ON SEMISYMMETRIC CUBIC GRAPHS OF ORDER $10p^3$

Mehdi Alaeiyan*† and B. Naimeh Onagh‡

Received 17:04:2010 : Accepted 09:11:2010

Abstract

Connected cubic graphs of order $10p^3$ which admit an automorphism group acting semisymmetrically are investigated. We prove that every connected cubic edge-transitive graph of order $10p^3$ is vertex-transitive, where p is a prime.

Keywords: Automorphism group, Regular cover, Semisymmetric graph.

2000 AMS Classification: 05 C 10, 05 C 25, 20 B 25.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and connected. For the group-theoretic concepts and notation not defined here we refer the reader to [4, 8, 14]. Given a graph X, we let V(X), E(X), A(X) and AutX be the vertex set, the edge set, the arc set and the automorphism group of X, respectively.

If a subgroup G of AutX acts transitively on V(X), E(X) and A(X), then X is said to be G-vertex-transitive, G-edge-transitive and G-arc-transitive, respectively. It is easily seen that a graph X which is G-edge- but not G-vertex-transitive is necessarily bipartite, with the two parts of the bipartition coinciding with the orbits of G. In particular, if X is a regular, then these two parts have equal cardinalities, and such a graph is then referred to as being G-semisymmetric. In the case where G =AutX the symbol G may be omitted from the definitions above, so that X is called semisymmetric if it is regular and AutX-edge-transitive but not AutX-vertex-transitive.

An s-arc in a graph X is an ordered (s+1)-tuple (v_0, v_1, \ldots, v_s) of vertices of X such that v_{i-1} is adjacent to v_i for $1 \le i \le s$, and $v_{i-1} \ne v_{i+1}$ for $1 \le i < s$. A graph X is said to be s-arc-transitive if $\operatorname{Aut}(X)$ is transitive on the set of s-arcs of X. In particular, 0-arc-transitive means arc-transitive or symmetric.

The study of semisymmetric graphs was initiated by Folkman [7].

^{*}Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran. E-mail: alaeiyan@iust.ac.ir

[†]Corresponding Author.

[‡]Department of Mathematics, Golestan University, Gorgan, Iran. E-mail: b_onagh@yahoo.com

Semisymmetric graphs of order 2pq, and semisymmetric cubic graphs of orders $2p^3$, $6p^2$ and $2p^2q$ are classified in [5, 10, 9, 13], where p and q are primes. Also in [1] it is proved that every edge-transitive cubic graph of order $8p^2$ is vertex-transitive, where p is a prime. In [3] an overview of known families of cubic semisymmetric graphs is given.

Semisymmetric cubic graphs of orders 10p and $10p^2$ are special cases of the semisymmetric graphs in [5, 13]. The objective of this paper is to investigate all connected cubic semisymmetric graphs of order $10p^3$. In particular, we have shown that there is no semisymmetric cubic graphs of order $10p^3$. The main result of this paper is as follows:

1.1. Theorem. Let p be a prime. Then, every connected edge-transitive cubic graph of order $10p^3$ is vertex-transitive.

As a result, we can conclude that every connected edge-transitive cubic graph of order $10p^3$ is symmetric.

2. Preliminaries

Given a finite group G, consider pairs of groups (H, Z), where $Z \subseteq Z(H)$ and $H/Z \cong G$. In this situation, we say H is a *central extension* of G. The largest possible second component of a pair (H, Z) associated with a given group G is called the *Schur multiplier* of G.

Let X be a graph, N a subgroup of $\operatorname{Aut}(X)$, and K a finite group. For $u, v \in V(\Gamma)$, denote by $\{u,v\}$ the edge incident to u and v in X, and by $N_X(u)$ the set of vertices adjacent to u in X. The quotient graph X/N or X_N induced by N is defined as the graph such that the set Σ of N-orbits in V(X) is the vertex set of X/N and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u,v\} \in E(X)$.

A graph \widetilde{X} is called a *covering* of a graph X with projection $\wp: \widetilde{X} \to X$ if there is a surjection $\wp: V(\widetilde{X}) \to V(X)$ such that $\wp_{N_{\widetilde{X}}(\widetilde{v})}: N_{\widetilde{X}}(\widetilde{v}) \to N_X(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in \wp^{-1}(v)$.

A covering \widetilde{X} of X with a projection \wp is said to be regular (or a K-covering) if there is a semiregular subgroup K of the automorphism group $\operatorname{Aut}(\widetilde{X})$ such that X is isomorphic to the quotient graph \widetilde{X}/K , say by h, and the quotient map $\widetilde{X} \to \widetilde{X}/K$ is the composition $\wp h$ of \wp and h; to emphasize this we sometimes write \wp_N instead of just \wp .

Let X be a graph and K a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or, K-voltage assignment) of X is a function $\xi:A(X)\to K$ with the property that $\xi(a^{-1})=(\xi(a))^{-1}$ for each arc $a\in A(X)$. The values of ξ are called voltages, and K is the voltage group. The graph $X\times_{\xi}K$ derived from a voltage assignment $\xi:A(X)\to K$ has vertex set $V(X)\times K$ and edge set $E(X)\times K$, so that an edge (e,g) of $X\times K$ joins a vertex (u,g) to $(v,g\xi(a))$ for $a=(u,v)\in A(X)$ and $g\in K$, where $e=\{u,v\}$. If $\xi(a)=1$ for each arc $a\in A(X)$, then the covering $X\times_{\xi}\mathbb{Z}_2$ is called the canonical double covering of X.

Let $\wp: \widetilde{X} \to X$ be a covering projection. The vertices in $\wp^{-1}(v)$ form the *fibre* over the vertex v; we similarly define the fibre over an edge $e \in E(X)$. If X is connected, as we assume in this paper, then any two vertex or edge fibres are of the same cardinality n. This number is called the *fold-number* of the covering, and we say that \wp is an n-fold covering. We remark that any covering of a bipartite graph is bipartite, but:

2.1. Proposition. [2] If \tilde{X} is a bipartite covering of a non-bipartite graph X, then the fold number is even.

The next proposition is a special case of [9, Lemma 3.2].

2.2. Proposition. Let X be a connected G-semisymmetric cubic graph with bipartition sets U(X) and W(X), where $G \leq \operatorname{Aut}(X)$. Moreover, suppose that N is a normal subgroup of G. If N is intransitive on bipartition sets, then N acts semiregularly on both U(X) and W(X), and X is an N-regular covering of a G/N-semisymmetric cubic graph.

We quote the following propositions.

2.3. Proposition.	[10] The vertex	stabilizers of a	connected G-sem	$isymmetric\ cubic$
$graph\ X\ have\ order$	$2^r \cdot 3$, where $r \ge$	≥ 0. Moreover, if	u and v are two	$adjacent\ vertices,$
then $G = \langle G_u, G_v \rangle$,	and the edge state	bilizer $G_u \cap G_v$ is	$a\ common\ Sylow$	2-subgroup of G_u
and G_v .				

- **2.4. Proposition.** [10] Let X be a connected bipartite graph admitting an abelian subgroup $G \leq \operatorname{Aut} X$ acting regularly on each of the bipartition sets. Then, X is vertextransitive.
- **2.5. Proposition.** [12] Every both edge-transitive and vertex-transitive cubic graph is symmetric. \Box
- **2.6. Proposition.** [6] Let p be a prime and X a connected cubic symmetric graph of order 10p or $10p^2$. Then, X is 2-, 3- or 5-regular. Furthermore,
 - (1) X is 2-regular if and only if X is isomorphic to the Dodecahedron D_{20} of order 20, the Cayley graph C_{50} or C_{250} of orders 50 and 250, respectively.
 - (2) X is 3-regular if and only if X is isomorphic to the canonical double covering $O_3^{(2)}$ of the Petersen graph O_3 , the canonical double covering $D_{20}^{(2)}$ of the Dodecahedron D_{20} , or the Coxeter-Frucht graph CF_{110} .
 - (3) X is 5-regular if and only if X is isomorphic to the Levi graph L₃₀ of order 30, or the Biqqs-Smith graph BS₉₀.

3. Proof of Theorem 1.1

Let X be a connected semisymmetric cubic graph of order $10p^3$, where p is a prime. Note that by [3], for p=2 and p=3 there is no semisymmetric cubic graph of order $10p^3$. So, we may assume that $p \geq 5$. Therefore, we divide our proof into the following two cases. First, we consider the case p=5.

3.1. Lemma. Let X be a connected semisymmetric cubic graph of order $2 \cdot 5^4$. Then, X is vertex-transitive.

Proof. Let X be a connected semisymmetric cubic graph of order $2 \cdot 5^4$. Denote by U(X) and W(X) the bipartition sets of X, where $|U(X)| = |W(X)| = 5^4$. Set $A := \operatorname{Aut}(X)$, and let $Q := O_5(A)$ be the maximal normal 5-subgroup of A. By Proposition 2.3, we have $|A| = 2^r \cdot 3 \cdot 5^4$, $r \ge 0$.

First suppose that |Q|=1. Let N be a minimal normal subgroup of A. If N is not solvable, then $N\cong T^k$, where T is a non-abelian $\{2,3,5\}$ -simple group. So, N is isomorphic to A_5 . Since $2.5^4 \nmid |N|$, N is intransitive on the bipartition sets and then, by Proposition 2.2, N must be semiregular on U(X) and W(X), a contradiction. So, N is solvable. If N is transitive on U(X) and W(X), then $|N|=5^4$. If N is intransitive, then, by Proposition 2.2 N acts semiregularly on both U(X) and W(X). So, |N|=5, S^2 or S^3 . In all cases, we get a contradiction to |Q|=1. Therefore, $|Q|\neq 1$.

Now suppose that $|Q| = 5^i$, $(1 \le i \le 2)$. Let X_Q be the quotient graph of X relative to Q, where X_Q is A/Q-semisymmetric. We have $|U(X_Q)| = |W(X_Q)| = 5^{4-i}$. Suppose that N/Q is a minimal normal subgroup of A/N. One can see that N/Q is solvable and

then $|N/Q| = 5, \dots, 5^{4-i}$. Therefore, N is a normal subgroup of A of order $5^{i+1}, \dots, 5^4$, a contradiction.

If $|Q| = 5^3$, then by Proposition 2.2, X is a Q-regular covering of the A/Q-semisymmetric graph X_Q , where X_Q is an edge-transitive cubic graph of order 10. Observe that the quotient graph X_Q must be vertex-transitive since the smallest semisymmetric cubic graph, the Gray graph, has order 54. Then, by Proposition 2.5, X_Q is a symmetric cubic graph of order 10. Therefore, X_Q is the Petersen graph O_3 , the only symmetric cubic graph of order 10. Since X is bipartite and O_3 is non-bipartite, the fold number S_3 must be even, a contradiction.

Now let $|Q| = 5^4$. Since Q and A/Q are solvable, then A is also an edge-transitive solvable group. By [11, Corollary 4.5], X is a \mathbb{Z}_5^4 -cover of the 3-dipole Dip₃, a contradiction to [11, Proposition 3.1].

In the second case, we assume that $p \geq 7$. Then, we have:

3.2. Lemma. Let X be a connected semisymmetric cubic graph of order $10p^3$, where $p \geq 7$ is a prime. Set $A := \operatorname{Aut}(X)$, and also let $Q := O_p(A)$ be the maximal normal p-subgroup of A. Then, $|Q| = p^3$.

Proof. Let X be a cubic graph satisfying the above assumptions. Therefore X is a bipartite graph. Denote by U(X) and W(X), the bipartition sets of X, where $|U(X)| = |W(X)| = 5p^3$. The automorphism group A acts transitively on the set U(X) (and also W(X)). So, by Proposition 2.3, $|A| = 2^r \cdot 3 \cdot 5 \cdot p^3$, $(r \ge 0)$.

Let N be a minimal normal subgroup of A. One can deduce that N is solvable. Because otherwise $N \cong T^k$, where T is a non-abelian $\{2,3,p\}$ - or $\{2,3,5,p\}$ -simple group (see [8]). So, by Proposition 2.2, N is semiregular on U(X) (and also W(X)). However this is impossible because $3 \mid |N|$. Thus, we can assume that N is elementary abelian.

First, suppose that |Q|=1. Clearly, N is intransitive on U(X) (and also W(X)). Thus, by Proposition 2.2, |N|=5. Now we consider the quotient graph X_N , where $|U(X_N)|=|W(X_N)|=p^3$. Suppose that M/N is a normal minimal subgroup of A/N. If M/N is not solvable, then M/N is isomorphic to a non-abelian $\{2,3,p\}$ -simple group. So, by Proposition 2.2, M/N is semiregular on $U(X_N)$ (and also $W(X_N)$), a contradiction. Therefore, M/N is solvable and so elementary abelian. We have that M/N is either transitive or intransitive on $U(X_N)$ (and also $W(X_N)$). So, $|M/N|=p,p^2$ or p^3 . Thus M/N has a characteristic normal subgroup of order p,p^2 or p^3 . We can deduce that A has a normal subgroup of order p,p^2 or p^3 , which is a contradiction. Thus $|Q| \neq 1$.

Now suppose that |Q|=p. Since $5p^3 \nmid p$, by Proposition 2.2, Q is semiregular on U(X) (and also W(X)). Let X_Q be the quotient graph, where $|U(X_Q)|=|W(X_Q)|=5p^2$. Suppose that T/Q is a minimal normal subgroup of A/Q, where $|A/Q|=2^r\cdot 3\cdot 5\cdot p^2$. If T/Q is not solvable, then T/Q is a non-abelian $\{2,3,p\}$ - or $\{2,3,5,p\}$ -simple group. So, by Proposition 2.2, T/Q is semiregular on $U(X_Q)$, a contradiction. Therefore, T/Q is solvable and then elementary abelian. Since $5p^2 \nmid |T/Q|$, then, by Proposition 2.2, T/Q acts semiregularly on $U(X_Q)$ (and also $W(X_Q)$). So, |T/Q|=5.

Now let X_T be the quotient graph, where $|U(X_T)| = |W(X_T)| = p^2$ and also suppose that K/T is a minimal normal subgroup of A/T. Note that K/T can be intransitive or transitive on $U(X_T)$. So, $|K| = 5p^2$ or $5p^3$, respectively. Therefore, A has a normal subgroup of order p^2 or p^3 , a contradiction. Thus $|Q| \neq p$.

Finally, assume that $|Q| = p^2$. Since $5p^3 \nmid p^2$, by Proposition 2.2, Q acts intransitively on U(X) (also W(X)) and X is a Q-regular covering of the A/Q-semisymmetric graph X_Q . The quotient graph X_Q is an edge-transitive graph of order 10p.

Now suppose that p=11 and let $\bar{R}\cong R/Q$ be the minimal normal subgroup of A/Q. If \bar{R} is solvable, then $|\bar{R}|=5$. Let X_R be the quotient graph, where $|U(X_R)|=|W(X_R)|=11$. Let L/R be a minimal normal subgroup of A/R. It is obvious that |L/R|=11, so A has a normal subgroup of order 11^3 , a contradiction. On the other hand, if \bar{R} is not solvable, then \bar{R} is a non-abelian simple group and $|\bar{R}|=2^s\cdot 3\cdot 5\cdot 11$. It is easy to see that $Z(R)\cong Q$. Then, the simple group \bar{R} has Schur multiplier isomorphic to Z(R), a contradiction to the order of \bar{R} .

If p = 7 or ≥ 13 , then by [5] and by Proposition 2.6, there is no semisymmetric or symmetric cubic graph of order 10p, which is a contradiction. The result now follows. \Box

Proof of Theorem 1.1 Now we complete the proof of the main theorem. Suppose to the contrary that X is a connected semisymmetric cubic graph of order $10p^3$, where p is a prime. We remark that there is no semisymmetric cubic graph of order $10p^3$ for p=2 or 3. If p=5, then, by Lemma 3.1, X is vertex-transitive. So, we suppose that $p\geq 7$. By Lemma 3.2, $|Q|=p^3$. Then, by Proposition 2.2, X is a Q-regular covering of the A/Q-semisymmetric graph X_Q . One can see that X_Q must be a symmetric cubic graph of order 10. So, X_Q is the Petersen graph O_3 . Now, since X is bipartite and O_3 is non-bipartite, the fold number p^3 must be even, which is a contradiction. Thus Theorem 1.1 now follows.

References

- Alaeiyan, M. and Ghasemi, M. Cubic edge-transitive graphs of oredr 8p², Bull. Austral. Math. Soc. 77, 315–323, 2008.
- [2] Archdeacon, D., Kwak, J.H., Lee, J and Sohn, M.Y. Bipartite covering graphs, Discrete Math. 214, 51–63, 2000.
- [3] Conder, M. and Malnič, A., Marušič, D. and Potočnik, P. A census of semisymmetric cubic graphs on up to 768 vertices, J. Algebraic Combin. 23, 255–294, 2006.
- [4] Dixon, J. D. and Mortimer, B. Permutation Groups (Springer-Verlag, New York, 1996).
- [5] Du, S.S. and Xu, M.Y. A classification of semisymmetric graphs of order 2pq, Com. in Algebra 28 (6), 2685–2715, 2000.
- [6] Feng, Y. Q. and Kwak, J. H. Classifying cubic symmetric graphs of order 10p or 10p², Sci. China Ser. A. 49, 300–319, 2006.
- [7] Folkman, J. Regular line-symmetric graphs, J. Combin. Theory 3, 215–232, 1967.
- [8] Gorenstein, D. Finite Simple Groups (New York: Plenum Press, 1982).
- Lu, Z., Wang, C. Q. and Xu, M. Y. On semisymmetric cubic graphs of order 6p², Science in Chaina Ser. A Math. 47, 11–17, 2004.
- [10] Malnič, A., Marušič, D. and Wang, C. Q. Cubic edge-transitive graphs of order 2p³, Discrete Math. 274, 187–198, 2004.
- [11] Malnič, A., Marušič, D. and Potočnik, P. On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin. 20 (2004), 99–113, 2004.
- [12] Tutte, W. T. Connectivity in Graphs (Toronto University Press, Toronto, 1966).
- [13] Wang, C. Q. Semisymmetric Cubic Graphs of Order 2p²q (Com² MaC Preprint Series, 2002).
- [14] Wielandant, H. Finite Permutation Groups (Acadamic Press, New York, 1964).