X-GORENSTEIN PROJECTIVE AND Y-GORENSTEIN INJECTIVE MODULES

Fanyun Meng^{*\dagger} and Qunxing $\operatorname{Pan}^{\ddagger}$

Received 21:06:2010 : Accepted 26:01:2011

Abstract

Let \mathcal{X} be a class of right *R*-modules that contains all projective right *R*-modules. The notion of \mathcal{X} -Gorenstein projective modules was introduced by D. Bennis and K. Ouarghi (\mathcal{X} -Gorenstein projective modules, International Mathematical Forum **5**(10), 487–491, 2010). In this paper, we introduce \mathcal{Y} -Gorenstein injective right *R*-modules and \mathcal{Y} -Gorenstein flat left *R*-modules, where \mathcal{Y} is a class of right *R*-modules that contains all injective right *R*-modules. We show that the principal results on Gorenstein modules remain true for \mathcal{X} -Gorenstein projective right *R*-modules and \mathcal{Y} -Gorenstein flat left *R*-modules. The principal results on Gorenstein modules remain true for \mathcal{X} -Gorenstein projective right *R*-modules and \mathcal{Y} -Gorenstein flat left *R*-modules.

Keywords: X-Gorenstein projective modules, Y-Gorenstein injective modules, Y-Gorenstein flat modules.

2000 AMS Classification: $16 \ge 10, 16 \ge 30.$

1. Introduction

In [6], Enochs and Jenda defined the Gorenstein injective modules over an arbitrary ring R. Recall that a right R-module M is called Gorenstein injective if there is an exact sequence

 $\mathcal{E} \equiv \cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \cdots$

of injective right *R*-modules with $M = \ker(E^0 \to E^1)$, and which remains exact whenever $\operatorname{Hom}_R(E, -)$ is applied for any injective right *R*-module *E*.

^{*}Department of Mathematics, Nanjing University, Nanjing 210093, China. E-mail: fanyunmengnju@gmail.com

[†]Corresponding Author.

[‡]School of Science, Nanjing Agricultural University, Nanjing 210095, China. E-mail: pqxjs98@njau.edu.cn

In [2], Bennis *et al.* introduced the notion of \mathcal{X} -Gorenstein projective modules. Let \mathcal{X} be a class of right *R*-modules that contains all projective right *R*-modules. A right *R*-module *M* is called \mathcal{X} -Gorenstein projective if there exists an exact sequence

$$\mathcal{P} \equiv \cdots \longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$

of projective right *R*-modules such that $M = \ker(P^0 \to P^1)$ and $\operatorname{Hom}_R(\mathfrak{P}, F)$ is exact whenever $F \in \mathfrak{X}$.

In this paper, we introduce \mathcal{Y} -Gorenstein injective right R-modules and \mathcal{Y} -Gorenstein flat left R-modules, where \mathcal{Y} is a class of right R-modules that contains all injective right R-modules. A right R-module M is called \mathcal{Y} -Gorenstein injective if there exists an exact sequence

 $\mathcal{E} \equiv \cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \cdots$

of injective right R-modules such that $M = \ker(E^0 \to E^1)$, and which remains exact whenever $\operatorname{Hom}_R(H, -)$ is applied for any $H \in \mathcal{Y}$. A left R-module M is called \mathcal{Y} -Gorenstein flat if there exists an exact sequence

$$\mathcal{F} \equiv \cdots \longrightarrow F^{-2} \longrightarrow F^{-1} \longrightarrow F^0 \longrightarrow F^1 \longrightarrow \cdots$$

of flat left *R*-modules such that $M = \ker(F^0 \to F^1)$, and which remains exact whenever $G \otimes_R -$ is applied for any $G \in \mathcal{Y}$.

We mainly show that principal results on Gorenstein modules remain true for X-Gorenstein projective right *R*-modules, \mathcal{Y} -Gorenstein injective right *R*-modules and \mathcal{Y} -Gorenstein flat left *R*-modules.

Section 2 introduces \mathcal{Y} -Gorenstein injective modules and studies their relations with Gorenstein injective modules. For a ring R with r.Ggldim $(R) < \infty$, it is shown that the class of \mathcal{Y} -Gorenstein injective right R-modules coincides with the class of Gorenstein injective right R-modules if and only if every module in \mathcal{Y} has finite injective dimension. We also define the \mathcal{Y} -Gorenstein injective dimension of a module and a ring. Using the functors $\operatorname{Ext}_{R}^{i}(-,-)$, we give some characterizations of a module with finite \mathcal{Y} -Gorenstein injective dimension. For a ring R with $r\mathcal{Y}$ -GID $(R) < \infty$, we get that $(^{\perp}(\mathcal{Y}$ -GJ $(R)), \mathcal{Y}$ -GJ(R)) is a complete hereditary cotorsion theory.

Section 3 deals with \mathcal{X} -Gorenstein projective right *R*-modules, in a way much similar to how we treat the \mathcal{Y} -Gorenstein injective right *R*-modules in Section 2.

Section 4 introduces \mathcal{Y} -Gorenstein flat modules and studies their relations with \mathcal{X} -Gorenstein projective modules and \mathcal{Y} -Gorenstein injective modules. Let \mathcal{X} be a class of right R-modules that contains all projective right R-modules and \mathcal{Y} a class of left Rmodules that contains all injective left R-modules. If $\mathcal{Y}^+ \subseteq \mathcal{X}$, then every \mathcal{X} -Gorenstein projective right R-module is \mathcal{Y} -Gorenstein flat. For a right coherent ring, we get that M is a \mathcal{Y} -Gorenstein flat left R-module if and only if $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is a \mathcal{Y} -Gorenstein injective right R-module. We also define the \mathcal{Y} -Gorenstein flat dimension of a module and a ring. Using the functors $\operatorname{Tor}_i^R(-,-)$, we give some characterizations of a left R-module with finite \mathcal{Y} -Gorenstein flat dimension over a right coherent ring R. If R is a right coherent ring with $l\mathcal{Y}$ -GFD $(R) < \infty$, then $(\mathcal{Y}$ - $\mathcal{GF}(R), \mathcal{Y}$ - $\mathcal{GF}(R)^{\perp})$ is a perfect complete hereditary cotorsion theory.

Next we recall some notions and facts required in the paper. In [4], Ding *et al.* introduced the notion of strongly Gorenstein flat modules. A right *R*-module M is called strongly Gorenstein flat if there exists an exact sequence

$$\mathcal{P} \equiv \cdots \longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$

of projective right *R*-modules such that $M = \ker(P^0 \to P^1)$ and $\operatorname{Hom}_R(\mathfrak{P}, F)$ is exact whenever *F* is flat. Obviously, \mathfrak{X} -Gorenstein projective modules generalize both Gorenstein projective modules and strongly Gorenstein flat modules.

In [13], Mao and Ding introduced Gorenstein FP-injective modules. A right R-module M is called Gorenstein FP-injective if there exists an exact sequence

$$\mathcal{E} \equiv \cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \cdots$$

of injective right R-modules such that $M = \ker(E^0 \to E^1)$, and which remains exact whenever $\operatorname{Hom}_R(H, -)$ is applied for any FP-injective module H. Obviously, \mathcal{Y} -Gorenstein injective modules generalize both Gorenstein injective modules and Gorenstein FP-injective modules.

Let C be a class of R-modules and M an R-module. Following [5], we say that a homomorphism $\phi: M \to C$ is a C-preenvelope if $C \in \mathbb{C}$ and the abelian group homomorphism $\operatorname{Hom}(\phi, C'): \operatorname{Hom}(C, C') \to \operatorname{Hom}(M, C')$ is surjective for each $C' \in \mathbb{C}$. A C-preenvelope $\phi: M \to C$ is said to be a C-envelope if every endomorphism $g: C \to C$ such that $g\phi = \phi$ is an isomorphism. Dually we have the definitions of a C-precover and a C-cover. C-envelopes (C-covers) may not exist in general, but if they exist, they are unique up to isomorphism.

A module M is said to have a special C-precover [7, Definition 7.1.6] if there is an exact sequence $0 \longrightarrow F \longrightarrow C \longrightarrow M \longrightarrow 0$ with $C \in \mathbb{C}$ and $F \in \mathbb{C}^{\perp}$. M is said to have a special C-preenvelope [7, Definition 7.1.6] if there is an exact sequence $0 \longrightarrow M \longrightarrow C \longrightarrow F \longrightarrow 0$ with $C \in \mathbb{C}$ and $F \in {}^{\perp}\mathbb{C}$.

A pair $(\mathcal{F}, \mathbb{C})$ of classes of right *R*-modules is called a cotorsion theory (cotorsion pair) [7, Definition 7.1.2] if $\mathcal{F}^{\perp} = \mathbb{C}$ and ${}^{\perp}\mathbb{C} = \mathcal{F}$. A pair of classes $(\mathcal{F}, \mathcal{F}^{\perp})$ is said to be cogenerated by a set \mathcal{D} [9, Definition 1.1.7] if $\mathcal{F}^{\perp} = \mathcal{D}^{\perp}$. A cotorsion theory $(\mathcal{F}, \mathbb{C})$ is called complete [11, Lemma 2.2.6] if every *R*-module has a special \mathcal{C} -preenvelope (and a special \mathcal{F} -precover). A cotorsion theory $(\mathcal{F}, \mathbb{C})$ is said to be hereditary [8] if whenever

$$0 \longrightarrow L' \longrightarrow L \longrightarrow L'' \longrightarrow 0$$

is exact with $L, L'' \in \mathcal{F}$ then L' is also in \mathcal{F} , or equivalently, if whenever

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

is exact with $C, C' \in \mathfrak{C}$ then C'' is also in \mathfrak{C} .

Throughout this paper, R is an associative ring with identity and all modules are unitary, r.gldim(R) (resp. wdim(R)) stands for the right (resp. the weak) global dimension of R. For an R-module M, the character module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is denoted by M^+ , fd(M), id(M) and pd(M) stand for the flat, injective and projective dimensions of Mrespectively, Gfd(M), Gid(M) and Gpd(M) denote the Gorenstein flat, injective and projective dimensions of M respectively. r.Ggldim(R) (resp. l.Ggldim(R)) denotes the right (resp. the left) Gorenstein global dimension of R.

2. y-Gorenstein injective modules

2.1. Definition. Let \mathcal{Y} be a class of right *R*-modules that contains all injective right *R*-modules. A right *R*-module *M* is called \mathcal{Y} -*Gorenstein injective* if there exists an exact sequence

 $\mathcal{E} \equiv \cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \cdots$

of injective right *R*-modules such that $M = \ker(E^0 \to E^1)$, and which remains exact whenever $\operatorname{Hom}_R(H, -)$ is applied for any $H \in \mathcal{Y}$.

The sequence \mathcal{E} is called a \mathcal{Y} -complete injective resolution.

2.2. Remark. (1) Obviously, we have the following implications:

injective modules \implies \mathcal{Y} -Gorenstein injective modules \implies Gorenstein injective modules.

(2) Let \mathcal{Y} be the class of injective right *R*-modules, then \mathcal{Y} -Gorenstein injective right *R*-modules coincide with Gorenstein injective right *R*-modules.

(3) Let \mathcal{Y} be the class of FP-injective right R-modules, then \mathcal{Y} -Gorenstein injective right R-modules coincide with Gorenstein FP-injective right R-modules [13].

(4) If \mathcal{Y} is the class of Gorenstein injective right *R*-modules, then every \mathcal{Y} -Gorenstein injective right *R*-module is injective. Indeed, for any \mathcal{Y} -Gorenstein injective right *R*-module *M*, we have an exact sequence of right *R*-modules

 $0 \longrightarrow M \longrightarrow I \longrightarrow K \longrightarrow 0$

with I injective and K \mathcal{Y} -Gorenstein injective, which remains exact whenever $\operatorname{Hom}_R(H, -)$ is applied for any module $H \in \mathcal{Y}$. Since every \mathcal{Y} -Gorenstein injective right R-module is Gorenstein injective, we let $H = K \in \mathcal{Y}$, then we have an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(K, M) \longrightarrow \operatorname{Hom}_{R}(K, I) \longrightarrow \operatorname{Hom}_{R}(K, K) \longrightarrow 0.$

Thus M is a direct summand of I, hence M is injective.

2.3. Proposition. A right R-module M is injective if and only if M belongs to \mathcal{Y} and M is \mathcal{Y} -Gorenstein injective.

Proof. If M is \mathcal{Y} -Gorenstein injective, then by the definition of \mathcal{Y} -Gorenstein injective modules, we have an exact sequence of right R-modules

 $0 \longrightarrow G \longrightarrow I \longrightarrow M \longrightarrow 0$

with I injective and G \mathcal{Y} -Gorenstein injective, which remains exact whenever $\operatorname{Hom}_R(H, -)$ is applied for any $H \in \mathcal{Y}$. Since M belongs to \mathcal{Y} , we apply $\operatorname{Hom}_R(M, -)$ to the above exact sequence, then we get an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(M, G) \longrightarrow \operatorname{Hom}_{R}(M, I) \longrightarrow \operatorname{Hom}_{R}(M, M) \longrightarrow 0.$

Thus M is a direct summand of I, hence M is injective.

The converse is trivial.

2.4. Corollary. The following statements are equivalent for a ring R:

- (1) *Y* is the class of injective right *R*-modules.
- (2) Every $H \in \mathcal{Y}$ is \mathcal{Y} -Gorenstein injective.

Proof. $(1) \Longrightarrow (2)$ is trivial by Remark 2.2(1).

(2) \implies (1) By Proposition 2.3, we know that \mathcal{Y} is the class of injective right *R*-modules.

Let \mathcal{Y} be the class of FP-injective right R-modules in Corollary 2.4. Then we have the following result which is a generalization of [13, Proposition 2.7].

2.5. Corollary. The following statements are equivalent for a ring R:

- (1) R is right noetherian.
- (2) Every FP-injective right R-module is Gorenstein FP-injective.

Proof. We only note that R is right noetherian if and only if every FP-injective right R-module is injective [14, Theorem 3].

2.6. Theorem. Let R be a ring with $r.\text{Ggldim}(R) < \infty$, then the following statements are equivalent:

- (1) The class of *Y*-Gorenstein injective right *R*-modules coincides with the class of Gorenstein injective right *R*-modules.
- (2) Every module in \mathcal{Y} has finite injective dimension.

Proof. $(1) \Longrightarrow (2)$ Let M be any Gorenstein injective right R-module, by hypothesis we know that M is also \mathcal{Y} -Gorenstein injective. Thus there is an exact sequence of right R-modules

$$0 \longrightarrow M \longrightarrow I \longrightarrow G \longrightarrow 0$$

with I injective and G \mathcal{Y} -Gorenstein injective, which remains exact whenever $\operatorname{Hom}_R(H, -)$ is applied for any $H \in \mathcal{Y}$. For any $H \in \mathcal{Y}$, we have a long exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(H, M) \longrightarrow \operatorname{Hom}_{R}(H, I) \longrightarrow \operatorname{Hom}_{R}(H, G) \longrightarrow \operatorname{Ext}_{R}^{1}(H, M) \longrightarrow 0$$

Thus $\operatorname{Ext}_{R}^{1}(H, M) = 0$ for any Gorenstein injective right *R*-module *M*. Hence by [15, Proposition 2.5], *H* has finite injective dimension.

 $(2) \Longrightarrow (1)$ Let M be any Gorenstein injective right R-module, then there is an exact sequence

$$\mathcal{E} \equiv \cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow E^0 \longrightarrow E^1 \longrightarrow \cdots$$

of injective right *R*-modules with $M = \ker(E^0 \to E^1)$, which remains exact whenever $\operatorname{Hom}_R(E, -)$ is applied for any injective right *R*-module *E*.

Let H be any module in \mathcal{Y} . By (2), we may assume $id(H) = n < \infty$. We proceed by induction on n. If n = 0, by the definition of Gorenstein injective modules, $\operatorname{Hom}_R(H, \mathcal{E})$ is exact. For $n \ge 1$, we have an exact sequence

$$0 \longrightarrow H \longrightarrow E \longrightarrow N \longrightarrow 0,$$

where E is an injective right R-module and id(N) = n - 1.

Then we have an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(N, \mathcal{E}) \longrightarrow \operatorname{Hom}_{R}(E, \mathcal{E}) \longrightarrow \operatorname{Hom}_{R}(H, \mathcal{E}) \longrightarrow 0$$

with the first two complexes exact by induction. Hence $\operatorname{Hom}_R(H, \mathcal{E})$ is exact. Thus M is \mathcal{Y} -Gorenstein injective. Since every \mathcal{Y} -Gorenstein injective right R-module is Gorenstein injective, the class of \mathcal{Y} -Gorenstein injective right R-modules coincides with the class of Gorenstein injective right R-modules.

2.7. Corollary. Let R be a ring with $r.Ggldim(R) < \infty$ and $wdim(R) < \infty$. Then the class of \mathcal{Y} -Gorenstein injective right R-modules coincides with the class of Gorenstein injective right R-modules.

Proof. By [1, Corollary 1.2], we know that if wdim $(R) < \infty$ then

 $r.gldim(R) = r.Ggldim(R) < \infty.$

Thus every right R-module has finite injective dimension. Hence by Theorem 2.6, the class of \mathcal{Y} -Gorenstein injective right R-modules coincides with the class of Gorenstein injective right R-modules.

2.8. Lemma. The following assertions are equivalent:

- (1) M is a Y-Gorenstein injective right R-module.
- (2) M satisfies the following two assertions:
 - (a) $\operatorname{Ext}_{R}^{i}(H, M) = 0$ for any right R-module $H \in \mathcal{Y}$ and any $i \geq 1$.

(b) There exists an exact sequence of right R-modules

$$\cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow M \longrightarrow 0,$$

where each E^{-i} is injective and $\operatorname{Hom}_R(H, -)$ leaves the sequence exact for any $H \in \mathcal{Y}$.

(3) There exists a short exact sequence of right R-modules

 $0 \longrightarrow G \longrightarrow I \longrightarrow M \longrightarrow 0,$

where I is injective and G is \mathcal{Y} -Gorenstein injective.

Proof. By the definition of \mathcal{Y} -Gorenstein injective modules, we immediately get (1) \iff (2) and (1) \implies (3).

 $(3) \Longrightarrow (1)$ The proof is similar to that of [2, Proposition 2.2].

By Lemma 2.8 and [2, Proposition 2.4], we have the following:

2.9. Proposition. Every right R-module is Y-Gorenstein injective if and only if every right R-module in Y is projective.

In particular, when the above equivalent conditions are satisfied R is quasi-Frobenius. $\hfill \Box$

2.10. Proposition. The class of *Y*-Gorenstein injective modules is closed under extensions and cokernels of monomorphisms. Furthermore it is closed under direct products and direct summands.

Proof. Consider the exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$. First, assume that M', M'' are \mathcal{Y} -Gorenstein injective modules. By a proof similar to that of [7, Lemma 8.2.1], we can construct an exact sequence of right *R*-modules

$$\cdots \longrightarrow E^{-2} \longrightarrow E^{-1} \longrightarrow M \longrightarrow 0,$$

where each E^{-i} is injective and $\operatorname{Hom}_R(H, -)$ leaves the sequence exact for any $H \in \mathcal{Y}$. Since M', M'' are \mathcal{Y} -Gorenstein injective modules, $\operatorname{Ext}^i_R(H, M') = \operatorname{Ext}^i_R(H, M'') = 0$ for all i > 0 and all $H \in \mathcal{Y}$. Using the long exact sequence

 $\cdots \longrightarrow \operatorname{Ext}^{i}_{R}(H, M') \longrightarrow \operatorname{Ext}^{i}_{R}(H, M) \longrightarrow \operatorname{Ext}^{i}_{R}(H, M'') \longrightarrow \cdots,$

we get that $\operatorname{Ext}_{R}^{i}(H, M) = 0$ for all i > 0 and all $H \in \mathcal{Y}$. By Lemma 2.8, we know that M is \mathcal{Y} -Gorenstein injective.

Next, assume that M', M are \mathcal{Y} -Gorenstein injective modules. By Lemma 2.8, there exists a short exact sequence of right R-modules

 $0 \longrightarrow G \longrightarrow I \longrightarrow M \longrightarrow 0,$

542

where I is injective and G is <code>Y-Gorenstein</code> injective. Consider the following pullback diagram

From the left exact column and the fact that the class of \mathcal{Y} -Gorenstein injective modules is closed under extensions, we know that F is \mathcal{Y} -Gorenstein injective. Thus we get an exact sequence $0 \longrightarrow F \longrightarrow I \longrightarrow M'' \longrightarrow 0$, where I is injective and F is \mathcal{Y} -Gorenstein injective. From Lemma 2.8, we know M'' is \mathcal{Y} -Gorenstein injective.

By the definition of \mathcal{Y} -Gorenstein injective modules, we know that \mathcal{Y} -Gorenstein injective modules are closed under direct products. Hence \mathcal{Y} -Gorenstein injective modules are closed under direct summands by [12, Proposition 1.4].

2.11. Definition. We will say that M has \mathcal{Y} -Gorenstein injective dimension less than or equal to n, denoted \mathcal{Y} -Gid $(M) \leq n$, if there exists an exact sequence

$$0 \longrightarrow M \longrightarrow G^0 \longrightarrow \ldots \longrightarrow G^{n-1} \longrightarrow G^n \longrightarrow 0$$

with every G^i being \mathcal{Y} -Gorenstein injective. If no such finite sequence exists, define \mathcal{Y} -Gid $(M) = \infty$; otherwise, if n is the least such integer, define \mathcal{Y} -Gid(M) = n.

Define $r\mathcal{Y}$ -GID $(R) = \sup\{\mathcal{Y}$ -Gid $(M) \mid M$ is any right *R*-module}.

2.12. Proposition. Let M be a right R-module with finite \mathcal{Y} -Gorenstein injective dimension n. Then there exist exact sequences

 $0 \longrightarrow M \longrightarrow I \longrightarrow F \longrightarrow 0$

with I Y-Gorenstein injective, $id(F) \leq n-1$, and

$$0 \longrightarrow I' \longrightarrow F' \longrightarrow M \longrightarrow 0$$

with I' \Im -Gorenstein injective, $id(F') \leq n$.

Proof. We will prove the desired result by induction on n. If n = 0, then M is \mathcal{Y} -Gorenstein injective, thus there exists an exact sequence

$$0 \longrightarrow H \longrightarrow E \longrightarrow M \longrightarrow 0$$

with E injective and H \mathcal{Y} -Gorenstein injective. We also have the exact sequence

$$0 \longrightarrow M \longrightarrow M \longrightarrow 0 \longrightarrow 0.$$

Now, let n = 1 and let $0 \longrightarrow M \longrightarrow I_0 \xrightarrow{d_0} I_1 \longrightarrow 0$ be an exact sequence with each I_i \mathcal{Y} -Gorenstein injective. By the case n = 0, we know there is an exact

sequence $0 \longrightarrow H_0 \longrightarrow E_0 \longrightarrow I_1 \longrightarrow 0$ with E_0 injective and H_0 y-Gorenstein injective. Consider the following pullback diagram

From the exact middle column and the fact that \mathcal{Y} -Gorenstein injective modules are closed under extensions, we know that G_0 is \mathcal{Y} -Gorenstein injective. Thus we get the exact sequence

$$0 \longrightarrow M \longrightarrow G_0 \longrightarrow E_0 \longrightarrow 0,$$

where E_0 is injective and G_0 is \mathcal{Y} -Gorenstein injective. Since G_0 is \mathcal{Y} -Gorenstein injective, we get the exact sequence

$$0 \longrightarrow H_1 \longrightarrow E_1 \longrightarrow G_0 \longrightarrow 0,$$

where E_1 is injective and H_1 is \mathcal{Y} -Gorenstein injective. Consider the following pullback diagram

From the exact middle row, we know that $id(F_1) \leq 1$. Thus we have the exact sequence

 $0 \longrightarrow H_1 \longrightarrow F_1 \longrightarrow M \longrightarrow 0$

with $id(F_1) \leq 1$ and H_1 \mathcal{Y} -Gorenstein injective.

Suppose n > 1. Then we have an exact sequence

 $0 \longrightarrow M \longrightarrow I_0 \xrightarrow{d_0} I_1 \xrightarrow{d_1} \cdots \xrightarrow{d_{n-1}} I_n \longrightarrow 0$

with each I_i \mathcal{Y} -Gorenstein injective. Let $K_{n-1} = im(d_0)$, then we have exact sequences

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow K_{n-1} \longrightarrow 0,$$
$$0 \longrightarrow K_{n-1} \longrightarrow I_1 \longrightarrow \cdots \xrightarrow{d_{n-1}} I_n \longrightarrow 0,$$

i.e. \mathcal{Y} -Gid $(K_{n-1}) = n - 1$. By the induction hypothesis we know there is an exact sequence $0 \longrightarrow H_{n-1} \longrightarrow F_{n-1} \longrightarrow K_{n-1} \longrightarrow 0$ with $\mathrm{id}(F_{n-1}) \leq n - 1$ and H_{n-1} \mathcal{Y} -Gorenstein injective. Consider the following pullback diagram

From the exact middle column

$$0 \longrightarrow H_{n-1} \longrightarrow G_{n-1} \longrightarrow I_0 \longrightarrow 0$$

we know that G_{n-1} is \mathcal{Y} -Gorenstein injective. Thus we get the exact sequence

$$0 \longrightarrow M \longrightarrow G_{n-1} \longrightarrow F_{n-1} \longrightarrow 0$$

with G_{n-1} Y-Gorenstein injective and $id(F_{n-1}) \leq n-1$. As in the previous case, since G_{n-1} is Y-Gorenstein injective, there exists a short exact sequence

 $0 \longrightarrow G_n \longrightarrow J \longrightarrow G_{n-1} \longrightarrow 0,$

where J is injective and G_n is $\mathcal Y\text{-}\operatorname{Gorenstein}$ injective. Consider the following pullback diagram

Since J is injective and $id(F_{n-1}) \le n-1$, we get $id(F_n) \le n$ by the middle row. Letting $I = G_{n-1}, F = F_{n-1}, I' = G_n, F' = F_n$, we get the desired result.

2.13. Corollary. Let $0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0$ be a short exact sequence of right R-modules, where I_0 and I_1 are \mathcal{Y} -Gorenstein injective modules and $\operatorname{Ext}^1_R(I, M) = 0$ for all injective right R-modules I. Then M is \mathcal{Y} -Gorenstein injective.

Proof. From the short exact sequence $0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow 0$, we know that \mathcal{Y} -Gid $(M) \leq 1$. By Proposition 2.12, there exists an exact sequence

 $0 \longrightarrow M \longrightarrow G \longrightarrow I \longrightarrow 0,$

where G is \mathcal{Y} -Gorenstein injective and I is injective. By the assumption $\operatorname{Ext}^{1}_{R}(I, M) = 0$, this sequence splits, and hence M is \mathcal{Y} -Gorenstein injective.

2.14. Lemma. Let N be a right R-module, and consider two exact sequences of right R-modules:

$$0 \longrightarrow N \longrightarrow G^{0} \longrightarrow \dots \longrightarrow G^{n-1} \longrightarrow G^{n} \longrightarrow 0,$$
$$0 \longrightarrow N \longrightarrow H^{0} \longrightarrow \dots \longrightarrow H^{n-1} \longrightarrow H^{n} \longrightarrow 0,$$

where G^0, \ldots, G^{n-1} and H^0, \ldots, H^{n-1} are \mathcal{Y} -Gorenstein injective. Then G^n is \mathcal{Y} -Gorenstein injective if and only if H^n is \mathcal{Y} -Gorenstein injective.

Proof. Using Proposition 2.10, the proof is similar to that of (i) \implies (iii) in [3, Theorem 1.2.7].

2.15. Proposition. Let N be a right R-module with finite \mathcal{Y} -Gorenstein injective dimension. Then the following assertions are equivalent for a nonnegative integer n:

- (1) \mathcal{Y} -Gid $(N) \leq n$.
- (2) $\operatorname{Ext}_{R}^{i}(I, N) = 0$ for all i > n and all injective right R-modules I.
- (3) $\operatorname{Ext}_{R}^{i}(E, N) = 0$ for all i > n and all right R-modules E of finite injective dimension.
- (4) For every exact sequence of right R-modules

 $0 \longrightarrow N \longrightarrow G^0 \longrightarrow \ldots \longrightarrow G^{n-1} \longrightarrow K^n \longrightarrow 0,$

where each G^i is \mathcal{Y} -Gorenstein injective, K^n is \mathcal{Y} -Gorenstein injective.

Furthermore, $\mathcal{Y}\text{-}Gid(N) = \sup\{i \in \mathbb{N} \mid \operatorname{Ext}_{R}^{i}(E, N) \neq 0 \text{ for some } R\text{-module } E \text{ of finite injective dimension}\} = \sup\{i \in \mathbb{N} \mid \operatorname{Ext}_{R}^{i}(I, N) \neq 0 \text{ for some injective } R\text{-module } I\}.$

Proof. Follows from the proof of [12, Theorem 2.20] using Corollary 2.13 and Lemma 2.14. $\hfill \Box$

2.16. Corollary. Let N be a right R-module with \mathcal{Y} -Gid(N) < ∞ . Then Gid(N) = \mathcal{Y} -Gid(N).

Proof. Since $\operatorname{Gid}(N) \leq \mathcal{Y}\operatorname{-Gid}(N)$, then from Proposition 2.15 and [12, Theroem 2.22] we know that $\operatorname{Gid}(N) = \mathcal{Y}\operatorname{-Gid}(N)$.

2.17. Proposition. Every right *R*-module with finite *Y*-Gorenstein injective dimension has a special *Y*-Gorenstein injective preenvelope.

Proof. Let M be a right R-module with finite \mathcal{Y} -Gorenstein injective dimension. Then there exists an exact sequence

$$0 \longrightarrow M \longrightarrow I \longrightarrow F \longrightarrow 0$$

with I \mathcal{Y} -Gorenstein injective and $\operatorname{id}(F) \leq \mathcal{Y}$ -Gid(M) - 1. Now if G' is a \mathcal{Y} -Gorenstein injective right R-module, then $\operatorname{Ext}^{1}_{R}(F, G') = 0$ which shows that $M \to I$ is a special \mathcal{Y} -Gorenstein injective preenvelope.

Let $\mathcal Y$ be the class of all $FP\text{-injective right}\ R\text{-modules}$ in Proposition 2.17. Then we have:

2.18. Corollary. Every right R-module with finite Gorenstein FP-injective dimension has a Gorenstein FP-injective preenvelope. \Box

If \mathcal{Y} is the class of all injective right *R*-modules in Proposition 2.17, then we get

2.19. Corollary. [12, Theorem 2.15] Every right R-module with finite Gorenstein injective dimension has a Gorenstein injective preenvelope. \Box

Let \mathcal{Y} - $\mathcal{GI}(R)$ be the class of \mathcal{Y} -Gorenstein injective right *R*-modules.

2.20. Theorem. If $r\mathcal{Y}$ -GID $(R) < \infty$, then $(^{\perp}(\mathcal{Y}-\mathcal{GJ}(R)), \mathcal{Y}-\mathcal{GJ}(R))$ is a complete hereditary cotorsion theory.

Proof. We first prove that $(^{\perp}(\mathcal{Y}-\mathcal{GI}(R)), \mathcal{Y}-\mathcal{GI}(R))$ is a cotorsion theory.

Obviously, $\mathfrak{Y}-\mathfrak{GI}(R) \subseteq (^{\perp}(\mathfrak{Y}-\mathfrak{GI}(R)))^{\perp}$. So we only need to prove that $(^{\perp}(\mathfrak{Y}-\mathfrak{GI}(R)))^{\perp} \subseteq \mathfrak{Y}-\mathfrak{GI}(R)$. Let M be any module in $(^{\perp}(\mathfrak{Y}-\mathfrak{GI}(R)))^{\perp}$, then $\operatorname{Ext}_{R}^{1}(N,M) = 0$ for any $N \in ^{\perp}(\mathfrak{Y}-\mathfrak{GI}(R))$. Since $r\mathfrak{Y}-\operatorname{GID}(R) < \infty$, M has a finite \mathfrak{Y} -Gorenstein injective dimension. Then by Proposition 2.17, there exists a special \mathfrak{Y} -Gorenstein injective preenvelope

 $0 \longrightarrow M \longrightarrow I \longrightarrow F \longrightarrow 0$

with I Y-Gorenstein injective and $id(F) \leq Y-Gid(M) - 1$. Then we have a long exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(F, M) \longrightarrow \operatorname{Hom}_{R}(F, I) \longrightarrow \operatorname{Hom}_{R}(F, F) \longrightarrow \operatorname{Ext}_{R}^{1}(F, M) \longrightarrow \cdots$$

Since $F \in {}^{\perp}(\mathcal{Y}-\mathcal{GI}(R))$, $\operatorname{Ext}_{R}^{1}(F, M) = 0$. Thus M is a direct summand of I, hence M is \mathcal{Y} -Gorenstein injective by Proposition 2.10. Hence $({}^{\perp}(\mathcal{Y}-\mathcal{GI}(R)))^{\perp} = \mathcal{Y}-\mathcal{GI}(R)$, and so $({}^{\perp}(\mathcal{Y}-\mathcal{GI}(R)), \mathcal{Y}-\mathcal{GI}(R))$ is a complete cotorsion theory.

By Proposition 2.10, we know that the class of all \mathcal{Y} -Gorenstein injective modules is closed under cokernels of monomorphisms. Thus $(^{\perp}(\mathcal{Y}-\mathcal{GI}(R)), \mathcal{Y}-\mathcal{GI}(R))$ is a complete hereditary cotorsion theory.

3. X-Gorenstein projective modules

3.1. Definition. [2, Definition 2.1] Let \mathcal{X} be a class of right *R*-modules that contains all projective right *R*-modules. A right *R*-module *M* is called \mathcal{X} -Gorenstein projective if there exists an exact sequence

 $\mathcal{P} \equiv \cdots \longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$

of projective right *R*-modules such that $M = \ker(P^0 \to P^1)$ and $\operatorname{Hom}_R(\mathfrak{P}, F)$ is exact whenever $F \in \mathfrak{X}$.

The sequence \mathcal{P} is called an \mathcal{X} -complete projective resolution.

3.2. Lemma. [2, Theorem 2.3] 1. Let $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ be a short exact sequence of *R*-modules, where *C* is \mathcal{X} -Gorenstein projective. Then, *A* is \mathcal{X} -Gorenstein projective if and only if *B* is \mathcal{X} -Gorenstein projective.

2. Let $(M_i)_{i \in I}$ be a family of R-modules. Then, $\bigoplus_{i \in I} M_i$ is X-Gorenstein projective if and only if M_i is X-Gorenstein projective for every $i \in I$.

3.3. Remark. (1) Obviously, we have the following implications:

projective modules $\implies \mathfrak{X}$ -Gorenstein projective modules \implies Gorenstein projective modules.

(2) Let \mathfrak{X} be the class of projective right *R*-modules. Then the class of \mathfrak{X} -Gorenstein projective right *R*-modules coincides with the class of Gorenstein projective right *R*-modules.

(3) Let \mathfrak{X} be the class of flat right *R*-modules. Then the class of \mathfrak{X} -Gorenstein projective right *R*-modules coincides with the class of strongly Gorenstein flat right *R*-modules [4].

(4) If \mathfrak{X} is the class of Gorenstein projective right *R*-modules, then every \mathfrak{X} -Gorenstein projective right *R*-module is projective.

3.4. Proposition. A right R-module M is projective if and only if M belongs to \mathfrak{X} and M is \mathfrak{X} -Gorenstein projective.

Proof. The proof is similar to that of Proposition 2.3.

3.5. Corollary. The following statements are equivalent for a ring R:

(1) \mathfrak{X} is the class of projective right *R*-modules.

(2) Every $X \in \mathfrak{X}$ is \mathfrak{X} -Gorenstein projective.

Proof. $(1) \Longrightarrow (2)$ Trivial by Remark 3.3 (1).

(2) \implies (1) By Proposition 3.4, we know that \mathfrak{X} is the class of projective right *R*-modules.

Let \mathcal{X} be the class of flat right *R*-modules in Corollary 3.5, then we have

3.6. Corollary. [4, Proposition 2.15] The following statements are equivalent for a ring R:

(1) R is right perfect.

(2) Every flat right R-module is strongly Gorenstein flat. \Box

3.7. Theorem. Let R be a ring with r.Ggldim $(R) < \infty$. Then the following statements are equivalent:

- The class of X-Gorenstein projective right R-modules coincides with the class of Gorenstein projective right R-modules.
- (2) Every module in \mathfrak{X} has finite projective dimension.

Proof. Using [15, Proposition 2.5], the proof is similar to that of Theorem 2.6. \Box

Let \mathcal{X} be the class of flat right *R*-modules in Theorem 3.7. Then we have the following result which generalizes [4, Corollary 2.8]:

3.8. Corollary. Let R be a ring with r.Ggldim(R) $< \infty$. Then the class of strongly Gorenstein flat modules coincides with the class of Gorenstein projective modules.

Proof. By [1, Corollary 2.7], we know that if $r.\text{Ggldim}(R) < \infty$, then $pd(F) < \infty$ for any flat right *R*-module *F*. Thus by Theorem 3.7 we get the desired results.

3.9. Corollary. Let R be a ring with r.Ggldim $(R) < \infty$ and wdim $(R) < \infty$. Then the class of \mathfrak{X} -Gorenstein projective right R-modules coincides with the class of Gorenstein projective right R-modules.

Proof. Using Theorem 3.7, the proof is similar to that of Corollary 2.7. \Box

3.10. Definition. We will say that M has \mathcal{X} -Gorenstein projective dimension less than or equal to n, denoted \mathcal{X} -Gpd $(M) \leq n$, if there exists an exact sequence

 $0 \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0$

with every P_i being \mathfrak{X} -Gorenstein projective. If no such finite sequence exists, define \mathfrak{X} -Gpd $(M) = \infty$; otherwise, if n is the least such integer, define \mathfrak{X} -Gpd(M) = n.

Define $r\mathcal{X}$ -GPD $(R) = \sup{\mathcal{X}$ -Gpd $(M) \mid M$ is any right *R*-module}.

3.11. Proposition. Let M be a right R-module with finite X-Gorenstein projective dimension n, then there exist exact sequences

 $0 \longrightarrow H \longrightarrow G \longrightarrow M \longrightarrow 0$

with G X-Gorenstein projective and $pd(H) \leq n-1$ and

$$0 \longrightarrow M \longrightarrow H' \longrightarrow G' \longrightarrow 0$$

with $G' \ \mathfrak{X}$ -Gorenstein projective and $\mathrm{pd}(H') \leq n$.

Proof. Using the fact that the class of \mathcal{X} -Gorenstein projective modules is closed under extensions, the proof is similar to that of Proposition 2.12.

3.12. Corollary. Let

 $0 \longrightarrow G_1 \longrightarrow G_0 \longrightarrow M \longrightarrow 0$

be a short exact sequence of right R-modules, where G_0 and G_1 are X-Gorenstein projective modules and $\operatorname{Ext}^1_R(M,Q) = 0$ for all projective right R-modules Q. Then M is X-Gorenstein projective.

3.13. Lemma. Let M be a right R-module, and consider two exact sequences of right R-modules:

$$0 \longrightarrow G_n \longrightarrow G_{n-1} \longrightarrow \dots \longrightarrow G_0 \longrightarrow M \longrightarrow 0,$$
$$0 \longrightarrow H_n \longrightarrow H_{n-1} \longrightarrow \dots \longrightarrow H_0 \longrightarrow M \longrightarrow 0,$$

where G_0, \ldots, G_{n-1} and H_0, \ldots, H_{n-1} are \mathfrak{X} -Gorenstein projective, then G_n is \mathfrak{X} -Gorenstein projective if and only if H_n is \mathfrak{X} -Gorenstein projective.

Proof. Using Lemma 3.2, the proof is similar to that of (i) \implies (iii) in [3, Theorem 1.2.7].

3.14. Proposition. Let M be a right R-module with finite X-Gorenstein projective dimension, then the following assertions are equivalent for a nonnegative integer n:

- (1) \mathfrak{X} -Gpd $(M) \leq n$.
- (2) $\operatorname{Ext}_{R}^{i}(M, P) = 0$ for all i > n and all projective right R-modules P.
- (3) $\operatorname{Ext}_{R}^{i}(M,Q) = 0$ for all i > n and all right *R*-modules *Q* of finite projective dimension.
- $(4) \ \ For \ every \ exact \ sequence \ of \ right \ R-modules$

 $0 \longrightarrow K_n \longrightarrow G_{n-1} \longrightarrow \ldots \longrightarrow G_0 \longrightarrow M \longrightarrow 0,$

where each G_i is X-Gorenstein projective, K_n is X-Gorenstein projective.

Furthermore, \mathfrak{X} -Gpd $(M) = \sup\{i \in \mathbb{N} \mid \operatorname{Ext}_{R}^{i}(M, Q) \neq 0 \text{ for some } R$ -module Q of finite projective dimension $\} = \sup\{i \in \mathbb{N} \mid \operatorname{Ext}_{R}^{i}(M, P) \neq 0 \text{ for some projective } R$ -module $P\}$.

Proof. Using Corollary 3.12 and Lemma 3.13, the proof is similar to that of Proposition 2.15. $\hfill \Box$

3.15. Corollary. Let M be a right R-module with \mathfrak{X} -Gpd(M) < ∞ , then $\operatorname{Gpd}(M) = \mathfrak{X}$ -Gpd(M).

Proof. Since $\operatorname{Gpd}(M) \leq \mathfrak{X}\operatorname{-Gpd}(M)$, then from Proposition 3.14 and [12, Theroem 2.20] we know that $\operatorname{Gpd}(M) = \mathfrak{X}\operatorname{-Gpd}(M)$.

3.16. Proposition. Every right *R*-module with finite \mathfrak{X} -Gorenstein projective dimension has a special \mathfrak{X} -Gorenstein projective precover.

Proof. Let M be a right R-module with finite \mathcal{X} -Gorenstein projective dimension. Then there exists an exact sequence

 $0 \longrightarrow H \longrightarrow G \longrightarrow M \longrightarrow 0$

with G X-Gorenstein projective and $pd(H) \leq X$ -Gpd(M) - 1. Now if G' is an X-Gorenstein projective right R-module, then $\text{Ext}_R^1(G', H) = 0$, which shows that $G \to M$ is a special X-Gorenstein projective precover.

Let \mathcal{X} be the class of flat right *R*-modules in Proposition 3.16, then we have

3.17. Corollary. Every right *R*-module with finite strongly Gorenstein flat dimension has a strongly Gorenstein flat precover.

If \mathfrak{X} is the class of projective right *R*-modules in Proposition 3.16, then we get

3.18. Corollary. [12, Theorem 2.10] Every right R-module with finite Gorenstein projective dimension has a Gorenstein projective precover. \Box

Let \mathfrak{X} - $\mathfrak{GP}(R)$ be the class of \mathfrak{X} -Gorenstein projective right R-modules.

3.19. Theorem. If $r\mathfrak{X}$ - $GPD(R) < \infty$, then $(\mathfrak{X}-\mathfrak{GP}(R), (\mathfrak{X}-\mathfrak{GP}(R))^{\perp})$ is a complete hereditary cotorsion theory.

Proof. The proof is similar to that of Theorem 2.20.

4. y-Gorenstein flat modules

4.1. Definition. Let \mathcal{Y} be a class of right *R*-modules that contains all injective right *R*-modules. A left *R*-module *M* is called \mathcal{Y} -Gorenstein flat if there exists an exact sequence

 $\mathcal{F}\equiv \ \cdots \longrightarrow F^{-2} \longrightarrow F^{-1} \longrightarrow F^0 \longrightarrow F^1 \longrightarrow \cdots$

of flat left *R*-modules such that $M = \ker(F^0 \to F^1)$, which remains exact whenever $G \otimes_R -$ is applied for any $G \in \mathcal{Y}$.

The sequence \mathcal{F} is called a \mathcal{Y} -complete flat resolution.

4.2. Proposition. Let \mathfrak{X} be a class of right *R*-modules that contains all projective right *R*-modules, and \mathfrak{Y} a class of left *R*-modules that contains all injective left *R*-modules. If $\mathfrak{Y}^+ \subseteq \mathfrak{X}$, then every \mathfrak{X} -Gorenstein projective right *R*-module is \mathfrak{Y} -Gorenstein flat.

Proof. Let M be any \mathfrak{X} -Gorenstein projective right R-module, then there exists an exact sequence

$$\mathcal{P} \equiv \cdots \longrightarrow P^{-2} \longrightarrow P^{-1} \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$

of projective right *R*-modules such that $M = \ker(P^0 \to P^1)$ and $\operatorname{Hom}_R(\mathfrak{P}, F)$ is exact whenever $F \in \mathfrak{X}$.

For any $E \in \mathcal{Y}$, since $\mathcal{Y}^+ \subseteq \mathcal{X}$, we get that $E^+ \in \mathcal{X}$. Applying the functor $\operatorname{Hom}_R(-, E^+)$ to the exact sequence \mathcal{P} gives an exact sequence

$$\cdots \longrightarrow \operatorname{Hom}_R(P^1, E^+) \longrightarrow \operatorname{Hom}_R(P^0, E^+) \longrightarrow \operatorname{Hom}_R(P^{-1}, E^+) \longrightarrow \cdots$$

But the above sequence is naturally isomorphic to

 $\cdots \longrightarrow (P^1 \otimes_R E)^+ \longrightarrow (P^0 \otimes_R E)^+ \longrightarrow (P^{-1} \otimes_R E)^+ \longrightarrow \cdots$

Therefore we have an exact sequence

 $\cdots \longrightarrow P^{-1} \otimes_R E \longrightarrow P^0 \otimes_R E \longrightarrow P^1 \otimes_R E \longrightarrow \cdots$

Thus M is \mathcal{Y} -Gorenstein flat.

4.3. Corollary. [4, Proposition 2.3] Let R be a left coherent ring. Then every strongly Gorenstein flat right R-module is Gorenstein flat.

Proof. Let \mathfrak{X} be the class of flat right *R*-modules and \mathfrak{Y} the class of *FP*-injective left *R*-modules. If *R* is a left coherent ring, then $\mathfrak{Y}^+ \subseteq \mathfrak{X}$ [10, Theorem 2.2]. From Proposition 4.2, we get the desired results.

4.4. Proposition. For any left *R*-module *M*, we consider the following conditions.

- (1) M is a \mathcal{Y} -Gorenstein flat left R-module.
- (2) M^+ is a \mathcal{Y} -Gorenstein injective right R-module.

Then $(1) \Longrightarrow (2)$. If R is right coherent, then also $(2) \Longrightarrow (1)$.

Proof. The proof is similar to that of [12, Theorem 3.6].

4.5. Proposition. If R is right coherent, then the class of \mathcal{Y} -Gorenstein flat left R-modules is closed under extensions, kernels of epimorphisms, direct sums and direct summands.

Proof. From Proposition 2.10 and the equivalence in Proposition 4.4, we get that the class of \mathcal{Y} -Gorenstein flat left *R*-modules is closed under extensions and kernels of epimorphisms. By the definition of \mathcal{Y} -Gorenstein flat left *R*-modules, we easily get that the class of \mathcal{Y} -Gorenstein flat left *R*-modules is closed under arbitrary direct sums. Now, comparing this fact with [12, Proposition 1.4], we get that the class of \mathcal{Y} -Gorenstein flat left *R*-modules is closed under arbitrary direct sums. \Box

4.6. Proposition. Let R be a right coherent ring and

 $0 \longrightarrow G_1 \longrightarrow G_0 \longrightarrow M \longrightarrow 0$

a short exact sequence, where G_0 and G_1 are \mathcal{Y} -Gorenstein flat left R-modules and $\operatorname{Tor}_1^R(I, M) = 0$ for all injective right R-modules I. Then M is a \mathcal{Y} -Gorenstein flat left R-module.

Proof. Let $H_0 = G_0^+$ and $H_1 = G_1^+$. Then from Proposition 4.4 we know that H_0 and H_1 are \mathcal{Y} -Gorenstein injective right *R*-modules. Applying the functor $\operatorname{Hom}_{\mathbb{Z}}(-, \mathbb{Q}/\mathbb{Z})$ to the exact sequence

$$0 \longrightarrow G_1 \longrightarrow G_0 \longrightarrow M \longrightarrow 0,$$

we get a short exact sequence

$$0 \longrightarrow M^+ \longrightarrow H_0 \longrightarrow H_1 \longrightarrow 0,$$

where H_0 and H_1 are \mathcal{Y} -Gorenstein injective right *R*-modules. By [7, Theorem 3.2.1], we have an isomorphism

$$\operatorname{Ext}_{R}^{1}(I, M^{+}) \cong \operatorname{Tor}_{1}^{R}(I, M)^{+} = 0$$

for all injective right *R*-modules *I*. Thus from Corollary 2.13 we get that M^+ is a \mathcal{Y} -Gorenstein injective right *R*-module. Hence *M* is a \mathcal{Y} -Gorenstein flat left *R*-module by Proposition 4.4.

4.7. Definition. We will say that M has \mathcal{Y} -Gorenstein flat dimension less than or equal to n, denoted by \mathcal{Y} -Gfd $(M) \le n$, if there exists an exact sequence

 $0 \longrightarrow F_n \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_0 \longrightarrow M \longrightarrow 0$

with every F_i being \mathcal{Y} -Gorenstein flat. If no such finite sequence exists, define \mathcal{Y} -Gfd $(M) = \infty$; otherwise, if n is the least such integer, define \mathcal{Y} -Gfd(M) = n.

Define $l\mathcal{Y}$ -GFD $(R) = \sup\{\mathcal{Y}$ -Gfd $(M) \mid M$ is any left *R*-module}.

4.8. Proposition. Let R be a right coherent ring and M a left R-module with finite \mathcal{Y} -Gorenstein flat dimension n. Then there exist exact sequences

 $0 \longrightarrow H \longrightarrow G \longrightarrow M \longrightarrow 0$

with G \mathcal{Y} -Gorenstein flat, $\mathrm{fd}(H) \leq n-1$ and

$$0 \longrightarrow M \longrightarrow H' \longrightarrow G' \longrightarrow 0$$

with G' \forall -Gorenstein flat and $\operatorname{fd}(H') \leq n$.

Proof. Using the fact that the class of \mathcal{Y} -Gorenstein flat left *R*-modules is closed under extensions over a right coherent ring *R*, the proof is similar to that of Proposition 2.12. \Box

4.9. Proposition. Let R be a right coherent ring and N a left R-module with finite \mathcal{Y} -Gorenstein flat dimension, then the following assertions are equivalent for a nonnegative integer n:

- (1) \mathcal{Y} -Gfd $(N) \leq n$.
- (2) $\operatorname{Tor}_{i}^{R}(I, N) = 0$ for all i > n and all injective right *R*-modules *I*.
- (3) $\operatorname{Tor}_{i}^{R}(E, N) = 0$ for all i > n and all right R-modules E of finite injective dimension.
- (4) For every exact sequence of left R-modules

 $0 \longrightarrow K_n \longrightarrow G_{n-1} \longrightarrow \ldots \longrightarrow G_0 \longrightarrow M \longrightarrow 0,$

where each G_i is \mathcal{Y} -Gorenstein flat, K_n is \mathcal{Y} -Gorenstein flat.

Furthermore, \mathcal{Y} -Gfd $(N) = \sup\{i \in \mathbb{N} \mid \operatorname{Tor}_{i}^{R}(E, N) \neq 0 \text{ for some } R$ -module E of finite injective dimension $\} = \sup\{i \in \mathbb{N} \mid \operatorname{Tor}_{i}^{R}(I, N) \neq 0 \text{ for some injective } R$ -module $I\}$.

Proof. From Propositions 4.4 and 2.15, we know that \mathcal{Y} -Gfd $(N) = \mathcal{Y}$ -Gid (N^+) . Using Proposition 2.15 and the adjointness isomorphism

$$\operatorname{Ext}_{R}^{1}(L, M^{+}) \cong \operatorname{Tor}_{1}^{R}(L, M)^{+}$$

for all right R-modules L, we can easily get the desired results.

Let \mathcal{Y} -GF(R) be the class of \mathcal{Y} -Gorenstein flat left R-modules.

4.10. Corollary. Let R be a right coherent ring. If $l\mathcal{Y}$ -GFD(R) < ∞ , then \mathcal{Y} -GF(R) is closed under direct limits.

4.11. Lemma. [9, Proposition 3.2.2] Let R be any ring, \aleph_{β} an infinite cardinal number such that $\operatorname{Card}(R) \leq \aleph_{\beta}$, and M any R-module. Then, for any submodule $A \leq M$ with $\operatorname{Card}(A) \leq \aleph_{\beta}$, there exists a pure submodule $S \leq M$ such that $A \leq S$ and $\operatorname{Card}(S) \leq \aleph_{\beta}$.

4.12. Proposition. Let R be a right coherent ring and S a pure submodule of $F \in \mathcal{Y}$ - $\mathfrak{GF}(R)$. Then $S \in \mathcal{Y}$ - $\mathfrak{GF}(R)$ and $F/S \in \mathcal{Y}$ - $\mathfrak{GF}(R)$.

Proof. From the pure exact sequence $0 \longrightarrow S \longrightarrow F \longrightarrow F/S \longrightarrow 0$, we get a split exact sequence $0 \longrightarrow (F/S)^+ \longrightarrow F^+ \longrightarrow S^+ \longrightarrow 0$. By Proposition 4.4, we know F^+ is a \mathcal{Y} -Gorenstein injective right *R*-module. From the split exact sequence, we know that both S^+ and $(F/S)^+$ are direct summands of F^+ . Thus by Proposition 2.10, S^+ and $(F/S)^+$ are \mathcal{Y} -Gorenstein injective right *R*-modules. By Proposition 4.4 again, $S \in \mathcal{Y}$ -GF(*R*) and $F/S \in \mathcal{Y}$ -GF(*R*). □

4.13. Theorem. Let R be a right coherent ring and $l\mathcal{Y}$ -GFD(R) < ∞ . Then

 $(\mathcal{Y}-\mathcal{GF}(R),\mathcal{Y}-\mathcal{GF}(R)^{\perp})$

is a perfect complete hereditary cotorsion theory.

Proof. Let $\operatorname{Card}(R) = \aleph_{\beta}$ and let X be a set of representatives of all modules $G \in \mathcal{Y}$ - $\mathfrak{GF}(R)$ with $\operatorname{Card}(G) \leq \aleph_{\beta}$. Then by a proof analogous to that of [9, Theroem 3.2.3], we get that \mathcal{Y} - $\mathfrak{GF}(R)^{\perp} = X^{\perp}$. Thus $(\mathcal{Y}$ - $\mathfrak{GF}(R), \mathcal{Y}$ - $\mathfrak{GF}(R)^{\perp})$ is cogenerated by a set. From Proposition 4.5, Corollary 4.10 and the fact that \mathcal{Y} - $\mathfrak{GF}(R)$ contains all projective modules, we know that $(\mathcal{Y}$ - $\mathfrak{GF}(R), \mathcal{Y}$ - $\mathfrak{GF}(R)^{\perp})$ is a perfect complete cotorsion theory by [9, Corollary 3.1.11 and Proposition 3.1.13]. By Proposition 4.5, we know that if

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

is an exact sequence with $B, C \in \mathcal{Y}-\mathcal{GF}(R)$, then $A \in \mathcal{Y}-\mathcal{GF}(R)$. Thus

 $(\mathcal{Y}-\mathcal{GF}(R),\mathcal{Y}-\mathcal{GF}(R)^{\perp})$

is a hereditary cotorsion theory.

Acknowledgements

This work was partially supported by the National Science Foundation of China (Grant No. 11071111).

References

- Bennis, D. and Mahdou, N. Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2), 461–465, 2010.
- [2] Bennis, D. and Ouarghi, K. X-Gorenstein projective modules, International Mathematical Forum 5 (10), 487–491, 2010.
- [3] Christensen, L. W. Gorenstein Dimensions, Lecture Notes in Math. 1747 (Springer, Berlin. Heidelberg, 2000).
- [4] Ding, N. Q., Li, Y. L. and Mao, L. X. Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86, 323–338, 2009.
- [5] Enochs, E. E. Injective and flat covers, envelopes and resolvents, Israel J. Math. 39, 189–209, 1981.
- [6] Enochs, E. E. and Jenda, O. M. G. Gorenstein injective and Gorenstein projective modules, Math. Z. 220, 611–633, 1995.
- [7] Enochs, E.E. and Jenda, O.M.G. Relative Homological Algebra, GEM 30 (Walter de Gruyter, Berlin-New York, 2000).
- [8] Enochs, E.E., Jenda, O.M.G. and López-Ramos, J.A. The existence of Gorenstein flat covers, Math. Scand. 94, 46–62, 2004.
- [9] Enochs, E. E. and Oyonarte, L. Covers, envelopes and cotorsion theories (Nova Science Publishers, Inc, New York, 2002).
- [10] Fieldhouse, D. J. Character modules, dimension and purity, Glasgow Math. J. 13, 144–146, 1972.
- [11] Göbel, R. and Trlifaj, J. Approximations and Endomorphism Algebras of Modules, GEM 41 (Walter de Gruyter, Berlin-New York, 2006).
- [12] Holm, H. Gorenstein homological dimensions, J. Pure Appl. Algebra 189, 167–193, 2004.
- [13] Mao, L. X. and Ding, N. Q. Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7, 491–506, 2008.
- [14] Megibben, C. Absolutely pure modules, Proc. Amer. Math. Soc. 26 (4), 561–566, 1970.
- [15] Tamekkante, M. The right orthogonal class $\mathfrak{GP}(R)^{\perp}$ via Ext, arXiv: 0911.1272.