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Abstract

Let X be a class of right R-modules that contains all projective right
R-modules. The notion of X-Gorenstein projective modules was intro-
duced by D. Bennis and K. Ouarghi (X-Gorenstein projective mod-
ules, International Mathematical Forum 5 (10), 487–491, 2010). In
this paper, we introduce Y-Gorenstein injective right R-modules and
Y-Gorenstein flat left R-modules, where Y is a class of right R-modules
that contains all injective right R-modules. We show that the princi-
pal results on Gorenstein modules remain true for X-Gorenstein pro-
jective right R-modules, Y-Gorenstein injective right R-modules and
Y-Gorenstein flat left R-modules.

Keywords: X-Gorenstein projective modules, Y-Gorenstein injective modules,
Y-Gorenstein flat modules.
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1. Introduction

In [6], Enochs and Jenda defined the Gorenstein injective modules over an arbitrary
ring R. Recall that a right R-module M is called Gorenstein injective if there is an exact
sequence

E ≡ · · · // E−2 // E−1 // E0 // E1 // · · ·

of injective right R-modules with M = ker(E0 → E1), and which remains exact whenever
HomR(E,−) is applied for any injective right R-module E.
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In [2], Bennis et al. introduced the notion of X-Gorenstein projective modules. Let
X be a class of right R-modules that contains all projective right R-modules. A right
R-module M is called X-Gorenstein projective if there exists an exact sequence

P ≡ · · · // P−2 // P−1 // P 0 // P 1 // · · ·

of projective right R-modules such that M = ker(P 0 → P 1) and HomR(P, F ) is exact
whenever F ∈ X.

In this paper, we introduce Y-Gorenstein injective right R-modules and Y-Gorenstein
flat left R-modules, where Y is a class of right R-modules that contains all injective right
R-modules. A right R-module M is called Y-Gorenstein injective if there exists an exact
sequence

E ≡ · · · // E−2 // E−1 // E0 // E1 // · · ·

of injective right R-modules such that M = ker(E0 → E1), and which remains ex-
act whenever HomR(H,−) is applied for any H ∈ Y. A left R-module M is called
Y-Gorenstein flat if there exists an exact sequence

F ≡ · · · // F−2 // F−1 // F 0 // F 1 // · · ·

of flat left R-modules such that M = ker(F 0 → F 1), and which remains exact whenever
G⊗R − is applied for any G ∈ Y.

We mainly show that principal results on Gorenstein modules remain true for X-
Gorenstein projective right R-modules, Y-Gorenstein injective right R-modules and Y-
Gorenstein flat left R-modules.

Section 2 introduces Y-Gorenstein injective modules and studies their relations with
Gorenstein injective modules. For a ring R with r.Ggldim(R) < ∞, it is shown that the
class of Y-Gorenstein injective right R-modules coincides with the class of Gorenstein
injective right R-modules if and only if every module in Y has finite injective dimension.
We also define the Y-Gorenstein injective dimension of a module and a ring. Using the
functors ExtiR(−,−), we give some characterizations of a module with finite Y-Gorenstein
injective dimension. For a ring R with rY-GID(R) < ∞, we get that

(

⊥(Y-GI(R)),Y-

GI(R)
)

is a complete hereditary cotorsion theory.

Section 3 deals with X-Gorenstein projective right R-modules, in a way much similar
to how we treat the Y-Gorenstein injective right R-modules in Section 2.

Section 4 introduces Y-Gorenstein flat modules and studies their relations with X-
Gorenstein projective modules and Y-Gorenstein injective modules. Let X be a class of
right R-modules that contains all projective right R-modules and Y a class of left R-
modules that contains all injective left R-modules. If Y+ ⊆ X, then every X-Gorenstein
projective right R-module is Y-Gorenstein flat. For a right coherent ring, we get that M is
a Y-Gorenstein flat left R-module if and only if HomZ(M,Q/Z) is a Y-Gorenstein injective
right R-module. We also define the Y-Gorenstein flat dimension of a module and a ring.
Using the functors TorRi (−,−), we give some characterizations of a left R-module with
finite Y-Gorenstein flat dimension over a right coherent ring R. If R is a right coherent
ring with lY-GFD(R) < ∞, then

(

Y-GF(R),Y-GF(R)⊥
)

is a perfect complete hereditary
cotorsion theory.

Next we recall some notions and facts required in the paper. In [4], Ding et al.
introduced the notion of strongly Gorenstein flat modules. A right R-module M is called
strongly Gorenstein flat if there exists an exact sequence

P ≡ · · · // P−2 // P−1 // P 0 // P 1 // · · ·
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of projective right R-modules such that M = ker(P 0 → P 1) and HomR(P, F ) is exact
whenever F is flat. Obviously, X-Gorenstein projective modules generalize both Goren-
stein projective modules and strongly Gorenstein flat modules.

In [13], Mao and Ding introduced Gorenstein FP -injective modules. A right R-module
M is called Gorenstein FP -injective if there exists an exact sequence

E ≡ · · · // E−2 // E−1 // E0 // E1 // · · ·

of injective right R-modules such that M = ker(E0 → E1), and which remains ex-
act whenever HomR(H,−) is applied for any FP -injective module H . Obviously, Y-
Gorenstein injective modules generalize both Gorenstein injective modules and Goren-
stein FP -injective modules.

Let C be a class of R-modules and M an R-module. Following [5], we say that a homo-
morphism φ : M → C is a C-preenvelope if C ∈ C and the abelian group homomorphism
Hom(φ,C′) : Hom(C,C′) → Hom(M,C′) is surjective for each C′ ∈ C. A C-preenvelope
φ : M → C is said to be a C-envelope if every endomorphism g : C → C such that
gφ = φ is an isomorphism. Dually we have the definitions of a C-precover and a C-cover.
C-envelopes (C-covers) may not exist in general, but if they exist, they are unique up to
isomorphism.

A module M is said to have a special C-precover [7, Definition 7.1.6] if there is an

exact sequence 0 // F // C // M // 0 with C ∈ C and F ∈ C
⊥. M is

said to have a special C-preenvelope [7, Definition 7.1.6] if there is an exact sequence

0 // M // C // F // 0 with C ∈ C and F ∈ ⊥C.

A pair (F,C) of classes of right R-modules is called a cotorsion theory (cotorsion pair)
[7, Definition 7.1.2] if F

⊥ = C and ⊥
C = F. A pair of classes (F,F⊥) is said to be

cogenerated by a set D [9, Definition 1.1.7] if F⊥ = D⊥. A cotorsion theory (F,C) is
called complete [11, Lemma 2.2.6] if every R-module has a special C-preenvelope (and a
special F-precover). A cotorsion theory (F,C) is said to be hereditary [8] if whenever

0 // L′ // L // L′′ // 0

is exact with L, L′′ ∈ F then L′ is also in F, or equivalently, if whenever

0 // C′ // C // C′′ // 0

is exact with C, C′ ∈ C then C′′ is also in C.

Throughout this paper, R is an associative ring with identity and all modules are uni-
tary, r.gldim(R) (resp. wdim(R)) stands for the right (resp. the weak) global dimension
of R. For an R-module M , the character module HomZ(M,Q/Z) is denoted by M+,
fd(M), id(M) and pd(M) stand for the flat, injective and projective dimensions of M
respectively, Gfd(M), Gid(M) and Gpd(M) denote the Gorenstein flat, injective and
projective dimensions of M respectively. r.Ggldim(R) (resp. l.Ggldim(R)) denotes the
right (resp. the left) Gorenstein global dimension of R.

2. Y-Gorenstein injective modules

2.1. Definition. Let Y be a class of right R-modules that contains all injective right
R-modules. A right R-module M is called Y-Gorenstein injective if there exists an exact
sequence

E ≡ · · · // E−2 // E−1 // E0 // E1 // · · ·

of injective right R-modules such that M = ker(E0 → E1), and which remains exact
whenever HomR(H,−) is applied for any H ∈ Y.
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The sequence E is called a Y-complete injective resolution.

2.2. Remark. (1) Obviously, we have the following implications:

injective modules =⇒ Y-Gorenstein injective modules =⇒ Gorenstein injective
modules.

(2) Let Y be the class of injective right R-modules, then Y-Gorenstein injective right
R-modules coincide with Gorenstein injective right R-modules.

(3) Let Y be the class of FP -injective right R-modules, then Y-Gorenstein injective
right R-modules coincide with Gorenstein FP -injective right R-modules [13].

(4) If Y is the class of Gorenstein injective right R-modules, then every Y-Gorenstein
injective right R-module is injective. Indeed, for any Y-Gorenstein injective right R-
module M , we have an exact sequence of right R-modules

0 // M // I // K // 0

with I injective andK Y-Gorenstein injective, which remains exact whenever HomR(H,−)
is applied for any module H ∈ Y. Since every Y-Gorenstein injective right R-module is
Gorenstein injective, we let H = K ∈ Y, then we have an exact sequence

0 // HomR(K,M) // HomR(K, I) // HomR(K,K) // 0.

Thus M is a direct summand of I , hence M is injective.

2.3. Proposition. A right R-module M is injective if and only if M belongs to Y and
M is Y-Gorenstein injective.

Proof. If M is Y-Gorenstein injective, then by the definition of Y-Gorenstein injective
modules, we have an exact sequence of right R-modules

0 // G // I // M // 0

with I injective andG Y-Gorenstein injective, which remains exact whenever HomR(H,−)
is applied for any H ∈ Y. Since M belongs to Y, we apply HomR(M,−) to the above
exact sequence, then we get an exact sequence

0 // HomR(M,G) // HomR(M, I) // HomR(M,M) // 0.

Thus M is a direct summand of I , hence M is injective.

The converse is trivial. �

2.4. Corollary. The following statements are equivalent for a ring R:

(1) Y is the class of injective right R-modules.
(2) Every H ∈ Y is Y-Gorenstein injective.

Proof. (1) =⇒ (2) is trivial by Remark 2.2 (1).

(2) =⇒ (1) By Proposition 2.3, we know that Y is the class of injective right R-
modules. �

Let Y be the class of FP -injective right R-modules in Corollary 2.4. Then we have
the following result which is a generalization of [13, Proposition 2.7].

2.5. Corollary. The following statements are equivalent for a ring R:

(1) R is right noetherian.
(2) Every FP -injective right R-module is Gorenstein FP -injective.

Proof. We only note that R is right noetherian if and only if every FP -injective right
R-module is injective [14, Theorem 3]. �
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2.6. Theorem. Let R be a ring with r.Ggldim(R) < ∞, then the following statements
are equivalent:

(1) The class of Y-Gorenstein injective right R-modules coincides with the class of
Gorenstein injective right R-modules.

(2) Every module in Y has finite injective dimension.

Proof. (1) =⇒ (2) Let M be any Gorenstein injective right R-module, by hypothesis we
know that M is also Y-Gorenstein injective. Thus there is an exact sequence of right
R-modules

0 // M // I // G // 0

with I injective andG Y-Gorenstein injective, which remains exact whenever HomR(H,−)
is applied for any H ∈ Y. For any H ∈ Y, we have a long exact sequence

0 // HomR(H,M) // HomR(H, I) // HomR(H,G) // Ext1R(H,M) // 0.

Thus Ext1R(H,M) = 0 for any Gorenstein injective right R-module M . Hence by [15,
Proposition 2.5], H has finite injective dimension.

(2) =⇒ (1) Let M be any Gorenstein injective right R-module, then there is an exact
sequence

E ≡ · · · // E−2 // E−1 // E0 // E1 // · · ·

of injective right R-modules with M = ker(E0 → E1), which remains exact whenever
HomR(E,−) is applied for any injective right R-module E.

Let H be any module in Y. By (2), we may assume id(H) = n < ∞. We proceed by
induction on n. If n = 0, by the definition of Gorenstein injective modules, HomR(H,E)
is exact. For n ≥ 1, we have an exact sequence

0 // H // E // N // 0,

where E is an injective right R-module and id(N) = n− 1.

Then we have an exact sequence

0 // HomR(N,E) // HomR(E,E) // HomR(H,E) // 0

with the first two complexes exact by induction. Hence HomR(H,E) is exact. Thus M is
Y-Gorenstein injective. Since every Y-Gorenstein injective right R-module is Gorenstein
injective, the class of Y-Gorenstein injective right R-modules coincides with the class of
Gorenstein injective right R-modules. �

2.7. Corollary. Let R be a ring with r.Ggldim(R) < ∞ and wdim(R) < ∞. Then the
class of Y-Gorenstein injective right R-modules coincides with the class of Gorenstein
injective right R-modules.

Proof. By [1, Corollary 1.2], we know that if wdim(R) < ∞ then

r.gldim(R) = r.Ggldim(R) < ∞.

Thus every right R-module has finite injective dimension. Hence by Theorem 2.6, the
class of Y-Gorenstein injective right R-modules coincides with the class of Gorenstein
injective right R-modules. �

2.8. Lemma. The following assertions are equivalent:

(1) M is a Y-Gorenstein injective right R-module.
(2) M satisfies the following two assertions:

(a) ExtiR(H,M) = 0 for any right R-module H ∈ Y and any i ≥ 1.
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(b) There exists an exact sequence of right R-modules

· · · // E−2 // E−1 // M // 0,

where each E−i is injective and HomR(H,−) leaves the sequence exact for
any H ∈ Y.

(3) There exists a short exact sequence of right R-modules

0 // G // I // M // 0,

where I is injective and G is Y-Gorenstein injective.

Proof. By the definition of Y-Gorenstein injective modules, we immediately get (1) ⇐⇒
(2) and (1) =⇒ (3).

(3) =⇒ (1) The proof is similar to that of [2, Proposition 2.2]. �

By Lemma 2.8 and [2, Proposition 2.4], we have the following:

2.9. Proposition. Every right R-module is Y-Gorenstein injective if and only if every
right R-module in Y is projective.

In particular, when the above equivalent conditions are satisfied R is quasi-Frobenius.
�

2.10. Proposition. The class of Y-Gorenstein injective modules is closed under exten-
sions and cokernels of monomorphisms. Furthermore it is closed under direct products
and direct summands.

Proof. Consider the exact sequence 0 // M ′ // M // M ′′ // 0. First, as-
sume that M ′, M ′′ are Y-Gorenstein injective modules. By a proof similar to that of
[7, Lemma 8.2.1], we can construct an exact sequence of right R-modules

· · · // E−2 // E−1 // M // 0,

where each E−i is injective and HomR(H,−) leaves the sequence exact for any H ∈ Y.
Since M ′, M ′′ are Y-Gorenstein injective modules, ExtiR(H,M ′) = ExtiR(H,M ′′) = 0 for
all i > 0 and all H ∈ Y. Using the long exact sequence

· · · // ExtiR(H,M ′) // ExtiR(H,M) // ExtiR(H,M ′′) // · · · ,

we get that ExtiR(H,M) = 0 for all i > 0 and all H ∈ Y. By Lemma 2.8, we know that
M is Y-Gorenstein injective.

Next, assume that M ′, M are Y-Gorenstein injective modules. By Lemma 2.8, there
exists a short exact sequence of right R-modules

0 // G // I // M // 0,



Gorenstein projective and injective modules 543

where I is injective and G is Y-Gorenstein injective. Consider the following pullback
diagram

0

��

0

��

G

��

G

��

0 // F //

��

I

��

// M ′′ // 0

0 // M ′ //

��

M

��

// M ′′ // 0

0 0

From the left exact column and the fact that the class of Y-Gorenstein injective modules
is closed under extensions, we know that F is Y-Gorenstein injective. Thus we get an

exact sequence 0 // F // I // M ′′ // 0, where I is injective and F is

Y-Gorenstein injective. From Lemma 2.8, we know M ′′ is Y-Gorenstein injective.

By the definition of Y-Gorenstein injective modules, we know that Y-Gorenstein in-
jective modules are closed under direct products. Hence Y-Gorenstein injective modules
are closed under direct summands by [12, Proposition 1.4]. �

2.11. Definition. We will say that M has Y-Gorenstein injective dimension less than
or equal to n, denoted Y-Gid(M) ≤ n, if there exists an exact sequence

0 // M // G0 // . . . // Gn−1 // Gn // 0

with every Gi being Y-Gorenstein injective. If no such finite sequence exists, define
Y-Gid(M) = ∞; otherwise, if n is the least such integer, define Y-Gid(M) = n.

Define rY-GID(R) = sup{Y-Gid(M) | M is any right R-module}.

2.12. Proposition. Let M be a right R-module with finite Y-Gorenstein injective di-
mension n. Then there exist exact sequences

0 // M // I // F // 0

with I Y-Gorenstein injective, id(F ) ≤ n− 1, and

0 // I ′ // F ′ // M // 0

with I ′ Y-Gorenstein injective, id(F ′) ≤ n.

Proof. We will prove the desired result by induction on n. If n = 0, then M is Y-
Gorenstein injective, thus there exists an exact sequence

0 // H // E // M // 0

with E injective and H Y-Gorenstein injective. We also have the exact sequence

0 // M // M // 0 // 0.

Now, let n = 1 and let 0 // M // I0
d0

// I1 // 0 be an exact sequence
with each Ii Y-Gorenstein injective. By the case n = 0, we know there is an exact
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sequence 0 // H0
// E0

// I1 // 0 with E0 injective andH0 Y-Gorenstein
injective. Consider the following pullback diagram

0

��

0

��

H0

��

H0

��

0 // M // G0

��

// E0

��

// 0

0 // M // I0

��

// I1

��

// 0

0 0

From the exact middle column and the fact that Y-Gorenstein injective modules are
closed under extensions, we know that G0 is Y-Gorenstein injective. Thus we get the
exact sequence

0 // M // G0
// E0

// 0,

where E0 is injective and G0 is Y-Gorenstein injective. Since G0 is Y-Gorenstein injective,
we get the exact sequence

0 // H1
// E1

// G0
// 0,

where E1 is injective and H1 is Y-Gorenstein injective. Consider the following pullback
diagram

0

��

0

��

H1

��

H1

��

0 // F1
//

��

E1

��

// E0
// 0

0 // M //

��

G0

��

// E0
// 0

0 0

From the exact middle row, we know that id(F1) ≤ 1. Thus we have the exact sequence

0 // H1
// F1

// M // 0

with id(F1) ≤ 1 and H1 Y-Gorenstein injective.

Suppose n > 1. Then we have an exact sequence

0 // M // I0
d0

// I1
d1

// · · ·
d
n−1

// In // 0
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with each Ii Y-Gorenstein injective. Let Kn−1 = im(d0), then we have exact sequences

0 // M // I0 // Kn−1
// 0,

0 // Kn−1
// I1

d1 // · · ·
d
n−1

// In // 0,

i.e. Y-Gid(Kn−1) = n − 1. By the induction hypothesis we know there is an exact

sequence 0 // Hn−1
// Fn−1

// Kn−1
// 0 with id(Fn−1) ≤ n − 1 and

Hn−1 Y-Gorenstein injective. Consider the following pullback diagram

0

��

0

��

Hn−1

��

Hn−1

��

0 // M // Gn−1

��

// Fn−1

��

// 0

0 // M // I0

��

// Kn−1

��

// 0

0 0

From the exact middle column

0 // Hn−1
// Gn−1

// I0 // 0,

we know that Gn−1 is Y-Gorenstein injective. Thus we get the exact sequence

0 // M // Gn−1
// Fn−1

// 0

with Gn−1 Y-Gorenstein injective and id(Fn−1) ≤ n− 1. As in the previous case, since
Gn−1 is Y-Gorenstein injective, there exists a short exact sequence

0 // Gn
// J // Gn−1

// 0,

where J is injective and Gn is Y-Gorenstein injective. Consider the following pullback
diagram

0

��

0

��

Gn

��

Gn

��

0 // Fn
//

��

J

��

// Fn−1
// 0

0 // M //

��

Gn−1

��

// Fn−1
// 0

0 0
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Since J is injective and id(Fn−1) ≤ n− 1, we get id(Fn) ≤ n by the middle row. Letting
I = Gn−1, F = Fn−1, I ′ = Gn, F ′ = Fn, we get the desired result. �

2.13. Corollary. Let 0 // M // I0 // I1 // 0 be a short exact sequence

of right R-modules, where I0 and I1 are Y-Gorenstein injective modules and Ext1R(I,M) =
0 for all injective right R-modules I. Then M is Y-Gorenstein injective.

Proof. From the short exact sequence 0 // M // I0 // I1 // 0 , we know

that Y-Gid(M) ≤ 1. By Proposition 2.12, there exists an exact sequence

0 // M // G // I // 0,

where G is Y-Gorenstein injective and I is injective. By the assumption Ext1R(I,M) = 0,
this sequence splits, and hence M is Y-Gorenstein injective. �

2.14. Lemma. Let N be a right R-module, and consider two exact sequences of right
R-modules:

0 // N // G0 // . . . // Gn−1 // Gn // 0,

0 // N // H0 // . . . // Hn−1 // Hn // 0,

where G0, . . . , Gn−1 and H0, . . . ,Hn−1 are Y-Gorenstein injective. Then Gn is Y-Gorenstein
injective if and only if Hn is Y-Gorenstein injective.

Proof. Using Proposition 2.10, the proof is similar to that of (i) =⇒ (iii) in [3, Theo-
rem 1.2.7]. �

2.15. Proposition. Let N be a right R-module with finite Y-Gorenstein injective dimen-
sion. Then the following assertions are equivalent for a nonnegative integer n:

(1) Y-Gid(N) ≤ n.
(2) ExtiR(I, N) = 0 for all i > n and all injective right R-modules I.
(3) ExtiR(E, N) = 0 for all i > n and all right R-modules E of finite injective

dimension.
(4) For every exact sequence of right R-modules

0 // N // G0 // . . . // Gn−1 // Kn // 0,

where each Gi is Y-Gorenstein injective, Kn is Y-Gorenstein injective.

Furthermore, Y-Gid(N) = sup{i ∈ N | ExtiR(E, N) 6= 0 for some R-module E of finite
injective dimension} = sup{i ∈ N | ExtiR(I, N) 6= 0 for some injective R-module I}.

Proof. Follows from the proof of [12, Theorem 2.20] using Corollary 2.13 and Lemma 2.14.
�

2.16. Corollary. Let N be a right R-module with Y-Gid(N) < ∞. Then Gid(N) = Y-
Gid(N).

Proof. Since Gid(N) ≤ Y-Gid(N), then from Proposition 2.15 and [12, Theroem 2.22]
we know that Gid(N) = Y-Gid(N). �

2.17. Proposition. Every right R-module with finite Y-Gorenstein injective dimension
has a special Y-Gorenstein injective preenvelope.
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Proof. Let M be a right R-module with finite Y-Gorenstein injective dimension. Then
there exists an exact sequence

0 // M // I // F // 0

with I Y-Gorenstein injective and id(F ) ≤ Y-Gid(M) − 1. Now if G′ is a Y-Gorenstein
injective right R-module, then Ext1R(F,G

′) = 0 which shows that M → I is a special
Y-Gorenstein injective preenvelope. �

Let Y be the class of all FP -injective right R-modules in Proposition 2.17. Then we
have:

2.18. Corollary. Every right R-module with finite Gorenstein FP -injective dimension
has a Gorenstein FP -injective preenvelope. �

If Y is the class of all injective right R-modules in Proposition 2.17, then we get

2.19. Corollary. [12, Theorem 2.15] Every right R-module with finite Gorenstein injec-
tive dimension has a Gorenstein injective preenvelope. �

Let Y-GI(R) be the class of Y-Gorenstein injective right R-modules.

2.20. Theorem. If rY-GID(R) < ∞, then
(⊥

(Y-GI(R)
)

,Y-GI(R)
)

is a complete heredi-
tary cotorsion theory.

Proof. We first prove that
(⊥

(Y-GI(R)),Y-GI(R)
)

is a cotorsion theory.

Obviously, Y-GI(R) ⊆
(⊥

(Y-GI(R)))⊥. So we only need to prove that
(⊥

(Y-GI(R))
)⊥

⊆

Y-GI(R). Let M be any module in
(⊥

(Y-GI(R))
)⊥

, then Ext1R(N,M) = 0 for any N ∈
⊥
(

Y-GI(R)
)

. Since rY-GID(R) < ∞, M has a finite Y-Gorenstein injective dimension.
Then by Proposition 2.17, there exists a special Y-Gorenstein injective preenvelope

0 // M // I // F // 0

with I Y-Gorenstein injective and id(F ) ≤ Y-Gid(M) − 1. Then we have a long exact
sequence

0 // HomR(F,M) // HomR(F, I) // HomR(F, F ) // Ext1R(F,M) // · · · .

Since F ∈ ⊥
(

Y-GI(R)
)

, Ext1R(F,M) = 0. Thus M is a direct summand of I , hence M

is Y-Gorenstein injective by Proposition 2.10. Hence
(⊥

(Y-GI(R))
)⊥

= Y-GI(R), and so
(⊥

(Y-GI(R)),Y-GI(R)
)

is a complete cotorsion theory.

By Proposition 2.10, we know that the class of all Y-Gorenstein injective modules is

closed under cokernels of monomorphisms. Thus
(⊥

(Y-GI(R)),Y-GI(R)
)

is a complete
hereditary cotorsion theory. �

3. X-Gorenstein projective modules

3.1. Definition. [2, Definition 2.1] Let X be a class of right R-modules that contains
all projective right R-modules. A right R-module M is called X-Gorenstein projective if
there exists an exact sequence

P ≡ · · · // P−2 // P−1 // P 0 // P 1 // · · ·

of projective right R-modules such that M = ker(P 0 → P 1) and HomR(P, F ) is exact
whenever F ∈ X.

The sequence P is called an X-complete projective resolution.
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3.2. Lemma. [2, Theorem 2.3] 1. Let 0 // A // B // C // 0 be a short
exact sequence of R-modules, where C is X-Gorenstein projective. Then, A is X-Gorenstein
projective if and only if B is X-Gorenstein projective.

2. Let (Mi)i∈I be a family of R-modules. Then,
⊕

i∈I
Mi is X-Gorenstein projective

if and only if Mi is X-Gorenstein projective for every i ∈ I. �

3.3. Remark. (1) Obviously, we have the following implications:

projective modules =⇒ X-Gorenstein projective modules =⇒ Gorenstein projective
modules.

(2) Let X be the class of projective right R-modules. Then the class of X-Gorenstein
projective right R-modules coincides with the class of Gorenstein projective right R-
modules.

(3) Let X be the class of flat right R-modules. Then the class of X-Gorenstein projec-
tive right R-modules coincides with the class of strongly Gorenstein flat right R-modules
[4].

(4) If X is the class of Gorenstein projective right R-modules, then every X-Gorenstein
projective right R-module is projective.

3.4. Proposition. A right R-module M is projective if and only if M belongs to X and
M is X-Gorenstein projective.

Proof. The proof is similar to that of Proposition 2.3. �

3.5. Corollary. The following statements are equivalent for a ring R:

(1) X is the class of projective right R-modules.
(2) Every X ∈ X is X-Gorenstein projective.

Proof. (1) =⇒ (2) Trivial by Remark 3.3 (1).

(2) =⇒ (1) By Proposition 3.4, we know that X is the class of projective right R-
modules. �

Let X be the class of flat right R-modules in Corollary 3.5, then we have

3.6. Corollary. [4, Proposition 2.15] The following statements are equivalent for a ring
R:

(1) R is right perfect.
(2) Every flat right R-module is strongly Gorenstein flat. �

3.7. Theorem. Let R be a ring with r.Ggldim(R) < ∞. Then the following statements
are equivalent:

(1) The class of X-Gorenstein projective right R-modules coincides with the class of
Gorenstein projective right R-modules.

(2) Every module in X has finite projective dimension.

Proof. Using [15, Proposition 2.5], the proof is similar to that of Theorem 2.6. �

Let X be the class of flat right R-modules in Theorem 3.7. Then we have the following
result which generalizes [4, Corollary 2.8]:

3.8. Corollary. Let R be a ring with r.Ggldim(R) < ∞. Then the class of strongly
Gorenstein flat modules coincides with the class of Gorenstein projective modules.

Proof. By [1, Corollary 2.7], we know that if r.Ggldim(R) < ∞, then pd(F ) < ∞ for any
flat right R-module F . Thus by Theorem 3.7 we get the desired results. �
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3.9. Corollary. Let R be a ring with r.Ggldim(R) < ∞ and wdim(R) < ∞. Then the
class of X-Gorenstein projective right R-modules coincides with the class of Gorenstein
projective right R-modules.

Proof. Using Theorem 3.7, the proof is similar to that of Corollary 2.7. �

3.10. Definition. We will say that M has X-Gorenstein projective dimension less than
or equal to n, denoted X-Gpd(M) ≤ n, if there exists an exact sequence

0 // Pn
// Pn−1

// · · · // P0
// M // 0

with every Pi being X-Gorenstein projective. If no such finite sequence exists, define
X-Gpd(M) = ∞; otherwise, if n is the least such integer, define X-Gpd(M) = n.

Define rX-GPD(R) = sup{X-Gpd(M) | M is any right R-module}.

3.11. Proposition. Let M be a right R-module with finite X-Gorenstein projective di-
mension n, then there exist exact sequences

0 // H // G // M // 0

with G X-Gorenstein projective and pd(H) ≤ n− 1 and

0 // M // H ′ // G′ // 0

with G′
X-Gorenstein projective and pd(H ′) ≤ n.

Proof. Using the fact that the class of X-Gorenstein projective modules is closed under
extensions, the proof is similar to that of Proposition 2.12. �

3.12. Corollary. Let

0 // G1
// G0

// M // 0

be a short exact sequence of right R-modules, where G0 and G1 are X-Gorenstein pro-
jective modules and Ext1R(M,Q) = 0 for all projective right R-modules Q. Then M is
X-Gorenstein projective. �

3.13. Lemma. Let M be a right R-module, and consider two exact sequences of right
R-modules:

0 // Gn
// Gn−1

// . . . // G0
// M // 0,

0 // Hn
// Hn−1

// . . . // H0
// M // 0,

where G0, . . . , Gn−1 and H0, . . . ,Hn−1 are X-Gorenstein projective, then Gn is X-Gorenstein
projective if and only if Hn is X-Gorenstein projective.

Proof. Using Lemma 3.2, the proof is similar to that of (i) =⇒ (iii) in [3, Theorem
1.2.7]. �

3.14. Proposition. Let M be a right R-module with finite X-Gorenstein projective di-
mension, then the following assertions are equivalent for a nonnegative integer n:

(1) X-Gpd(M) ≤ n.
(2) ExtiR(M,P ) = 0 for all i > n and all projective right R-modules P .
(3) ExtiR(M,Q) = 0 for all i > n and all right R-modules Q of finite projective

dimension.
(4) For every exact sequence of right R-modules

0 // Kn
// Gn−1

// . . . // G0
// M // 0,

where each Gi is X-Gorenstein projective, Kn is X-Gorenstein projective.
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Furthermore, X-Gpd(M) = sup{i ∈ N | ExtR
i(M,Q) 6= 0 for some R-module Q of finite

projective dimension } = sup{i ∈ N | ExtR
i(M,P ) 6= 0 for some projective R-module P}.

Proof. Using Corollary 3.12 and Lemma 3.13, the proof is similar to that of Proposi-
tion 2.15. �

3.15. Corollary. Let M be a right R-module with X-Gpd(M) < ∞, then Gpd(M) = X-
Gpd(M).

Proof. Since Gpd(M) ≤ X-Gpd(M), then from Proposition 3.14 and [12, Theroem 2.20]
we know that Gpd(M) = X-Gpd(M). �

3.16. Proposition. Every right R-module with finite X-Gorenstein projective dimension
has a special X-Gorenstein projective precover.

Proof. Let M be a right R-module with finite X-Gorenstein projective dimension. Then
there exists an exact sequence

0 // H // G // M // 0

with G X-Gorenstein projective and pd(H) ≤ X-Gpd(M) − 1. Now if G′ is an X-
Gorenstein projective right R-module, then Ext1R(G

′,H) = 0, which shows that G → M
is a special X-Gorenstein projective precover. �

Let X be the class of flat right R-modules in Proposition 3.16, then we have

3.17. Corollary. Every right R-module with finite strongly Gorenstein flat dimension
has a strongly Gorenstein flat precover.

If X is the class of projective right R-modules in Proposition 3.16, then we get

3.18. Corollary. [12, Theorem 2.10] Every right R-module with finite Gorenstein pro-
jective dimension has a Gorenstein projective precover. �

Let X-GP(R) be the class of X-Gorenstein projective right R-modules.

3.19. Theorem. If rX-GPD(R) < ∞, then
(

X-GP(R), (X-GP(R)
)⊥)

is a complete hered-
itary cotorsion theory.

Proof. The proof is similar to that of Theorem 2.20. �

4. Y-Gorenstein flat modules

4.1. Definition. Let Y be a class of right R-modules that contains all injective right R-
modules. A left R-module M is called Y-Gorenstein flat if there exists an exact sequence

F ≡ · · · // F−2 // F−1 // F 0 // F 1 // · · ·

of flat left R-modules such that M = ker(F 0 → F 1), which remains exact whenever
G⊗R − is applied for any G ∈ Y.

The sequence F is called a Y-complete flat resolution.

4.2. Proposition. Let X be a class of right R-modules that contains all projective right
R-modules, and Y a class of left R-modules that contains all injective left R-modules. If
Y
+ ⊆ X, then every X-Gorenstein projective right R-module is Y-Gorenstein flat.
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Proof. Let M be any X-Gorenstein projective right R-module, then there exists an exact
sequence

P ≡ · · · // P−2 // P−1 // P 0 // P 1 // · · ·

of projective right R-modules such that M = ker(P 0 → P 1) and HomR(P, F ) is exact
whenever F ∈ X.

For anyE ∈ Y, since Y+ ⊆ X, we get that E+ ∈ X. Applying the functor HomR(−, E+)
to the exact sequence P gives an exact sequence

· · · // HomR(P
1, E+) // HomR(P

0, E+) // HomR(P
−1, E+) // · · · .

But the above sequence is naturally isomorphic to

· · · // (P 1 ⊗R E)+ // (P 0 ⊗R E)+ // (P−1 ⊗R E)+ // · · · .

Therefore we have an exact sequence

· · · // P−1 ⊗R E // P 0 ⊗R E // P 1 ⊗R E // · · · .

Thus M is Y-Gorenstein flat. �

4.3. Corollary. [4, Proposition 2.3] Let R be a left coherent ring. Then every strongly
Gorenstein flat right R-module is Gorenstein flat.

Proof. Let X be the class of flat right R-modules and Y the class of FP -injective left
R-modules. If R is a left coherent ring, then Y+ ⊆ X [10, Theorem 2.2]. From Proposi-
tion 4.2, we get the desired results. �

4.4. Proposition. For any left R-module M , we consider the following conditions.

(1) M is a Y-Gorenstein flat left R-module.
(2) M+ is a Y-Gorenstein injective right R-module.

Then (1) =⇒ (2). If R is right coherent, then also (2) =⇒ (1).

Proof. The proof is similar to that of [12, Theorem 3.6]. �

4.5. Proposition. If R is right coherent, then the class of Y-Gorenstein flat left R-
modules is closed under extensions, kernels of epimorphisms, direct sums and direct sum-
mands.

Proof. From Proposition 2.10 and the equivalence in Proposition 4.4, we get that the
class of Y-Gorenstein flat left R-modules is closed under extensions and kernels of epi-
morphisms. By the definition of Y-Gorenstein flat left R-modules, we easily get that the
class of Y-Gorenstein flat left R-modules is closed under arbitrary direct sums. Now,
comparing this fact with [12, Proposition 1.4], we get that the class of Y-Gorenstein flat
left R-modules is closed under direct summands. �

4.6. Proposition. Let R be a right coherent ring and

0 // G1
// G0

// M // 0

a short exact sequence, where G0 and G1 are Y-Gorenstein flat left R-modules and
TorR1 (I,M) = 0 for all injective right R-modules I. Then M is a Y-Gorenstein flat
left R-module.
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Proof. Let H0 = G+

0 and H1 = G+

1 . Then from Proposition 4.4 we know that H0 and
H1 are Y-Gorenstein injective right R-modules. Applying the functor HomZ(−,Q/Z) to
the exact sequence

0 // G1
// G0

// M // 0,

we get a short exact sequence

0 // M+ // H0
// H1

// 0,

where H0 and H1 are Y-Gorenstein injective right R-modules. By [7, Theorem 3.2.1], we
have an isomorphism

Ext1R(I,M
+) ∼= TorR1 (I,M)+ = 0

for all injective right R-modules I . Thus from Corollary 2.13 we get that M+ is a Y-
Gorenstein injective right R-module. Hence M is a Y-Gorenstein flat left R-module by
Proposition 4.4. �

4.7. Definition. We will say that M has Y-Gorenstein flat dimension less than or equal
to n, denoted by Y-Gfd(M) ≤ n, if there exists an exact sequence

0 // Fn
// Fn−1

// . . . // F0
// M // 0

with every Fi being Y-Gorenstein flat. If no such finite sequence exists, define Y-
Gfd(M) = ∞; otherwise, if n is the least such integer, define Y-Gfd(M) = n.

Define lY-GFD(R) = sup{Y-Gfd(M) | M is any left R-module}.

4.8. Proposition. Let R be a right coherent ring and M a left R-module with finite
Y-Gorenstein flat dimension n. Then there exist exact sequences

0 // H // G // M // 0

with G Y-Gorenstein flat, fd(H) ≤ n− 1 and

0 // M // H ′ // G′ // 0

with G′
Y-Gorenstein flat and fd(H ′) ≤ n.

Proof. Using the fact that the class of Y-Gorenstein flat left R-modules is closed under
extensions over a right coherent ring R, the proof is similar to that of Proposition 2.12. �

4.9. Proposition. Let R be a right coherent ring and N a left R-module with finite Y-
Gorenstein flat dimension, then the following assertions are equivalent for a nonnegative
integer n:

(1) Y-Gfd(N) ≤ n.
(2) TorRi (I, N) = 0 for all i > n and all injective right R-modules I.
(3) TorRi (E, N) = 0 for all i > n and all right R-modules E of finite injective

dimension.
(4) For every exact sequence of left R-modules

0 // Kn
// Gn−1

// . . . // G0
// M // 0,

where each Gi is Y-Gorenstein flat, Kn is Y-Gorenstein flat.

Furthermore, Y-Gfd(N) = sup{i ∈ N | TorRi (E, N) 6= 0 for some R-module E of finite
injective dimension} = sup{i ∈ N | TorRi (I, N) 6= 0 for some injective R-module I}.
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Proof. From Propositions 4.4 and 2.15, we know that Y-Gfd(N) = Y-Gid(N+). Using
Proposition 2.15 and the adjointness isomorphism

Ext1R(L,M
+) ∼= TorR1 (L,M)+

for all right R-modules L, we can easily get the desired results. �

Let Y-GF(R) be the class of Y-Gorenstein flat left R-modules.

4.10. Corollary. Let R be a right coherent ring. If lY-GFD(R) < ∞, then Y-GF(R) is
closed under direct limits. �

4.11. Lemma. [9, Proposition 3.2.2] Let R be any ring, ℵβ an infinite cardinal number
such that Card(R) ≤ ℵβ, and M any R-module. Then, for any submodule A ≤ M with
Card(A) ≤ ℵβ, there exists a pure submodule S ≤ M such that A ≤ S and Card(S) ≤
ℵβ. �

4.12. Proposition. Let R be a right coherent ring and S a pure submodule of F ∈ Y-
GF(R). Then S ∈ Y-GF(R) and F/S ∈ Y-GF(R).

Proof. From the pure exact sequence 0 // S // F // F/S // 0 , we get a

split exact sequence 0 // (F/S)+ // F+ // S+ // 0 . By Proposition 4.4,

we know F+ is a Y-Gorenstein injective right R-module. From the split exact sequence, we
know that both S+ and (F/S)+ are direct summands of F+. Thus by Proposition 2.10,
S+ and (F/S)+ are Y-Gorenstein injective right R-modules. By Proposition 4.4 again,
S ∈ Y-GF(R) and F/S ∈ Y-GF(R). �

4.13. Theorem. Let R be a right coherent ring and lY-GFD(R) < ∞. Then

(

Y-GF(R),Y-GF(R)⊥
)

is a perfect complete hereditary cotorsion theory.

Proof. Let Card(R) = ℵβ and let X be a set of representatives of all modules G ∈ Y-
GF(R) with Card(G) ≤ ℵβ. Then by a proof analogous to that of [9, Theroem 3.2.3],

we get that Y-GF(R)⊥ = X⊥. Thus
(

Y-GF(R),Y-GF(R)⊥
)

is cogenerated by a set. From
Proposition 4.5, Corollary 4.10 and the fact that Y-GF(R) contains all projective mod-
ules, we know that

(

Y-GF(R),Y-GF(R)⊥
)

is a perfect complete cotorsion theory by [9,
Corollary 3.1.11 and Proposition 3.1.13]. By Proposition 4.5, we know that if

0 // A // B // C // 0

is an exact sequence with B, C ∈ Y-GF(R), then A ∈ Y-GF(R). Thus

(

Y-GF(R),Y-GF(R)⊥
)

is a hereditary cotorsion theory. �
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