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Abstract

Let X be a class of right R-modules that contains all projective right
R-modules. The notion of X-Gorenstein projective modules was intro-
duced by D. Bennis and K. Ouarghi (X-Gorenstein projective mod-
ules, International Mathematical Forum 5 (10), 487-491, 2010). In
this paper, we introduce Y-Gorenstein injective right R-modules and
Y-Gorenstein flat left R-modules, where Y is a class of right R-modules
that contains all injective right R-modules. We show that the princi-
pal results on Gorenstein modules remain true for X-Gorenstein pro-
jective right R-modules, Y-Gorenstein injective right R-modules and
Y-Gorenstein flat left R-modules.

Keywords: X-Gorenstein projective modules, Y-Gorenstein injective modules,
Y-Gorenstein flat modules.
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1. Introduction

In [6], Enochs and Jenda defined the Gorenstein injective modules over an arbitrary
ring R. Recall that a right R-module M is called Gorenstein injective if there is an exact
sequence

&= ...—>F? sEF ' S>E"sF —»...

of injective right R-modules with M = ker(E° — E'), and which remains exact whenever
Hompg(FE, —) is applied for any injective right R-module E.
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In [2], Bennis et al. introduced the notion of X-Gorenstein projective modules. Let
X be a class of right R-modules that contains all projective right R-modules. A right
R-module M is called X-Gorenstein projective if there exists an exact sequence

P= ... >p2_spl_po_opl_o ...

of projective right R-modules such that M = ker(P° — P') and Homg (P, F) is exact
whenever F' € X.

In this paper, we introduce Y-Gorenstein injective right R-modules and Y-Gorenstein
flat left R-modules, where Y is a class of right R-modules that contains all injective right
R-modules. A right R-module M is called Y-Gorenstein injective if there exists an exact
sequence

&= ...—>F? s ' SE S FE ...

of injective right R-modules such that M = ker(E° — E), and which remains ex-
act whenever Homp(H,—) is applied for any H € Y. A left R-module M is called
Y-Gorenstein flat if there exists an exact sequence

F= ...—-F? sF ' >F' sFl ...

of flat left R-modules such that M = ker(F° — F'), and which remains exact whenever
G ®pr — is applied for any G € Y.

We mainly show that principal results on Gorenstein modules remain true for X-
Gorenstein projective right R-modules, Y-Gorenstein injective right R-modules and Y-
Gorenstein flat left R-modules.

Section 2 introduces Y-Gorenstein injective modules and studies their relations with
Gorenstein injective modules. For a ring R with r.Ggldim(R) < oo, it is shown that the
class of Y-Gorenstein injective right R-modules coincides with the class of Gorenstein
injective right R-modules if and only if every module in Y has finite injective dimension.
We also define the Y-Gorenstein injective dimension of a module and a ring. Using the
functors Ext(—, —), we give some characterizations of a module with finite Y-Gorenstein
injective dimension. For a ring R with rY-GID(R) < oo, we get that (*(Y-GI(R)),Y-
SJ(R)) is a complete hereditary cotorsion theory.

Section 3 deals with X-Gorenstein projective right R-modules, in a way much similar
to how we treat the Y-Gorenstein injective right R-modules in Section 2.

Section 4 introduces Y-Gorenstein flat modules and studies their relations with X-
Gorenstein projective modules and Y-Gorenstein injective modules. Let X be a class of
right R-modules that contains all projective right R-modules and Y a class of left R-
modules that contains all injective left R-modules. If Y= C X, then every X-Gorenstein
projective right R-module is Y-Gorenstein flat. For a right coherent ring, we get that M is
a Y-Gorenstein flat left R-module if and only if Homgz (M, Q/Z) is a Y-Gorenstein injective
right R-module. We also define the Y-Gorenstein flat dimension of a module and a ring.
Using the functors TorlR(—7 —), we give some characterizations of a left R-module with
finite Y-Gorenstein flat dimension over a right coherent ring R. If R is a right coherent
ring with {Y-GFD(R) < oo, then (Y-§F(R),Y-GF(R)™) is a perfect complete hereditary
cotorsion theory.

Next we recall some notions and facts required in the paper. In [4], Ding et al.
introduced the notion of strongly Gorenstein flat modules. A right R-module M is called
strongly Gorenstein flat if there exists an exact sequence

P=...—~P? pl spl pl ..
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of projective right R-modules such that M = ker(P° — P') and Homg (P, F) is exact
whenever F' is flat. Obviously, X-Gorenstein projective modules generalize both Goren-
stein projective modules and strongly Gorenstein flat modules.

In [13], Mao and Ding introduced Gorenstein F P-injective modules. A right R-module
M is called Gorenstein F'P-injective if there exists an exact sequence

&= ...—->F?? sF ' SE s FE ..

of injective right R-modules such that M = ker(E° — E'), and which remains ex-
act whenever Homp(H, —) is applied for any F P-injective module H. Obviously, Y-
Gorenstein injective modules generalize both Gorenstein injective modules and Goren-
stein F'P-injective modules.

Let € be a class of R-modules and M an R-module. Following [5], we say that a homo-
morphism ¢ : M — C'is a C-preenvelope if C' € C and the abelian group homomorphism
Hom(¢,C") : Hom(C, C") — Hom(M, C") is surjective for each C' € C. A C-preenvelope
¢ : M — C is said to be a C-envelope if every endomorphism g : C — C such that
g¢ = ¢ is an isomorphism. Dually we have the definitions of a C-precover and a C-cowver.
C-envelopes (C-covers) may not exist in general, but if they exist, they are unique up to
isomorphism.

A module M is said to have a special C-precover [7, Definition 7.1.6] if there is an

exact sequence 0 —= F c M—0 with C € Cand F € €. M is
said to have a special C-preenvelope [7, Definition 7.1.6] if there is an exact sequence
0— M C F—=0 with C € € and F € *C.

A pair (F,C) of classes of right R-modules is called a cotorsion theory (cotorsion pair)
[7, Definition 7.1.2] if = = € and *C = F. A pair of classes (F,F) is said to be
cogenerated by a set D [9, Definition 1.1.7] if F© = D*. A cotorsion theory (F,€) is
called complete [11, Lemma 2.2.6] if every R-module has a special C-preenvelope (and a
special F-precover). A cotorsion theory (F,C) is said to be hereditary [8] if whenever

0—L' L L'"—0

is exact with L, L” € F then L’ is also in &, or equivalently, if whenever
0—C' C C"—0
is exact with C, C’ € € then C” is also in C.

Throughout this paper, R is an associative ring with identity and all modules are uni-
tary, r.gldim(R) (resp. wdim(R)) stands for the right (resp. the weak) global dimension
of R. For an R-module M, the character module Homz(M,Q/Z) is denoted by M,
fd(M), id(M) and pd(M) stand for the flat, injective and projective dimensions of M
respectively, Gfd(M), Gid(M) and Gpd(M) denote the Gorenstein flat, injective and
projective dimensions of M respectively. r.Ggldim(R) (resp. 1.Ggldim(R)) denotes the
right (resp. the left) Gorenstein global dimension of R.

2. Y-Gorenstein injective modules

2.1. Definition. Let Y be a class of right R-modules that contains all injective right
R-modules. A right R-module M is called Y-Gorenstein injective if there exists an exact
sequence

E=...—-~E? EFE'!' —FE"—sF ..

of injective right R-modules such that M = ker(E° — E'), and which remains exact
whenever Homp(H, —) is applied for any H € Y.
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The sequence € is called a Y-complete injective resolution.

2.2. Remark. (1) Obviously, we have the following implications:
injective modules == Y-Gorenstein injective modules == Gorenstein injective
modules.

(2) Let Y be the class of injective right R-modules, then Y-Gorenstein injective right
R-modules coincide with Gorenstein injective right R-modules.

(3) Let Y be the class of F P-injective right R-modules, then Y-Gorenstein injective
right R-modules coincide with Gorenstein F P-injective right R-modules [13].

(4) If Y is the class of Gorenstein injective right R-modules, then every Y-Gorenstein
injective right R-module is injective. Indeed, for any Y-Gorenstein injective right R-
module M, we have an exact sequence of right R-modules

0—M I K—0

with I injective and K Y-Gorenstein injective, which remains exact whenever Hompg(H, —)
is applied for any module H € Y. Since every Y-Gorenstein injective right R-module is
Gorenstein injective, we let H = K € Y, then we have an exact sequence

0 — Hompg (K, M) — Hompg(K,I) — Homg (K, K) — 0.
Thus M is a direct summand of I, hence M is injective.

2.3. Proposition. A right R-module M is injective if and only if M belongs to Y and
M is Y-Gorenstein injective.

Proof. If M is Y-Gorenstein injective, then by the definition of Y-Gorenstein injective
modules, we have an exact sequence of right R-modules

0—G 1 M—0

with I injective and G Y-Gorenstein injective, which remains exact whenever Homg (H, —)
is applied for any H € Y. Since M belongs to Y, we apply Homg (M, —) to the above
exact sequence, then we get an exact sequence

0 — Hompr(M,G) ——— Homg(M,I) —— Hompr (M, M) — 0.
Thus M is a direct summand of I, hence M is injective.

The converse is trivial. O

2.4. Corollary. The following statements are equivalent for a ring R:
(1) Y s the class of injective right R-modules.
(2) Every H €Y is Y-Gorenstein injective.
Proof. (1) = (2) is trivial by Remark 2.2 (1).
(2) = (1) By Proposition 2.3, we know that Y is the class of injective right R-

modules. O

Let Y be the class of F'P-injective right R-modules in Corollary 2.4. Then we have
the following result which is a generalization of [13, Proposition 2.7].
2.5. Corollary. The following statements are equivalent for a ring R:
(1) R is right noetherian.
(2) Every FP-injective right R-module is Gorenstein F P-injective.

Proof. We only note that R is right noetherian if and only if every F P-injective right
R-module is injective [14, Theorem 3]. O
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2.6. Theorem. Let R be a ring with r.Ggldim(R) < oo, then the following statements
are equivalent:
(1) The class of Y-Gorenstein injective right R-modules coincides with the class of
Gorenstein injective right R-modules.
(2) Every module in 'Y has finite injective dimension.

Proof. (1) = (2) Let M be any Gorenstein injective right R-module, by hypothesis we
know that M is also Y-Gorenstein injective. Thus there is an exact sequence of right
R-modules

0—M I G—0

with I injective and G Y-Gorenstein injective, which remains exact whenever Homg (H, —)
is applied for any H € Y. For any H € Y, we have a long exact sequence

0 — Homg(H, M) — Hompg(H,I) — Hompg(H,G) —= Extk(H, M) — 0.
Thus Extk(H, M) = 0 for any Gorenstein injective right R-module M. Hence by [15,
Proposition 2.5], H has finite injective dimension.
(2) = (1) Let M be any Gorenstein injective right R-module, then there is an exact
sequence
&= ...—>F? spE ' sE'_sFE'—»...
of injective right R-modules with M = ker(E® — E'), which remains exact whenever
Hompg(FE, —) is applied for any injective right R-module E.
Let H be any module in Y. By (2), we may assume id(H) = n < co. We proceed by

induction on n. If n = 0, by the definition of Gorenstein injective modules, Homg(H, &)
is exact. For n > 1, we have an exact sequence

0—H E N —0,

where E is an injective right R-module and id(N) =n — 1.

Then we have an exact sequence
0 — Homg(N, &) — Homg(FE, &) — Homg(H,&) —0

with the first two complexes exact by induction. Hence Hompg(H, &) is exact. Thus M is
Y-Gorenstein injective. Since every Y-Gorenstein injective right R-module is Gorenstein
injective, the class of Y-Gorenstein injective right R-modules coincides with the class of
Gorenstein injective right R-modules. (|

2.7. Corollary. Let R be a ring with r.Ggldim(R) < oo and wdim(R) < co. Then the
class of Y-Gorenstein injective right R-modules coincides with the class of Gorenstein
injective right R-modules.

Proof. By [1, Corollary 1.2], we know that if wdim(R) < co then

r.gldim(R) = r.Ggldim(R) < oco.
Thus every right R-module has finite injective dimension. Hence by Theorem 2.6, the
class of Y-Gorenstein injective right R-modules coincides with the class of Gorenstein
injective right R-modules. O
2.8. Lemma. The following assertions are equivalent:

(1) M is a Y-Gorenstein injective right R-module.
(2) M satisfies the following two assertions:
(a) Extkr(H,M) =0 for any right R-module H € Y and any i > 1.
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(b) There exists an exact sequence of right R-modules
—>F?2_ s FE! — M — 0,

where each E~" is injective and Hompg(H, —) leaves the sequence exact for
any H €Y.
(3) There exists a short exact sequence of right R-modules

0—G 1 M —=0,

where I is injective and G 1is Y-Gorenstein injective.

Proof. By the definition of Y-Gorenstein injective modules, we immediately get (1) <=
(2) and (1) = (3).

(3) = (1) The proof is similar to that of [2, Proposition 2.2]. O

By Lemma 2.8 and [2, Proposition 2.4], we have the following:

2.9. Proposition. Every right R-module is Y-Gorenstein injective if and only if every
right R-module in Y is projective.

In particular, when the above equivalent conditions are satisfied R is quasi-Frobenius.
a

2.10. Proposition. The class of Y-Gorenstein injective modules is closed under exten-
sions and cokernels of monomorphisms. Furthermore it is closed under direct products
and direct summands.

Proof. Consider the exact sequence 0 —= M’ M M" —0. First, as-
sume that M’, M" are Y-Gorenstein injective modules. By a proof similar to that of
[7, Lemma 8.2.1], we can construct an exact sequence of right R-modules

...%E729E71—>M—>07

where each E™" is injective and Hompg(H, —) leaves the sequence exact for any H € Y.
Since M’, M" are Y-Gorenstein injective modules, Ext (H, M') = Extk(H,M") = 0 for
all i > 0 and all H € Y. Using the long exact sequence

oo —> Exth (H,M') — Exth(H, M) — Exty(H,M") —-- -,

we get that Extz(H, M) =0 for all i > 0 and all H € Y. By Lemma 2.8, we know that
M is Y-Gorenstein injective.
Next, assume that M’, M are Y-Gorenstein injective modules. By Lemma, 2.8, there

exists a short exact sequence of right R-modules

0—G 1 M —0,
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where [ is injective and G is Y-Gorenstein injective. Consider the following pullback
diagram

0 0
G G
0 F I M" 0
|
0 M’ M M" 0
0 0

From the left exact column and the fact that the class of Y-Gorenstein injective modules
is closed under extensions, we know that F' is Y-Gorenstein injective. Thus we get an

exact sequence 0 — F I M" —= 0, where I is injective and F' is

Y-Gorenstein injective. From Lemma 2.8, we know M" is Y-Gorenstein injective.

By the definition of Y-Gorenstein injective modules, we know that Y-Gorenstein in-
jective modules are closed under direct products. Hence Y-Gorenstein injective modules
are closed under direct summands by [12, Proposition 1.4]. |

2.11. Definition. We will say that M has Y-Gorenstein injective dimension less than
or equal to n, denoted Y-Gid(M) < n, if there exists an exact sequence

0—M—->G°— ... -G —=G"—0

with every G° being Y-Gorenstein injective. If no such finite sequence exists, define
Y-Gid(M) = oo; otherwise, if n is the least such integer, define Y-Gid(M) = n.
Define rY-GID(R) = sup{Y-Gid(M) | M is any right R-module}.

2.12. Proposition. Let M be a right R-module with finite Y-Gorenstein injective di-
mension n. Then there exist eract sequences

0—M I F—0

with I Y-Gorenstein injective, id(F) < n —1, and

0—1I' F M—0

with I' Y-Gorenstein injective, id(F') < n.

Proof. We will prove the desired result by induction on n. If n = 0, then M is Y-
Gorenstein injective, thus there exists an exact sequence

0—H E M—0

with E injective and H Y-Gorenstein injective. We also have the exact sequence

0—M M 0—0.

Now, let n = 1 and let 0 — M I do I — 0 be an exact sequence

with each I; Y-Gorenstein injective. By the case n = 0, we know there is an exact
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sequence 0 — Hp Eo I, —= 0 with Ey injective and Hy Y-Gorenstein
injective. Consider the following pullback diagram

0 0
Hy Hy
0 M Go Ey 0
|
0 M Io I 0
0 0

From the exact middle column and the fact that Y-Gorenstein injective modules are
closed under extensions, we know that Go is Y-Gorenstein injective. Thus we get the
exact sequence

0—M Go E()—>O7

where Fj is injective and G is Y-Gorenstein injective. Since Gy is Y-Gorenstein injective,
we get the exact sequence

0— H; F1 Go—=0,

where E; is injective and H; is Y-Gorenstein injective. Consider the following pullback
diagram

0 0
H, H,
0 I Ey FEo 0
|
0 M Go FEo 0
0 0

From the exact middle row, we know that id(F1) < 1. Thus we have the exact sequence

0— H; Fy M—0

with id(F1) < 1 and H: Y-Gorenstein injective.

Suppose n > 1. Then we have an exact sequence

do dy dpn—1

0—M Io I I, —0
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with each I; Y-Gorenstein injective. Let Kn,—1 = im(do), then we have exact sequences

0—M Io Kn71 %07

dy dp—1
I, —=0,

0 — anl Il
By the induction hypothesis we know there is an exact

ie. Y-Gid(Kn-1) = n— 1.
sequence 0 —> H,_1 Fn_1 Kn—1 —=0 with id(Fr-1) < n—1 and
H,_1 Y-Gorenstein injective. Consider the following pullback diagram
0 0
anl —_ anl
0 M Gn-1 Fno1——=0
0 M I Kn.1——0
0 0
From the exact middle column
0—>an1 Gn71 I()—>O7

we know that G, —1 is Y-Gorenstein injective. Thus we get the exact sequence
0 — M anl anl — 0

with Gn,—1 Y-Gorenstein injective and id(Fr—1) < n — 1. As in the previous case, since
Gn—1 is Y-Gorenstein injective, there exists a short exact sequence

0— G, J Gpn_1 —=0,
where J is injective and G,, is Y-Gorenstein injective. Consider the following pullback
diagram
0 0
Gr Gr
0 F, J F,.1——0

0O—— M —>Gp-1—>Fr1——>0
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Since J is injective and id(Frn—1) < n — 1, we get id(F) < n by the middle row. Letting
I=Gpno1, F=F,_1, I'=G,, F' =F,, we get the desired result. O

2.13. Corollary. Let 0 — M Iy I —= 0 be a short exact sequence

of right R-modules, where In and Iy are Y-Gorenstein injective modules and Exth (I, M) =
0 for all injective right R-modules I. Then M is Y-Gorenstein injective.

Proof. From the short exact sequence 0 —= M Io I, — 0, we know
that Y-Gid(M) < 1. By Proposition 2.12, there exists an exact sequence

0—M G I—0,

where G is Y-Gorenstein injective and I is injective. By the assumption Ext} (I, M) = 0,
this sequence splits, and hence M is Y-Gorenstein injective. O

2.14. Lemma. Let N be a right R-module, and consider two exact sequences of right
R-modules:

0—N—-G"— ... =G —=@G"—0,
0—~N-—->H—» ... —H" ' - H" >0,
where G°,...,G" 1 and H®, ..., H" ™ are Y-Gorenstein injective. Then G™ is Y-Gorenstein

ingective if and only if H™ is Y-Gorenstein injective.

Proof. Using Proposition 2.10, the proof is similar to that of (i) = (iii) in [3, Theo-
rem 1.2.7]. O

2.15. Proposition. Let N be a right R-module with finite Y-Gorenstein injective dimen-
sion. Then the following assertions are equivalent for a nonnegative integer n:
(1) Y-Gid(N) < n.
(2) ExtiL(I, N) =0 for all i > n and all injective right R-modules I.
(3) Extik(E, N) = 0 for all i > n and all right R-modules E of finite injective
dimension.
(4) For every exact sequence of right R-modules

0—N—-G" — ... =G K"—0,

where each G* is Y-Gorenstein injective, K" is Y-Gorenstein injective.

Furthermore, Y-Gid(N) = sup{i € N | .Ext}'?(E, N) # 0 for some R-module E of finite
injective dimension} = sup{i € N | ExtRz(I, N) # 0 for some injective R-module I}.

Proof. Follows from the proof of [12, Theorem 2.20] using Corollary 2.13 and Lemma 2.14.
O

2.16. Corollary. Let N be a right R-module with Y-Gid(N) < co. Then Gid(N) = Y-
Gid(N).

Proof. Since Gid(N) < Y-Gid(N), then from Proposition 2.15 and [12, Theroem 2.22]
we know that Gid(N) = Y-Gid(N). O

2.17. Proposition. FEvery right R-module with finite Y-Gorenstein injective dimension
has a special Y-Gorenstein injective preenvelope.
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Proof. Let M be a right R-module with finite Y-Gorenstein injective dimension. Then
there exists an exact sequence

0—M I F—0

with I Y-Gorenstein injective and id(F) < Y-Gid(M) — 1. Now if G’ is a Y-Gorenstein
injective right R-module, then Extk(F,G’) = 0 which shows that M — I is a special
Y-Gorenstein injective preenvelope. O

Let Y be the class of all F'P-injective right R-modules in Proposition 2.17. Then we
have:

2.18. Corollary. FEwvery right R-module with finite Gorenstein F P-injective dimension
has a Gorenstein I P-injective preenvelope. O

If Y is the class of all injective right R-modules in Proposition 2.17, then we get

2.19. Corollary. [12, Theorem 2.15] Every right R-module with finite Gorenstein injec-
tive dimension has a Gorenstein injective preenvelope. O

Let Y-9I(R) be the class of Y-Gorenstein injective right R-modules.

2.20. Theorem. If rY-GID(R) < oo, then (l(‘é-SJ(R))M-SJ(R)) is a complete heredi-
tary cotorsion theory.

Proof. We first prove that (L(IA—SJ(R)),Q—SJ(R)) is a cotorsion theory.

Obviously, Y-GI(R) C (L (Y-SI(R)))*. So we only need to prove that (l (‘ZJ-SJ(R)))L -
Y-GI(R). Let M be any module in (l(‘zﬂ-SJ(R)))L7 then Exty (N, M) = 0 for any N €
*(Y-$9(R)). Since rY-GID(R) < oo, M has a finite Y-Gorenstein injective dimension.
Then by Proposition 2.17, there exists a special Y-Gorenstein injective preenvelope

0—M I F—0

with I Y-Gorenstein injective and id(F) < Y-Gid(M) — 1. Then we have a long exact
sequence

0 — Hompg(F, M) — Hompg(F, I) — Hompg(F, F) — Extk(F, M) — - - - .

Since F' € *~(Y-GI(R)), Exty(F, M) = 0. Thus M is a direct summand of I, hence M
is Y-Gorenstein injective by Proposition 2.10. Hence (J' (E—SJ(R)))J‘ = Y-3I(R), and so
(J' (Y-99(R)), Y-SI(R)) is a complete cotorsion theory.

By Proposition 2.10, we know that the class of all Y-Gorenstein injective modules is

closed under cokernels of monomorphisms. Thus (J' (Y-GI(R)),Y-SI(R)) is a complete
hereditary cotorsion theory. O

3. X-Gorenstein projective modules

3.1. Definition. [2, Definition 2.1] Let X be a class of right R-modules that contains
all projective right R-modules. A right R-module M is called X-Gorenstein projective if
there exists an exact sequence

P=...—-P? =Pt P’ p ..
of projective right R-modules such that M = ker(P° — P') and Homg (P, F) is exact
whenever F' € X.

The sequence P is called an X-complete projective resolution.
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3.2. Lemma. [2, Theorem 2.3] 1. Let 0 — A B C —=0 be a short
ezact sequence of R-modules, where C' is X-Gorenstein projective. Then, A is X-Gorenstein
projective if and only if B is X-Gorenstein projective.

2. Let (M;)icr be a family of R-modules. Then, @ie] M; is X-Gorenstein projective
if and only if M; is X-Gorenstein projective for every i € I. ]
3.3. Remark. (1) Obviously, we have the following implications:

projective modules = X-Gorenstein projective modules = Gorenstein projective
modules.

(2) Let X be the class of projective right R-modules. Then the class of X-Gorenstein
projective right R-modules coincides with the class of Gorenstein projective right R-
modules.

(3) Let X be the class of flat right R-modules. Then the class of X-Gorenstein projec-
tive right R-modules coincides with the class of strongly Gorenstein flat right R-modules

[4].
(4) If X is the class of Gorenstein projective right R-modules, then every X-Gorenstein
projective right R-module is projective.

3.4. Proposition. A right R-module M is projective if and only if M belongs to X and
M is X-Gorenstein projective.

Proof. The proof is similar to that of Proposition 2.3. (|

3.5. Corollary. The following statements are equivalent for a ring R:
(1) X is the class of projective right R-modules.
(2) Every X € X is X-Gorenstein projective.
Proof. (1) = (2) Trivial by Remark 3.3 (1).
(2) = (1) By Proposition 3.4, we know that X is the class of projective right R-
modules. ]
Let X be the class of flat right R-modules in Corollary 3.5, then we have
3.6. Corollary. [4, Proposition 2.15] The following statements are equivalent for a ring
R:
(1) R is right perfect.
(2) Every flat right R-module is strongly Gorenstein flat. O
3.7. Theorem. Let R be a ring with r.Ggldim(R) < co. Then the following statements
are equivalent:

(1) The class of X-Gorenstein projective right R-modules coincides with the class of
Gorenstein projective right R-modules.
(2) Every module in X has finite projective dimension.

Proof. Using [15, Proposition 2.5], the proof is similar to that of Theorem 2.6. |

Let X be the class of flat right R-modules in Theorem 3.7. Then we have the following
result which generalizes [4, Corollary 2.8]:

3.8. Corollary. Let R be a ring with r.Ggldim(R) < oo. Then the class of strongly
Gorenstein flat modules coincides with the class of Gorenstein projective modules.

Proof. By [1, Corollary 2.7], we know that if r.Ggldim(R) < oo, then pd(F') < co for any
flat right R-module F'. Thus by Theorem 3.7 we get the desired results. O
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3.9. Corollary. Let R be a ring with r.Ggldim(R) < co and wdim(R) < oco. Then the
class of X-Gorenstein projective right R-modules coincides with the class of Gorenstein
projective right R-modules.

Proof. Using Theorem 3.7, the proof is similar to that of Corollary 2.7. ]

3.10. Definition. We will say that M has X-Gorenstein projective dimension less than
or equal to n, denoted X-Gpd(M) < n, if there exists an exact sequence

0—P,—P, 11— —>Ph—M-—0

with every P; being X-Gorenstein projective. If no such finite sequence exists, define
X-Gpd(M) = oo; otherwise, if n is the least such integer, define X-Gpd(M) = n.
Define rX-GPD(R) = sup{X-Gpd(M) | M is any right R-module}.

3.11. Proposition. Let M be a right R-module with finite X-Gorenstein projective di-
mension n, then there exist exact sequences

0—H G M—0

with G X-Gorenstein projective and pd(H) <n —1 and
0—M H G —0

with G' X-Gorenstein projective and pd(H') < n.

Proof. Using the fact that the class of X-Gorenstein projective modules is closed under
extensions, the proof is similar to that of Proposition 2.12. O

3.12. Corollary. Let
00— Gl Go M —0

be a short exact sequence of right R-modules, where Go and G1 are X-Gorenstein pro-
jective modules and Exth(M,Q) = 0 for all projective right R-modules Q. Then M is
X-Gorenstein projective. O

3.13. Lemma. Let M be a right R-module, and consider two exact sequences of right
R-modules:

0—>Gn—>Gp1—>...—Go—> M —0,
0—H,— H,_ 99‘[_‘109]\4%07
where Go, ...,Gn—1 and Ho, ..., H,_1 are X-Gorenstein projective, then G, is X-Gorenstein

projective if and only if H, is X-Gorenstein projective.

Proof. Using Lemma 3.2, the proof is similar to that of (i) = (iii) in [3, Theorem
1.2.7). O

3.14. Proposition. Let M be a right R-module with finite X-Gorenstein projective di-
mension, then the following assertions are equivalent for a nonnegative integer n:
(1) X-Gpd(M) < n.
(2) Extl4(M,P) =0 for alli > n and all projective right R-modules P.
(3) Extik(M,Q) = 0 for all i > n and all right R-modules Q of finite projective
dimension.
(4) For every exact sequence of right R-modules

0—K,—>Gp1—>...—>Gy—> M —0,

where each G; is X-Gorenstein projective, K, is X-Gorenstein projective.
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Furthermore, X-Gpd(M) = sup{i € N | EX_tRi(M7 Q) # 0 for some R-module Q of finite
projective dimension } = sup{i € N | Extg'(M, P) # 0 for some projective R-module P}.

Proof. Using Corollary 3.12 and Lemma 3.13, the proof is similar to that of Proposi-
tion 2.15. |

3.15. Corollary. Let M be a right R-module with X-Gpd(M) < oo, then Gpd(M) = X-
Gpd(M).

Proof. Since Gpd(M) < X-Gpd(M), then from Proposition 3.14 and [12, Theroem 2.20]
we know that Gpd(M) = X-Gpd(M). O

3.16. Proposition. FEvery right R-module with finite X-Gorenstein projective dimension
has a special X-Gorenstein projective precover.

Proof. Let M be a right R-module with finite X-Gorenstein projective dimension. Then
there exists an exact sequence

0—H G M —0

with G X-Gorenstein projective and pd(H) < X-Gpd(M) — 1. Now if G’ is an X-
Gorenstein projective right R-module, then Ext}(G’, H) = 0, which shows that G — M
is a special X-Gorenstein projective precover. O

Let X be the class of flat right R-modules in Proposition 3.16, then we have

3.17. Corollary. Every right R-module with finite strongly Gorenstein flat dimension
has a strongly Gorenstein flat precover.

If X is the class of projective right R-modules in Proposition 3.16, then we get

3.18. Corollary. [12, Theorem 2.10] Every right R-module with finite Gorenstein pro-
jective dimension has a Gorenstein projective precover. O

Let X-GP(R) be the class of X-Gorenstein projective right R-modules.

3.19. Theorem. IfrX-GPD(R) < oo, then (X-$P(R), (X-ST(R))l) is a complete hered-
itary cotorsion theory.

Proof. The proof is similar to that of Theorem 2.20. (]

4. Y-Gorenstein flat modules

4.1. Definition. Let Y be a class of right R-modules that contains all injective right R-
modules. A left R-module M is called Y-Gorenstein flat if there exists an exact sequence

F= ...—-F? s F ! >F' sl ...

of flat left R-modules such that M = ker(F® — F'), which remains exact whenever
G ®r — is applied for any G € Y.

The sequence ¥ is called a Y-complete flat resolution.
4.2. Proposition. Let X be a class of right R-modules that contains all projective right

R-modules, and Y a class of left R-modules that contains all injective left R-modules. If
YT C X, then every X-Gorenstein projective right R-module is Y-Gorenstein flat.
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Proof. Let M be any X-Gorenstein projective right R-module, then there exists an exact
sequence

P=....>p2_splt_opl_opt_o...

of projective right R-modules such that M = ker(P° — P') and Homg (P, F) is exact
whenever F' € X.

For any E € Y, since Y+ C X, we get that ET € X. Applying the functor Homg(—, E™1)
to the exact sequence P gives an exact sequence

-+« —>Hompg(P', ET) — Hompg(P°, E") — Homg (P~ ', ET) —--- .
But the above sequence is naturally isomorphic to
o> (P'QrE)T — (P°®rE)" — (P '@rE)T — -
Therefore we have an exact sequence
+—>P 'QrE—>P'QrE—>P'®@rE—--.
Thus M is Y-Gorenstein flat. O

4.3. Corollary. [4, Proposition 2.3] Let R be a left coherent ring. Then every strongly
Gorenstein flat right R-module is Gorenstein flat.

Proof. Let X be the class of flat right R-modules and Y the class of F'P-injective left
R-modules. If R is a left coherent ring, then Y™ C X [10, Theorem 2.2]. From Proposi-
tion 4.2, we get the desired results. O

4.4. Proposition. For any left R-module M, we consider the following conditions.

(1) M is a Y-Gorenstein flat left R-module.
(2) M is a Y-Gorenstein injective right R-module.

Then (1) = (2). If R is right coherent, then also (2) = (1).
Proof. The proof is similar to that of [12, Theorem 3.6]. O

4.5. Proposition. If R is right coherent, then the class of Y-Gorenstein flat left R-
modules is closed under extensions, kernels of epimorphisms, direct sums and direct sum-
mands.

Proof. From Proposition 2.10 and the equivalence in Proposition 4.4, we get that the
class of Y-Gorenstein flat left R-modules is closed under extensions and kernels of epi-
morphisms. By the definition of Y-Gorenstein flat left R-modules, we easily get that the
class of Y-Gorenstein flat left R-modules is closed under arbitrary direct sums. Now,
comparing this fact with [12, Proposition 1.4], we get that the class of Y-Gorenstein flat
left R-modules is closed under direct summands. |

4.6. Proposition. Let R be a right coherent ring and

0—G1 Go M—0

a short exact sequence, where Go and Gi1 are Y-Gorenstein flat left R-modules and
Torf*(I, M) = 0 for all injective right R-modules I. Then M is a Y-Gorenstein flat
left R-module.
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Proof. Let Ho = G(}L and H; = Gir. Then from Proposition 4.4 we know that Ho and
H; are Y-Gorenstein injective right R-modules. Applying the functor Homz(—, Q/Z) to
the exact sequence

00— Gl GO M — 07
we get a short exact sequence

09]\4+ HO H1907

where Ho and H, are Y-Gorenstein injective right R-modules. By [7, Theorem 3.2.1], we
have an isomorphism

Exty(I, M) = Tor{ (I, M)* =0

for all injective right R-modules I. Thus from Corollary 2.13 we get that M ™" is a Y-
Gorenstein injective right R-module. Hence M is a Y-Gorenstein flat left R-module by
Proposition 4.4. O

4.7. Definition. We will say that M has Y-Gorenstein flat dimension less than or equal
to n, denoted by Y-Gfd(M) < n, if there exists an exact sequence

O0—F,—F, 1—...—Fy—M—0

with every F; being Y-Gorenstein flat. If no such finite sequence exists, define Y-
Gfd(M) = oo; otherwise, if n is the least such integer, define Y-Gfd(M) = n.

Define [Y-GFD(R) = sup{Y-Gfd(M) | M is any left R-module}.

4.8. Proposition. Let R be a right coherent ring and M a left R-module with finite
Y-Gorenstein flat dimension n. Then there exist exact sequences

0—H G M—0

with G Y-Gorenstein flat, fd(H) <n —1 and

0—M H’ G —0

with G Y-Gorenstein flat and fd(H') < n.

Proof. Using the fact that the class of Y-Gorenstein flat left R-modules is closed under
extensions over a right coherent ring R, the proof is similar to that of Proposition 2.12. [

4.9. Proposition. Let R be a right coherent ring and N a left R-module with finite Y-
Gorenstein flat dimension, then the following assertions are equivalent for a nonnegative
integer n:

(1) Y-Gfd(N) < n.

(2) Tor®(I, N) =0 for alli>n and all injective right R-modules I.

(3) Torf(E, N) = 0 for all i > n and all right R-modules E of finite injective

dimension.
(4) For every exact sequence of left R-modules

0—K,—>Gp1—>...—>Gy—> M —0,

where each G; is Y-Gorenstein flat, K, is Y-Gorenstein flat.

Furthermore, Y-Gfd(N) = sup{i € N | Tor?(E, N) # 0 for some R-module E of finite
injective dimension} = sup{i € N | Tor®(I, N) # 0 for some injective R-module T}.
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Proof. From Propositions 4.4 and 2.15, we know that Y-Gfd(N) = Y-Gid(N™"). Using
Proposition 2.15 and the adjointness isomorphism

Exty(L, MT) = Torf (L, M)*

for all right R-modules L, we can easily get the desired results. |

Let Y-GF(R) be the class of Y-Gorenstein flat left R-modules.

4.10. Corollary. Let R be a right coherent ring. If IY-GFD(R) < oo, then Y-SF(R) is
closed under direct limits. |

4.11. Lemma. [9, Proposition 3.2.2] Let R be any ring, Rg an infinite cardinal number
such that Card(R) < Wg, and M any R-module. Then, for any submodule A < M with
Card(A) < Wg, there exists a pure submodule S < M such that A < S and Card(S) <
Ng. O

4.12. Proposition. Let R be a right coherent ring and S a pure submodule of F € Y-
§F(R). Then S € Y-GF(R) and F/S € Y-SF(R).

Proof. From the pure exact sequence 0 — S F F/S—=0, we get a

split exact sequence 0 — (F/S)* Ft S+t —= 0. By Proposition 4.4,

we know F'T is a Y-Gorenstein injective right R-module. From the split exact sequence, we
know that both ST and (F/S)" are direct summands of F*. Thus by Proposition 2.10,
ST and (F/S)* are Y-Gorenstein injective right R-modules. By Proposition 4.4 again,
S € Y-GF(R) and F/S € Y-GF(R). d

4.13. Theorem. Let R be a right coherent ring and lY-GFD(R) < co. Then
(Y-9F(R), Y-S5 (R)")

is a perfect complete hereditary cotorsion theory.

Proof. Let Card(R) = Ng and let X be a set of representatives of all modules G € Y-
GF(R) with Card(G) < RNg. Then by a proof analogous to that of [9, Theroem 3.2.3],
we get that Y-GF(R)" = X*. Thus (Y-§F(R),Y-GF(R)") is cogenerated by a set. From
Proposition 4.5, Corollary 4.10 and the fact that Y-GF(R) contains all projective mod-
ules, we know that (Y-GF(R),Y-GF(R)") is a perfect complete cotorsion theory by [9,
Corollary 3.1.11 and Proposition 3.1.13]. By Proposition 4.5, we know that if

0—A B C—0

is an exact sequence with B, C' € Y-SF(R), then A € Y-GF(R). Thus
(Y-SF(R),Y-SF(R)™)

is a hereditary cotorsion theory. (|
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