_{v}$ is a common Sylow 2-subgroup of G_{u} and G_{v}.
2.4. Proposition. [10] Let X be a connected bipartite graph admitting an abelian subgroup $G \leq$ Aut X acting regularly on each of the bipartition sets. Then, X is vertextransitive.
2.5. Proposition. [12] Every both edge-transitive and vertex-transitive cubic graph is symmetric.
2.6. Proposition. [6] Let p be a prime and X a connected cubic symmetric graph of order $10 p$ or $10 p^{2}$. Then, X is 2 -, 3- or 5 -regular. Furthermore,
(1) X is 2 -regular if and only if X is isomorphic to the Dodecahedron D_{20} of order 20, the Cayley graph C_{50} or C_{250} of orders 50 and 250, respectively.
(2) X is 3-regular if and only if X is isomorphic to the canonical double covering $O_{3}^{(2)}$ of the Petersen graph O_{3}, the canonical double covering $D_{20}^{(2)}$ of the Dodecahedron D_{20}, or the Coxeter-Frucht graph $C F_{110}$.
(3) X is 5 -regular if and only if X is isomorphic to the Levi graph L_{30} of order 30, or the Biggs-Smith graph $B S_{90}$.

3. Proof of Theorem 1.1

Let X be a connected semisymmetric cubic graph of order $10 p^{3}$, where p is a prime. Note that by [3], for $p=2$ and $p=3$ there is no semisymmetric cubic graph of order $10 p^{3}$. So, we may assume that $p \geq 5$. Therefore, we divide our proof into the following two cases. First, we consider the case $p=5$.
3.1. Lemma. Let X be a connected semisymmetric cubic graph of order $2 \cdot 5^{4}$. Then, X is vertex-transitive.

Proof. Let X be a connected semisymmetric cubic graph of order $2 \cdot 5^{4}$. Denote by $U(X)$ and $W(X)$ the bipartition sets of X, where $|U(X)|=|W(X)|=5^{4}$. Set $A:=\operatorname{Aut}(X)$, and let $Q:=O_{5}(A)$ be the maximal normal 5 -subgroup of A. By Proposition 2.3, we have $|A|=2^{r} \cdot 3 \cdot 5^{4}, r \geq 0$.

First suppose that $|Q|=1$. Let N be a minimal normal subgroup of A. If N is not solvable, then $N \cong T^{k}$, where T is a non-abelian $\{2,3,5\}$-simple group. So, N is isomorphic to A_{5}. Since $2.5^{4} \nmid|N|, N$ is intransitive on the bipartition sets and then, by Proposition 2.2, N must be semiregular on $U(X)$ and $W(X)$, a contradiction. So, N is solvable. If N is transitive on $U(X)$ and $W(X)$, then $|N|=5^{4}$. If N is intransitive, then, by Proposition $2.2 N$ acts semiregularly on both $U(X)$ and $W(X)$. So, $|N|=5,5^{2}$ or 5^{3}. In all cases, we get a contradiction to $|Q|=1$. Therefore, $|Q| \neq 1$.

Now suppose that $|Q|=5^{i},(1 \leq i \leq 2)$. Let X_{Q} be the quotient graph of X relative to Q, where X_{Q} is A / Q-semisymmetric. We have $\left|U\left(X_{Q}\right)\right|=\left|W\left(X_{Q}\right)\right|=5^{4-i}$. Suppose that N / Q is a minimal normal subgroup of A / N. One can see that N / Q is solvable and
then $|N / Q|=5, \ldots, 5^{4-i}$. Therefore, N is a normal subgroup of A of order $5^{i+1}, \ldots, 5^{4}$, a contradiction.

If $|Q|=5^{3}$, then by Proposition 2.2, X is a Q-regular covering of the A / Q-semisymmetric graph X_{Q}, where X_{Q} is an edge-transitive cubic graph of order 10. Observe that the quotient graph X_{Q} must be vertex-transitive since the smallest semisymmetric cubic graph, the Gray graph, has order 54. Then, by Proposition $2.5, X_{Q}$ is a symmetric cubic graph of order 10. Therefore, X_{Q} is the Petersen graph O_{3}, the only symmetric cubic graph of order 10. Since X is bipartite and O_{3} is non-bipartite, the fold number 5^{3} must be even, a contradiction.

Now let $|Q|=5^{4}$. Since Q and A / Q are solvable, then A is also an edge-transitive solvable group. By [11, Corollary 4.5], X is a \mathbb{Z}_{5}^{4}-cover of the 3 -dipole Dip_{3}, a contradiction to [11, Proposition 3.1].

In the second case, we assume that $p \geq 7$. Then, we have:
3.2. Lemma. Let X be a connected semisymmetric cubic graph of order $10 p^{3}$, where $p \geq 7$ is a prime. Set $A:=\operatorname{Aut}(X)$, and also let $Q:=O_{p}(A)$ be the maximal normal p-subgroup of A. Then, $|Q|=p^{3}$.

Proof. Let X be a cubic graph satisfying the above assumptions. Therefore X is a bipartite graph. Denote by $U(X)$ and $W(X)$, the bipartition sets of X, where $|U(X)|=$ $|W(X)|=5 p^{3}$. The automorphism group A acts transitively on the set $U(X)$ (and also $W(X))$. So, by Proposition 2.3, $|A|=2^{r} \cdot 3 \cdot 5 \cdot p^{3},(r \geq 0)$.

Let N be a minimal normal subgroup of A. One can deduce that N is solvable. Because otherwise $N \cong T^{k}$, where T is a non-abelian $\{2,3, p\}$ - or $\{2,3,5, p\}$-simple group (see [8]). So, by Proposition 2.2, N is semiregular on $U(X)$ (and also $W(X)$). However this is impossible because $3||N|$. Thus, we can assume that N is elementary abelian.

First, suppose that $|Q|=1$. Clearly, N is intransitive on $U(X)$ (and also $W(X)$). Thus, by Proposition $2.2,|N|=5$. Now we consider the quotient graph X_{N}, where $\left|U\left(X_{N}\right)\right|=\left|W\left(X_{N}\right)\right|=p^{3}$. Suppose that M / N is a normal minimal subgroup of A / N. If M / N is not solvable, then M / N is isomorphic to a non-abelian $\{2,3, p\}$-simple group. So, by Proposition 2.2, M/N is semiregular on $U\left(X_{N}\right)$ (and also $W\left(X_{N}\right)$), a contradiction. Therefore, M / N is solvable and so elementary abelian. We have that M / N is either transitive or intransitive on $U\left(X_{N}\right)$ (and also $W\left(X_{N}\right)$). So, $|M / N|=p, p^{2}$ or p^{3}. Thus M / N has a characteristic normal subgroup of order p, p^{2} or p^{3}. We can deduce that A has a normal subgroup of order p, p^{2} or p^{3}, which is a contradiction. Thus $|Q| \neq 1$.

Now suppose that $|Q|=p$. Since $5 p^{3} \nmid p$, by Proposition 2.2, Q is semiregular on $U(X)$ (and also $W(X)$). Let X_{Q} be the quotient graph, where $\left|U\left(X_{Q}\right)\right|=\left|W\left(X_{Q}\right)\right|=5 p^{2}$. Suppose that T / Q is a minimal normal subgroup of A / Q, where $|A / Q|=2^{r} \cdot 3 \cdot 5 \cdot p^{2}$. If T / Q is not solvable, then T / Q is a non-abelian $\{2,3, p\}$ - or $\{2,3,5, p\}$-simple group. So, by Proposition 2.2, T / Q is semiregular on $U\left(X_{Q}\right)$, a contradiction. Therefore, T / Q is solvable and then elementary abelian. Since $5 p^{2} \nmid|T / Q|$, then, by Proposition $2.2, T / Q$ acts semiregularly on $U\left(X_{Q}\right)$ (and also $W\left(X_{Q}\right)$). So, $|T / Q|=5$.

Now let X_{T} be the quotient graph, where $\left|U\left(X_{T}\right)\right|=\left|W\left(X_{T}\right)\right|=p^{2}$ and also suppose that K / T is a minimal normal subgroup of A / T. Note that K / T can be intransitive or transitive on $U\left(X_{T}\right)$. So, $|K|=5 p^{2}$ or $5 p^{3}$, respectively. Therefore, A has a normal subgroup of order p^{2} or p^{3}, a contradiction. Thus $|Q| \neq p$.

Finally, assume that $|Q|=p^{2}$. Since $5 p^{3} \nmid p^{2}$, by Proposition $2.2, Q$ acts intransitively on $U(X)$ (also $W(X)$) and X is a Q-regular covering of the A / Q-semisymmetric graph X_{Q}. The quotient graph X_{Q} is an edge-transitive graph of order $10 p$.

Now suppose that $p=11$ and let $\bar{R} \cong R / Q$ be the minimal normal subgroup of A / Q. If \bar{R} is solvable, then $|\bar{R}|=5$. Let X_{R} be the quotient graph, where $\left|U\left(X_{R}\right)\right|=$ $\left|W\left(X_{R}\right)\right|=11$. Let L / R be a minimal normal subgroup of A / R. It is obvious that $|L / R|=11$, so A has a normal subgroup of order 11^{3}, a contradiction. On the other hand, if \bar{R} is not solvable, then \bar{R} is a non-abelian simple group and $|\bar{R}|=2^{s} \cdot 3 \cdot 5 \cdot 11$. It is easy to see that $Z(R) \cong Q$. Then, the simple group \bar{R} has Schur multiplier isomorphic to $Z(R)$, a contradiction to the order of \bar{R}.

If $p=7$ or ≥ 13, then by [5] and by Proposition 2.6, there is no semisymmetric or symmetric cubic graph of order $10 p$, which is a contradiction. The result now follows.

Proof of Theorem 1.1 Now we complete the proof of the main theorem. Suppose to the contrary that X is a connected semisymmetric cubic graph of order $10 p^{3}$, where p is a prime. We remark that there is no semisymmetric cubic graph of order $10 p^{3}$ for $p=2$ or 3 . If $p=5$, then, by Lemma 3.1, X is vertex-transitive. So, we suppose that $p \geq 7$. By Lemma 3.2, $|Q|=p^{3}$. Then, by Proposition $2.2, X$ is a Q-regular covering of the A / Q-semisymmetric graph X_{Q}. One can see that X_{Q} must be a symmetric cubic graph of order 10. So, X_{Q} is the Petersen graph O_{3}. Now, since X is bipartite and O_{3} is nonbipartite, the fold number p^{3} must be even, which is a contradiction. Thus Theorem 1.1 now follows.

References

[1] Alaeiyan, M. and Ghasemi, M. Cubic edge-transitive graphs of oredr $8 p^{2}$, Bull. Austral. Math. Soc. 77, 315-323, 2008.
[2] Archdeacon, D., Kwak, J. H., Lee, J and Sohn, M. Y. Bipartite covering graphs, Discrete Math. 214, 51-63, 2000.
[3] Conder, M. and Malnič, A., Marušič, D. and Potočnik, P. A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23, 255-294, 2006.
[4] Dixon, J. D. and Mortimer, B. Permutation Groups (Springer-Verlag, New York, 1996).
[5] Du, S.S. and Xu, M. Y. A classification of semisymmetric graphs of order 2pq, Com. in Algebra 28 (6), 2685-2715, 2000.
[6] Feng, Y. Q. and Kwak, J. H. Classifying cubic symmetric graphs of order $10 p$ or $10 p^{2}$, Sci. China Ser. A. 49, 300-319, 2006.
[7] Folkman, J. Regular line-symmetric graphs, J. Combin. Theory 3, 215-232, 1967.
[8] Gorenstein, D. Finite Simple Groups (New York: Plenum Press, 1982).
[9] Lu, Z., Wang, C. Q. and Xu, M. Y. On semisymmetric cubic graphs of order $6 p^{2}$, Science in Chaina Ser. A Math. 47, 11-17, 2004.
[10] Malnič, A., Marušič, D. and Wang, C. Q. Cubic edge-transitive graphs of order $2 p^{3}$, Discrete Math. 274, 187-198, 2004.
[11] Malnič, A., Marušič, D. and Potočnik, P. On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin. 20 (2004), 99-113, 2004.
[12] Tutte, W. T. Connectivity in Graphs (Toronto University Press, Toronto, 1966).
[13] Wang, C. Q. Semisymmetric Cubic Graphs of Order $2 p^{2} q\left(\mathrm{Com}^{2} \mathrm{MaC}\right.$ Preprint Series, 2002).
[14] Wielandant, H. Finite Permutation Groups (Acadamic Press, New York, 1964).

[^0]: *Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. E-mail: alaeiyan@iust.ac.ir
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Department of Mathematics, Golestan University, Gorgan, Iran. E-mail: b_onagh@yahoo. com

