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Abstract

Recently, G. Fath-Tabar, B. Furtula and I. Gutman (A new geometric-

arithmetic index, J. Math. Chem. 47, 477–486, 2010) proposed the
second geometric-arithmetic index GA2 and B. Zhou, I. Gutman, B.
Furtula and Z. Du (On two types of geometric-arithmetic index, Chem.
Phys. Lett. 482, 153–155, 2009) put forward the third geometric-
arithmetic index GA3, respectively. In (Gutman, I. and Furtula, B.
Estimating the second and third geometric-arithmetic indices, Hacet.
J. Math. Stat. 40 (1), 69–76, 2011), inequalities between GA2 and
GA3 for trees, with the number of vertices and the number of pendent
vertices, were obtained by I. Gutman and B. Furtula. In this paper, we
obtain inequalities between the two indices for unicyclic graphs.

Keywords: Distance between vertex and edge, Geometric-arithmetic index, Unicyclic
graph.

2000 AMS Classification: 05C12.

1. Introduction

Let G = (V,E) be a connected simple graph with |V | = n and |E| = m. The distance
d(u, v) of two vertices u, v ∈ V (G) is the length of the shortest path connecting u and v
in G. A pendent vertex of G is a vertex of degree one. An edge connecting a pendent
vertex with its unique neighbor is called a pendent edge.

For any edge e = uv ∈ E(G), we denote by Nu = {w ∈ V (G) : d(w, u) < d(w, v)}.
Let nu = |Nu|, i.e., nu counts the number of vertices which are in positions closer to u
than v of the edge uv.
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Let w ∈ V (G) and e = xy ∈ E(G). Define the distance d(w, e) between w and e as
min{d(w, x), d(w, y)}. For an edge uv ∈ E(G), let Mu = {e ∈ E(G) : d(e, u) < d(e, v)}.
Then mu = |Mu| counts the number of edges of G lying closer to vertex u than to vertex
v of the edge uv.

In [4], the geometric-arithmetic index GA was first defined as

GA = GA(G) =
∑

uv∈E(G)

√
dudv

1
2
(du + dv)

,

where du stands for the degree of the vertex u.

Recently, G. Fath-Tabar et al. generalized GA to GAgeneral(G), which was defined as
[1] as

GAgeneral = GAgeneral(G) =
∑

uv∈E(G)

√
QuQv

1
2
(Qu +Qv)

,

where Qu is some quantity associated with the vertex u.

Replacing Qu by nu, G. Fath-Tabar et al. [1] defined it as the second geometric-
arithmetic index, i.e.,

(1) GA2 = GA2(G) =
∑

uv∈E(G)

√
nunv

1
2
(nu + nv)

.

B. Zhou et al. [5] replaced Qu by mu, and then defined the third geometric-arithmetic
index, i.e.,

(2) GA3 = GA3(G) =
∑

uv∈E(G)

√
mumv

1
2
(mu +mv)

.

Geometric-arithmetic indices are a new class of topological descriptors, which are based
on some properties of vertices of graphs. Details of their theory can be found in [2].

For unicyclic graphs with girth g, let c1, c2, . . . , cg be the vertices on the cycle C, i.e.,
V (C) = {c1, c2, . . . , cg}.

Denote by E(T ) the set {e ∈ E(G) | e is a non-pendent edge and e 6∈ E(C)}, by E(P )
the set of all pendent edges of G, and put |E(P )| = p.

For any edge e = uv ∈ E(T ), there must exist a path P : v0v1v2 · · · vk(= ci) that
contains the edge e, where vi (0 ≤ i ≤ k) are vertices in the same component of G−E(C),
v0 is a pendent vertex and ci ∈ V (C).

Throughout this paper, for every edge uv /∈ E(C), let u be the vertex closer to v0
than v. This means that u is more distant from C than v .

I. Gutman and B. Furtula [3] obtained inequalities between GA2 and GA3 for trees
to estimate the second and third geometric-arithmetic indices. As a consequence, we
continue to deduce inequalities for unicyclic graphs with even and odd girths, respectively.

2. Inequalities of unicyclic graphs with even girth

From (1) and (2), for a unicyclic graph G with even girth, it is easy to obtain:

(I) if e = uv ∈ E(T ), then nu+nv = n, mu = nu−1, mv = nv andmu+mv = n−1.
(II) if e = uv ∈ E(C), then nu +nv = n, mu = nu − 1, mv = nv − 1 and mu+mv =

n− 2.

Let s be the number of vertices of one of the maximal components of G − V (C).
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2.1. Theorem. Let G be a unicyclic graph with even girth and p pendent edges. If

s ≤ n
2
, then

(3)

n

n− 1
GA2(G)−

(

2√
n− 1

−
√
2√

n− 2

)

p−
√
2n√

n− 2

< GA3(G)

<
n

n− 2
GA2(G)−

(

2
√
n− 1

n− 2
− n− 1

(n− 2)
√

⌊n
2
⌋⌈n

2
⌉

)

p− (n− 1)n

(n− 2)
√

⌊n
2
⌋⌈n

2
⌉
.

Proof. From above discussions, it follows that

(4) GA2 =
∑

uv∈E(G)

√
nunv

1
2
(nu + nv)

=
∑

uv∈E(G)

2
√
nunv

n
,

and

GA3(G) =
∑

uv∈E(T )

2
√

(nu − 1)nv

(n− 1)
+

∑

uv∈E(C)

2
√

(nu − 1)(nv − 1)

(n− 2)
.

Bearing in mind that nu + nv = n,

√

(nu − 1)(nv − 1) =
√
nunv

√

1− n− 1

nunv

.

For any non-pendent edge e = uv ∈ E(G), there is 0 < (n − 1)/(nunv) < 1. Since for
any real number x ∈ (0, 1),

1− x <
√
1− x < 1− x

2
,

we have

√

1− n− 1

nunv

> 1− n− 1

nunv

,

and

√

1− n− 1

nunv

< 1− n− 1

2nunv

.

Proof of lower bound. Let e be a non-pendent edge uv, then nunv ≥ 2(n − 2) holds
because of nu + nv = n. It is easy to see that

√
nunv

√

1− n− 1

nunv

>
√
nunv

(

1− n− 1

nunv

)

=
√
nunv − n− 1√

nunv

≥ √
nunv − n− 1

√

2(n− 2)
.
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Then

GA3(G) >
∑

uv∈E(T )

2
√

(nu − 1)(nv − 1)

n− 1
+

∑

uv∈E(C)

2
√

(nu − 1)(nv − 1)

n− 2

>
∑

uv∈E(T )∪E(C)

2
√

(nu − 1)(nv − 1)

n− 1

=
∑

uv∈E(T )∪E(C)

2

n− 1

√
nunv

√

1− n− 1

nunv

≥ 2

n− 1

∑

uv∈E(T )∪E(C)

(

√
nunv − n− 1

√

2(n− 2)

)

.(5)

From (4), we have

∑

E(T )∪E(C)

√
nunv =

n

2
GA2(G)− p

√
n− 1,

which substitutes back into (5) to yield

GA3 >
n

n− 1
GA2(G)−

(

2√
n− 1

−
√
2√

n− 2

)

p−
√
2n√

n− 2
.

Thus the lower bound of (3) is obtained.

Proof of upper bound. Now it can be seen that
√

1− n− 1

nunv

< 1− n− 1

2nunv

.

For any edge uv of G, nunv ≤ ⌊n
2
⌋⌈n

2
⌉ holds. It follows that

√
nunv

√

1− n− 1

nunv

<
√
nunv

(

1− n− 1

2nunv

)

=
√
nunv − n− 1

2
√
nunv

≤ √
nunv − n− 1

2
√

⌊n
2
⌋⌈n

2
⌉
.

Since s ≤ n
2
and nu + nv = n, we get nu ≤ nv for each e ∈ E(T ). Suppose that

f(x) =
cx

(c+ x)2
,

where c is a constant. By calculating the derivative of f(x):

f ′(x) =
c(c+ x)(c− x)

(c+ x)4
,

one can see easily that f(x) decreases with increasing of x for x ≥ c. Let c = nu − 1. If
nu ≤ nv = x, then nu − 1 ≤ nv − 1 = x − 1 and f(nv − 1) > f(nv) hold, which implies
that

(6)
∑

uv∈E(T )

2
√

(nu − 1)nv

(n− 1)
<

∑

uv∈E(T )

2
√

(nu − 1)(nv − 1)

(n− 2)
.
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Therefore,

GA3(G) <
∑

uv∈E(T )∪E(C)

2
√

(nu − 1)(nv − 1)

n− 2

=
∑

uv∈E(T )∪E(C)

2

n− 2

√
nunv

√

1− n− 1

nunv

<
∑

uv∈E(T )∪E(C)

2

n− 2

(

√
nunv − n− 1

2
√

⌊n
2
⌋⌈n

2
⌉

)

<
2

n− 2

∑

uv∈E(T )∪E(C)

√
nunv − (n− 1)(n− p)

(n− 2)
√

⌊n
2
⌋⌈n

2
⌉

<
n

n− 2
GA2(G)−

(

2
√
n− 1

n− 2
− n− 1

(n− 2)
√

⌊n
2
⌋⌈n

2
⌉

)

p

− (n− 1)n

(n− 2)
√

⌊n
2
⌋⌈n

2
⌉
. �

Now, we discuss the case when a graph G with even girth does not satisfy s ≤ n
2
.

2.2. Theorem. Let G be a unicyclic graph with even girth and p pendent edges. Then

n

n− 1
GA2(G)−

(

2√
n− 1

−
√
2√

n− 2

)

p−
√
2n√

n− 2

< GA3(G)

< GA2(G)− 2p
√
n− 1

n
+

(3n− 8)(n− 6)

4
.

Proof. Note that nu + nv = n, and 4nunv ≤ n2. It is easy to obtain that:

nunv

n2
>

(nu − 1)(nv − 1)

(n− 2)2
.

That is

√
nunv

n
>

√

(nu − 1)(nv − 1)

n− 2
.

Suppose e = uv ∈ E(T ). Since nu ≤ nv, similarly to the proof of (6), there is

nunv

n2
>

(nu − 1)nv

(n− 1)2
.

That is

√
nunv

n
>

√

(nu − 1)nv

n− 1
.
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It follows that

GA3(G) =
∑

uv∈E(T )

2
√

(nu − 1)nv

(n− 1)
+

∑

uv∈E(C)

2
√

(nu − 1)(nv − 1)

(n− 2)

<
∑

uv ∈ E(T )
nu ≤ nv

2
√

(nu − 1)nv

(n− 1)
+

∑

uv ∈ E(T )
nu > nv

2
√

(nu − 1)nv

n− 1

+
∑

uv∈E(C)

2
√
nunv

n

<
∑

uv ∈ E(T )
nu > nv

2
√

(nu − 1)nv

n− 1
+

∑

{uv ∈ E(T )|nu ≤ nv} ∪ E(C)

2
√
nunv

n
.

Thus we conclude that

GA3(G)−GA2(G) <
∑

uv ∈ E(T )
nu > nv

(

2
√

(nu − 1)nv

n− 1
− 2

√
nunv

n

)

− 2p

n

√
n− 1

<
∑

uv ∈ E(T )
nu > nv

(

2
√
nunv

n− 1
− 2

√
nunv

n

)

− 2p

n

√
n− 1

=
2

n(n− 1)

∑

uv ∈ E(T )
nu > nv

√
nunv − 2p

n

√
n− 1

<
2

n(n− 1)

∑

uv ∈ E(T )
nu > nv

nu − 2p

n

√
n− 1.(7)

Now let us estimate the maximum value of

M := max{
∑

uv ∈ E(T )
nu > nv

nu}.

First we notice that there must be only one component of G−E(C) that contains edges
satisfying nu > nv, which implies nu > n

2
. Denote this component by G(T0). Let P1 be

the longest path in G(T0) with length l1, put P1 := civ1v2 . . . vl1 , whereci ∈ V (C) and
vl1 is a pendent vertex. Let P ∗ be the set of pendent vertices that are in G(T0).

For a non-pendent edge e ∈ E(T0)\E(P ∗), by the operation of dividing the edge civ1
into cive and vev1, and then contracting e (deleting the edge e and then identifying the
two ends of e), we get a new graph which we denote by G(T1). Denote the value of nu

for the edge e by nu(e).

Note that nu(vev1 ∈ G(T1)) ≥ nu(e ∈ G(T0)) + dist(v1, vl1)− 1. For the other edges
f , for edges f on the path from v1 to v ∈ G(T0), it holds that nu(f ∈ G(T1)) = nu(f ∈
G(T0))− 1; and for all other edges f , it holds that nu(f ∈ G(T1)) = nu(f ∈ G(T0)), thus
we have

∑

e∈G(T1)
nu >

∑

e∈G(T0)
nu, i.e., M(G(T0)) < M(G(T1)). By repeating this

process until there exist only pendent edges and the edges on the longest path, we have

M(G(T0)) < M(G(T1)) < · · · < M(G(Tk)).

If e = xy is a pendent edge with y as its pendent vertex, and vlk is the pendent vertex
of the longest path Pk = civ1v2 . . . vlk in G(Tk), let G′(T1) = G(Tk) − e + xvlk−1.
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Then nu(f ∈ G′(T1)) ≥ nu(f ∈ G′(T0)), and M(G′(T1)) < M(G(Tk)). Repeating
this operation until all non-pendent edges are incident with vlk−1, we get a new graph,
denoted by G′(Tr). Now we can get the maximum value of M with p pendent edges of
the graph in Figure 1.

Figure 1. Unicyclic graphs G′(Tr) with even girth, p pendent edges and

maximum value of M
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Then it follows that

max
∑

uv ∈ E(T )
nu > nv

nu =
(n

2

)

+
(n

2
+ 1
)

+ · · ·+ (n− c)

<
(n

2

)

+
(n

2
+ 1
)

+ · · ·+ (n− 4)

=
(3n− 8)(n− 6)

4
.

Substituting the above result into (7) and by the lower bound in Theorem 2.1, we com-
plete the proof. �

3. Inequalities of unicyclic graphs with odd girth

3.1. Theorem. If G is a unicyclic graph with odd girth l and p pendent edges, then

GA2(G)− (n− l − p)
√
n− 2− 2p

√
n− 1

n
< GA3(G)

< GA2(G)− (n− l − p)

n(n− 1)

√

2(n− 2)− 2p
√
n− 1

n
.

Proof. For a unicyclic graph G with odd girth l, if edge e = uv ∈ E(G)\E(C), then
nu + nv = n, mu = nu − 1, mv = nv, and mu +mv = n− 1 hold. Let ai be the number
of vertices of the component that contains the vertex ci in G−E(C). Then for any edge
e = uv ∈ E(C), there exists a number ai such that nu+nv = n−ai, mu = nu, mv = nv,
and mu +mv = n− ai. Thus

GA2(G) =
∑

E(T )

2
√
nunv

n
+
∑

E(C)

2
√
nunv

n− ai

+
2p

√
n− 1

n
,(8)
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and

(9) GA3(G) =
∑

E(T )

2
√

(nu − 1)nv

n− 1
+
∑

E(C)

2
√
nunv

n− ai

.

From (8) and (9), we can get

GA2(G)−GA3(G) =
∑

E(T )

(

2
√
nunv

n
− 2

√

(nu − 1)nv

n− 1

)

+
2p

√
n− 1

n

<
∑

E(T )

(

2
√
nunv

n− 1
− 2

√

(nu − 1)nv

n− 1

)

+
2p

√
n− 1

n

=
2

n− 1

∑

E(T )

(
√
nunv −

√

(nu − 1)nv) +
2p

√
n− 1

n

<
2

n− 1

∑

E(T )

nv

2
√

(nu − 1)nv

+
2p

√
n− 1

n

=
1

n− 1

∑

E(T )

√

nv

nu − 1
+

2p
√
n− 1

n

≤ (n− l − p)
√
n− 2 +

2p
√
n− 1

n
,

and

GA2(G)−GA3(G) >
∑

E(T )

√
nunv

(

1

n
− 1

n− 1

)

+
2p

√
n− 1

n

≥ (n− l − p)

n(n− 1)

√

2(n− 2) +
2p

√
n− 1

n
.

The proof is completed. �
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