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Abstract

Connected cubic graphs of order 10p3 which admit an automorphism
group acting semisymmetrically are investigated. We prove that every
connected cubic edge-transitive graph of order 10p3 is vertex-transitive,
where p is a prime.

Keywords: Automorphism group, Regular cover, Semisymmetric graph.

2000 AMS Classification: 05C10, 05C 25, 20 B 25.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and con-
nected. For the group-theoretic concepts and notation not defined here we refer the
reader to [4, 8, 14]. Given a graph X, we let V (X), E(X), A(X) and AutX be the vertex
set, the edge set, the arc set and the automorphism group of X, respectively.

If a subgroup G of AutX acts transitively on V (X), E(X) and A(X), then X is said
to be G-vertex-transitive, G-edge-transitive and G-arc-transitive, respectively. It is easily
seen that a graph X which is G-edge- but not G-vertex-transitive is necessarily bipartite,
with the two parts of the bipartition coinciding with the orbits of G. In particular, if
X is a regular, then these two parts have equal cardinalities, and such a graph is then
referred to as being G-semisymmetric. In the case where G =AutX the symbol G may
be omitted from the definitions above, so that X is called semisymmetric if it is regular
and AutX-edge-transitive but not AutX-vertex-transitive.

An s-arc in a graph X is an ordered (s+1)-tuple (v0, v1, . . . , vs) of vertices of X such
that vi−1 is adjacent to vi for 1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s. A graph X is
said to be s-arc-transitive if Aut(X) is transitive on the set of s-arcs of X. In particu-
lar, 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or
symmetric.

The study of semisymmetric graphs was initiated by Folkman [7].
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Semisymmetric graphs of order 2pq, and semisymmetric cubic graphs of orders 2p3,
6p2 and 2p2q are classified in [5, 10, 9, 13], where p and q are primes. Also in [1] it is
proved that every edge-transitive cubic graph of order 8p2 is vertex-transitive, where p
is a prime. In [3] an overview of known families of cubic semisymmetric graphs is given.

Semisymmetric cubic graphs of orders 10p and 10p2 are special cases of the semisym-
metric graphs in [5, 13]. The objective of this paper is to investigate all connected cubic
semisymmetric graphs of order 10p3. In particular, we have shown that there is no
semisymmetric cubic graphs of order 10p3. The main result of this paper is as follows:

1.1. Theorem. Let p be a prime. Then, every connected edge-transitive cubic graph of
order 10p3 is vertex-transitive.

As a result, we can conclude that every connected edge-transitive cubic graph of order
10p3 is symmetric.

2. Preliminaries

Given a finite group G, consider pairs of groups (H,Z), where Z ⊆ Z(H) and H/Z ∼=
G. In this situation, we say H is a central extension of G. The largest possible second
component of a pair (H,Z) associated with a given group G is called the Schur multiplier
of G.

Let X be a graph, N a subgroup of Aut(X), and K a finite group. For u, v ∈ V (Γ),
denote by {u, v} the edge incident to u and v in X, and by NX (u) the set of vertices
adjacent to u in X. The quotient graph X/N or XN induced by N is defined as the
graph such that the set Σ of N-orbits in V (X) is the vertex set of X/N and B,C ∈ Σ
are adjacent if and only if there exist u ∈ B and v ∈ C such that {u, v} ∈ E(X).

A graph X̃ is called a covering of a graph X with projection ℘ : X̃ → X if there is a

surjection ℘ : V (X̃) → V (X) such that ℘N
X̃

(ṽ) : N
X̃
(ṽ) → NX(v) is a bijection for any

vertex v ∈ V (X) and ṽ ∈ ℘−1(v).

A covering X̃ of X with a projection ℘ is said to be regular (or a K-covering) if

there is a semiregular subgroup K of the automorphism group Aut(X̃) such that X is

isomorphic to the quotient graph X̃/K, say by h, and the quotient map X̃ → X̃/K is
the composition ℘h of ℘ and h; to emphasize this we sometimes write ℘N instead of just
℘.

Let X be a graph and K a finite group. By a−1 we mean the reverse arc to an arc
a. A voltage assignment (or, K-voltage assignment) of X is a function ξ : A(X) → K
with the property that ξ(a−1) = (ξ(a))−1 for each arc a ∈ A(X). The values of ξ are
called voltages, and K is the voltage group. The graph X ×ξ K derived from a voltage
assignment ξ : A(X) → K has vertex set V (X)×K and edge set E(X)×K, so that an
edge (e, g) of X ×K joins a vertex (u, g) to (v, gξ(a)) for a = (u, v) ∈ A(X) and g ∈ K,
where e = {u, v}. If ξ(a) = 1 for each arc a ∈ A(X), then the covering X ×ξ Z2 is called
the canonical double covering of X.

Let ℘ : X̃ → X be a covering projection. The vertices in ℘−1(v) form the fibre over
the vertex v; we similarly define the fibre over an edge e ∈ E(X). If X is connected, as
we assume in this paper, then any two vertex or edge fibres are of the same cardinality
n. This number is called the fold-number of the covering, and we say that ℘ is an n-fold
covering. We remark that any covering of a bipartite graph is bipartite, but:

2.1. Proposition. [2] If X̃ is a bipartite covering of a non-bipartite graph X, then the
fold number is even. �

The next proposition is a special case of [9, Lemma 3.2].
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2.2. Proposition. Let X be a connected G-semisymmetric cubic graph with bipartition
sets U(X) and W (X), where G ≤ Aut(X). Moreover, suppose that N is a normal
subgroup of G. If N is intransitive on bipartition sets, then N acts semiregularly on both
U(X) and W (X), and X is an N-regular covering of a G/N-semisymmetric cubic graph.

We quote the following propositions.

2.3. Proposition. [10] The vertex stabilizers of a connected G-semisymmetric cubic
graph X have order 2r · 3, where r ≥ 0. Moreover, if u and v are two adjacent vertices,
then G = 〈Gu, Gv〉, and the edge stabilizer Gu∩Gv is a common Sylow 2-subgroup of Gu

and Gv. �

2.4. Proposition. [10] Let X be a connected bipartite graph admitting an abelian sub-
group G ≤ AutX acting regularly on each of the bipartition sets. Then, X is vertex-
transitive. �

2.5. Proposition. [12] Every both edge-transitive and vertex-transitive cubic graph is
symmetric. �

2.6. Proposition. [6] Let p be a prime and X a connected cubic symmetric graph of
order 10p or 10p2. Then, X is 2-, 3- or 5-regular. Furthermore,

(1) X is 2-regular if and only if X is isomorphic to the Dodecahedron D20 of order
20, the Cayley graph C50 or C250 of orders 50 and 250, respectively.

(2) X is 3-regular if and only if X is isomorphic to the canonical double covering O
(2)
3

of the Petersen graph O3, the canonical double covering D
(2)
20 of the Dodecahedron

D20, or the Coxeter-Frucht graph CF110.
(3) X is 5-regular if and only if X is isomorphic to the Levi graph L30 of order 30,

or the Biggs-Smith graph BS90. �

3. Proof of Theorem 1.1

Let X be a connected semisymmetric cubic graph of order 10p3, where p is a prime.
Note that by [3], for p = 2 and p = 3 there is no semisymmetric cubic graph of order
10p3. So, we may assume that p ≥ 5. Therefore, we divide our proof into the following
two cases. First, we consider the case p = 5.

3.1. Lemma. Let X be a connected semisymmetric cubic graph of order 2 · 54. Then,
X is vertex-transitive.

Proof. Let X be a connected semisymmetric cubic graph of order 2 ·54. Denote by U(X)
and W (X) the bipartition sets of X, where |U(X)| = |W (X)| = 54. Set A := Aut(X),
and let Q := O5(A) be the maximal normal 5-subgroup of A. By Proposition 2.3, we
have |A| = 2r · 3 · 54, r ≥ 0.

First suppose that |Q| = 1. Let N be a minimal normal subgroup of A. If N is

not solvable, then N ∼= T k, where T is a non-abelian {2, 3, 5}-simple group. So, N is
isomorphic to A5. Since 2.54 ∤ |N |, N is intransitive on the bipartition sets and then, by
Proposition 2.2, N must be semiregular on U(X) and W (X), a contradiction. So, N is
solvable. If N is transitive on U(X) and W (X), then |N | = 54. If N is intransitive, then,
by Proposition 2.2 N acts semiregularly on both U(X) and W (X). So, |N | = 5, 52 or
53. In all cases, we get a contradiction to |Q| = 1. Therefore, |Q| 6= 1.

Now suppose that |Q| = 5i, (1 ≤ i ≤ 2). Let XQ be the quotient graph of X relative
to Q, where XQ is A/Q-semisymmetric. We have |U(XQ)| = |W (XQ)| = 54−i. Suppose
that N/Q is a minimal normal subgroup of A/N . One can see that N/Q is solvable and
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then |N/Q| = 5, . . . , 54−i. Therefore, N is a normal subgroup of A of order 5i+1, . . . , 54,
a contradiction.

If |Q| = 53, then by Proposition 2.2, X is aQ-regular covering of theA/Q-semisymmetric
graph XQ, where XQ is an edge-transitive cubic graph of order 10. Observe that the quo-
tient graph XQ must be vertex-transitive since the smallest semisymmetric cubic graph,
the Gray graph, has order 54. Then, by Proposition 2.5, XQ is a symmetric cubic graph
of order 10. Therefore, XQ is the Petersen graph O3, the only symmetric cubic graph of
order 10. Since X is bipartite and O3 is non-bipartite, the fold number 53 must be even,
a contradiction.

Now let |Q| = 54. Since Q and A/Q are solvable, then A is also an edge-transitive solv-
able group. By [11, Corollary 4.5], X is a Z4

5-cover of the 3-dipole Dip3, a contradiction
to [11, Proposition 3.1]. �

In the second case, we assume that p ≥ 7. Then, we have:

3.2. Lemma. Let X be a connected semisymmetric cubic graph of order 10p3, where
p ≥ 7 is a prime. Set A := Aut(X), and also let Q := Op(A) be the maximal normal
p-subgroup of A. Then, |Q| = p3.

Proof. Let X be a cubic graph satisfying the above assumptions. Therefore X is a
bipartite graph. Denote by U(X) and W (X), the bipartition sets of X, where |U(X)| =
|W (X)| = 5p3. The automorphism group A acts transitively on the set U(X) (and also
W (X)). So, by Proposition 2.3, |A| = 2r · 3 · 5 · p3, (r ≥ 0).

Let N be a minimal normal subgroup of A. One can deduce that N is solvable.
Because otherwise N ∼= T k, where T is a non-abelian {2, 3, p}- or {2, 3, 5, p}-simple
group (see [8]). So, by Proposition 2.2, N is semiregular on U(X) (and also W (X)).
However this is impossible because 3 | |N |. Thus, we can assume that N is elementary
abelian.

First, suppose that |Q| = 1. Clearly, N is intransitive on U(X) (and also W (X)).
Thus, by Proposition 2.2, |N | = 5. Now we consider the quotient graph XN , where
|U(XN )| = |W (XN)| = p3. Suppose that M/N is a normal minimal subgroup of A/N . If
M/N is not solvable, thenM/N is isomorphic to a non-abelian {2, 3, p}-simple group. So,
by Proposition 2.2, M/N is semiregular on U(XN ) (and also W (XN)), a contradiction.
Therefore, M/N is solvable and so elementary abelian. We have that M/N is either
transitive or intransitive on U(XN ) (and also W (XN)). So, |M/N | = p, p2 or p3. Thus
M/N has a characteristic normal subgroup of order p, p2 or p3. We can deduce that A
has a normal subgroup of order p, p2 or p3, which is a contradiction. Thus |Q| 6= 1.

Now suppose that |Q| = p. Since 5p3 ∤ p, by Proposition 2.2, Q is semiregular on U(X)
(and also W (X)). Let XQ be the quotient graph, where |U(XQ)| = |W (XQ)| = 5p2.
Suppose that T/Q is a minimal normal subgroup of A/Q, where |A/Q| = 2r · 3 · 5 · p2. If
T/Q is not solvable, then T/Q is a non-abelian {2, 3, p}- or {2, 3, 5, p}-simple group. So,
by Proposition 2.2, T/Q is semiregular on U(XQ), a contradiction. Therefore, T/Q is
solvable and then elementary abelian. Since 5p2 ∤ |T/Q|, then, by Proposition 2.2, T/Q
acts semiregularly on U(XQ) (and also W (XQ)). So, |T/Q| = 5.

Now let XT be the quotient graph, where |U(XT )| = |W (XT )| = p2 and also suppose
that K/T is a minimal normal subgroup of A/T . Note that K/T can be intransitive
or transitive on U(XT ). So, |K| = 5p2 or 5p3, respectively. Therefore, A has a normal
subgroup of order p2 or p3, a contradiction. Thus |Q| 6= p.

Finally, assume that |Q| = p2. Since 5p3 ∤ p2, by Proposition 2.2, Q acts intransitively
on U(X) (also W (X)) and X is a Q-regular covering of the A/Q-semisymmetric graph
XQ. The quotient graph XQ is an edge-transitive graph of order 10p.
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Now suppose that p = 11 and let R̄ ∼= R/Q be the minimal normal subgroup of
A/Q. If R̄ is solvable, then |R̄| = 5. Let XR be the quotient graph, where |U(XR)| =
|W (XR)| = 11. Let L/R be a minimal normal subgroup of A/R. It is obvious that
|L/R| = 11, so A has a normal subgroup of order 113, a contradiction. On the other
hand, if R̄ is not solvable, then R̄ is a non-abelian simple group and |R̄| = 2s · 3 · 5 · 11. It
is easy to see that Z(R) ∼= Q. Then, the simple group R̄ has Schur multiplier isomorphic
to Z(R), a contradiction to the order of R̄.

If p = 7 or ≥ 13, then by [5] and by Proposition 2.6, there is no semisymmetric or
symmetric cubic graph of order 10p, which is a contradiction. The result now follows. �

Proof of Theorem 1.1 Now we complete the proof of the main theorem. Suppose to the
contrary that X is a connected semisymmetric cubic graph of order 10p3, where p is a
prime. We remark that there is no semisymmetric cubic graph of order 10p3 for p = 2
or 3. If p = 5, then, by Lemma 3.1, X is vertex-transitive. So, we suppose that p ≥ 7.
By Lemma 3.2, |Q| = p3. Then, by Proposition 2.2, X is a Q-regular covering of the
A/Q-semisymmetric graph XQ. One can see that XQ must be a symmetric cubic graph
of order 10. So, XQ is the Petersen graph O3. Now, since X is bipartite and O3 is non-
bipartite, the fold number p3 must be even, which is a contradiction. Thus Theorem 1.1
now follows. �
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