STABILITY OF EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN NORMED SPACES

Ghadir Sadeghi*, Reza Saadati ${ }^{\ddagger \ddagger}$, Mohammad Janfada* and John M. Rassias ${ }^{\text { }}$

Received 22:08:2010 : Accepted 12:01:2011

Abstract

In this paper, we prove the stability of Euler-Lagrange quadratic mappings in the framework of non-Archimedean normed spaces. Our results in the setting of non-Archimedean normed spaces are different from the results in the setting of normed spaces.

Keywords: Generalized Hyers-Ulam stability, Euler-Lagrange functional equation. Non-Archimedean normed space, p-adic field.
2000 AMS Classification: Primary 39B22, Secondary 39B82, 46S10.

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following:"When is it true that a function which approximately satisfies a functional equation \mathcal{E} must be close to an exact solution of \mathcal{E} ?" If there exists an affirmative answer, we say that the equation \mathcal{E} is stable [4]. During the last decades several stability problems for various functional equations have been investigated by numerous mathematicians. We refer the reader to the survey articles $[4,5,8,19]$ and monographs $[3,6,9,10,20]$, and references therein.

By a non-Archimedean field we mean a field K equipped with a function (valuation) $|\cdot|$ from K into $[0, \infty)$ such that $|r|=0$ if and only if $r=0,|r s|=|r||s|$, and $|r+s| \leq$ $\max \{|r|,|s|\}$ for all $r, s \in K$. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. By the trivial valuation we mean the mapping $|\cdot|$ taking everything but 0 into 1 and $|0|=0$.

[^0]Let X be a vector space over a field K with a non-Archimedean non-trivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is called a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) For any $r \in K, x \in X,\|r x\|=|r|\|x\|$;
(iii) The strong triangle inequality (ultrametric); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)
$$

Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space. Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\},(n>m)
$$

holds, a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a nonArchimedean normed space. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a nonArchimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p}, which is called the p-adic number field.

In [1], the authors investigated stability of approximate additive mappings $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$. In $[11,12,13]$, the stability of Cauchy, quadratic and cubic functional equations were investigated in the context of non-Archimedean normed spaces.

In this paper, by following some ideas from $[2,12,13,16,17,18]$, we establish the stability of Euler-Lagrange equations in the setting of non-Archimedean normed spaces.

Throughout the paper, we assume that X is a vector space and Y is a complete non-Archimedean normed space.

2. Stability results

The functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. J. M. Rassias introduced the Euler-Lagrange quadratic mapping,

$$
\begin{equation*}
f\left(a_{1} x+a_{2} y\right)+f\left(a_{2} x-a_{1} y\right)=\left(a_{1}^{2}+a_{2}^{2}\right)[f(x)+f(y)] \tag{2.1}
\end{equation*}
$$

see [14, 15].
J. M. Rassias introduced the generalized pertinent Euler-Lagrange quadratic mappings via his paper [16] and investigated the stability problem for the following generalized functional equation

$$
\begin{equation*}
m_{1} m_{2} Q\left(a_{1} x+a_{2} y\right)+Q\left(m_{2} a_{2} x-m_{1} a_{1} y\right)=\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} Q(x)+m_{1} Q(y)\right] \tag{2.2}
\end{equation*}
$$

for all vectors $x, y \in X$, any fixed pair $\left(a_{1}, a_{2}\right)$ of nonzero reals and any fixed pair $\left(m_{1}, m_{2}\right)$ of positive reals. Consider a nonlinear mapping $Q: X \rightarrow Y$ satisfying the fundamental Euler-Lagrange functional equation

$$
\begin{equation*}
m_{1}^{2} m_{2} Q\left(a_{1} x\right)+m_{1} Q\left(m_{2} a_{2} x\right)=m_{0}^{2} m_{2} Q\left(\frac{m_{1}}{m_{0}} a_{1} x\right)+m_{0}^{2} m_{1} Q\left(\frac{m_{2}}{m_{0}} a_{2} x\right) \tag{2.3}
\end{equation*}
$$

with $m_{0}=\frac{m_{1} m_{2}+1}{m_{1}+m_{2}}$, and $m=\frac{\left(m_{1}+m_{2}\right)\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}{m_{1} m_{2}+1}$ for all $x \in X$, any fixed nonzero reals a_{1}, a_{2} and any fixed positive reals m_{1}, m_{2}.

A nonlinear mapping $Q: X \rightarrow Y$ is a called generalized Euler-Lagrange quadratic if it satisfies (2.2) and (2.3). It is said that the nonlinear mappings $\bar{Q}: X \rightarrow Y$, and
$\overline{\bar{Q}}: X \rightarrow Y$ are 2-dimensional Euler-Lagrange quadratic weights of the first form if we have

$$
\bar{Q}(x)=\frac{m_{0}^{2} m_{2} Q\left(\frac{m_{1}}{m_{0}} a_{1} x\right)+m_{0}^{2} m_{1} Q\left(\frac{m_{2}}{m_{0}} a_{2} x\right)}{m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)},
$$

and

$$
\overline{\bar{Q}}(x)=\frac{m_{1} m_{2} Q\left(a_{1} x\right)+Q\left(m_{2} a_{2} x\right)}{m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}
$$

for all $x \in X$.
2.1. Lemma. ([16]) Let $Q: X \rightarrow Y$ be a generalized Euler-Lagrange quadratic mapping satisfying (2.2). If $m \neq 1$, then we have

$$
Q(0)=0, Q\left(m^{n} x\right)=m^{2 n} Q(x)
$$

for all $x \in X$ and all integers $n \in \mathbb{Z}$.
Suppose that $f: X \rightarrow Y$ is a mapping. We define a generalized Euler-Lagrange difference operator $D_{m_{1}, m_{2}}^{a_{1}, a_{2}}$ of equation (2.2) as

$$
\begin{aligned}
D_{m_{1}, m_{2}}^{a_{1}, a_{2}} f(x, y):=m_{1} m_{2} f\left(a_{1} x+a_{2} y\right)+ & f\left(m_{2} a_{2} x-m_{1} a_{1} y\right) \\
& -\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\left[m_{2} f(x)+m_{1} f(y)\right]
\end{aligned}
$$

In this section, we prove the stability of the generalized Euler-Lagrange quadratic functional equation in non-Archimedean normed spaces.
2.2. Theorem. Let $\varphi: X \times X \rightarrow[0, \infty)$ and $\psi: X \rightarrow[0, \infty)$ be functions such that
(2.4) $\quad \lim _{n \rightarrow \infty} \frac{\varphi\left(m^{n} x, m^{n} y\right)}{|m|^{2 n}}=0 \quad(x, y \in X)$
and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(m^{n} x\right)}{|m|^{2 n}}=0 \quad(x \in X) \tag{2.5}
\end{equation*}
$$

where, $m=\frac{\left(m_{1}+m_{2}\right)\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}{m_{1} m_{2}+1}$ and $|m|>1$ for any fixed pair $\left(a_{1} ; a_{2}\right)$ of nonzero reals and any fixed pair $\left(m_{1} ; m_{2}\right)$ of positive reals. Suppose that $f: X \rightarrow Y$ is a mapping satisfying
(2.6) $\left\|D_{m_{1}, m_{2}}^{a_{1}, a_{2}} f(x, y)\right\| \leq \varphi(x, y)$,
for all $x, y \in X$, and

$$
\begin{equation*}
\left\|m_{1}^{2} m_{2} f\left(a_{1} x\right)+m_{1} f\left(m_{2} a_{2} x\right)-m_{0}^{2} m_{2} f\left(\frac{m_{1}}{m_{0}} a_{1} x\right)-m_{0}^{2} m_{1} f\left(\frac{m_{2}}{m_{0}} a_{2} x\right)\right\| \leq \psi(x) \tag{2.7}
\end{equation*}
$$

Then there exists a unique generalized Euler-Lagrange mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
\|f(x)-Q(x)\| \leq \sup \{ & \frac{\varphi\left(m^{n} x, 0\right)}{\left|m^{2 n}\right|\left|m_{0} m_{2}\right|}, \frac{\left|m_{1}\right|| | f(0) \|}{\left|m^{2 n}\right|\left|m_{2}\right|}, \frac{\psi\left(m^{n} x\right)}{\left|m^{2 n}\right|\left|m_{0} m m_{1} m_{2}\right|} \\
& \left.\frac{\varphi\left(\frac{m_{1} a_{1} m^{n} x}{m_{0}}, \frac{m_{2} a_{2} m^{n} x}{m_{0}}\right)}{\left|m^{2 n}\right|\left|m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2 n} m^{2} m_{1} m_{2}\right|}: n \in \mathbb{N} \cup\{0\}\right\} . \tag{2.8}
\end{align*}
$$

Proof. Observe that the functional inequality (2.7) can be written as follows:

$$
\begin{equation*}
\|\overline{\bar{f}}(x)-\bar{f}(x)\| \leq \frac{\psi(x)}{\left|m_{1} m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\right|}=\frac{\psi(x)}{\left|m_{0} m m_{1} m_{2}\right|} \quad(x \in X) \tag{2.9}
\end{equation*}
$$

Replacing x and y by 0 in (2.6) we have

$$
\left\|m_{1} m_{2} f(0)+f(0)-m_{0} m\left(m_{1}+m_{2}\right) f(0)\right\| \leq \varphi(0,0)
$$

or

$$
\begin{equation*}
\|f(0)\| \leq \frac{\varphi(0,0)}{\left|\left(m_{1}+m_{2}+1\right)(m-1)\right|} \tag{2.10}
\end{equation*}
$$

Moreover substituting $y=0$ in (2.6), one concludes the functional inequality

$$
\left\|m_{1} m_{2} f\left(a_{1} x\right)+f\left(m_{2} a_{2} x\right)-m_{0} m\left[m_{2} f(x)+m_{1} f(0)\right]\right\| \leq \varphi(x, 0)
$$

or

$$
\left\|\overline{\bar{f}}(x)-f(x)-\frac{m_{1}}{m_{2}} f(0)\right\| \leq \frac{\varphi(x, 0)}{\left|m_{2}\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)\right|}=\frac{\varphi(x, 0)}{\left.\mid m_{0} m m_{2}\right) \mid}
$$

Hence

$$
\begin{align*}
\|\overline{\bar{f}}(x)-f(x)\| & \leq \max \left\{\left\|\overline{\bar{f}}(x)-f(x)-\frac{m_{1}}{m_{2}} f(0)\right\|,\left\|\frac{m_{1}}{m_{2}} f(0)\right\|\right\} \tag{2.11}\\
& \leq \max \left\{\frac{\varphi(x, 0)}{\left|m_{0} m m_{2}\right|}, \frac{\left|m_{1}\right|}{\left|m_{2}\right|}\|f(0)\|\right\} .
\end{align*}
$$

In addition, replacing x, y in (2.6) by $\frac{m_{1} a_{1} x}{m_{0}}$ and $\frac{m_{2} a_{2} x}{m_{0}}$ respectively, one gets the functional inequality

$$
\begin{aligned}
\left\|m_{1} m_{2} f(m x)+f(0)-m_{0} m\left[m_{2} f\left(\frac{m_{1} a_{1} x}{m_{0}}\right)+m_{1} f\left(\frac{m_{2} a_{2} x}{m_{0}}\right)\right]\right\| \\
\leq \varphi\left(\frac{m_{1} a_{1}}{m_{0}} x, \frac{m_{2} a_{2}}{m_{0}} x\right)
\end{aligned}
$$

or

$$
\left\|\frac{f(m x)}{m^{2}}+\frac{f(0)}{m^{2} m_{1} m_{2}}-\bar{f}(x)\right\| \leq \frac{1}{\left|m^{2} m_{1} m_{2}\right|} \varphi\left(\frac{m_{1} a_{1}}{m_{0}} x, \frac{m_{2} a_{2}}{m_{0}} x\right) .
$$

So

$$
\begin{equation*}
\left\|\frac{f(m x)}{m^{2}}-\bar{f}(x)\right\| \leq \max \left\{\frac{1}{\left|m^{2} m_{1} m_{2}\right|} \varphi\left(\frac{m_{1} a_{1}}{m_{0}} x, \frac{m_{2} a_{2}}{m_{0}} x\right), \frac{\|f(0)\|}{\left|m^{2} m_{1} m_{2}\right|}\right\} \tag{2.12}
\end{equation*}
$$

Using the functional inequalities (2.9), (2.11) and (2.12), and the triangle inequality, we have the basic inequality

$$
\begin{array}{r}
\left\|\frac{f(m x)}{m^{2}}-f(x)\right\| \leq \max \left\{\|f(x)-\overline{\bar{f}}(x)\|,\|\overline{\bar{f}}(x)-\bar{f}(x)\|,\left\|\bar{f}(x)-\frac{f(m x)}{m^{2}}\right\|\right\} \\
\leq \max \left\{\frac{\varphi(x, 0)}{\left|m_{0} m m_{2}\right|}, \frac{\left|m_{1}\right|}{\left|m_{2}\right|}\|f(0)\|, \frac{\psi(x)}{\left|m_{0} m m_{1} m_{2}\right|},\right. \\
\left.\frac{\varphi\left(\frac{m_{1} a_{1} x}{m_{0}}, \frac{m_{2} a_{2} x}{m_{0}}\right)}{\left|m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2} m_{1} m_{2}\right|}\right\} .
\end{array}
$$

Replacing x by $m^{n} x$ in (2.13) we obtain

$$
\begin{align*}
& \left\|\frac{f\left(m^{n} x\right)}{m^{2 n}}-\frac{f\left(m^{n+1} x\right)}{m^{2(n+1)}}\right\| \\
& \leq \max \left\{\frac{\varphi\left(m^{n} x, 0\right)}{\left|m^{2 n} m_{0} m m_{2}\right|},\right. \tag{2.14}\\
& , \frac{\left|m_{1}\right|}{\left|m^{2 n} m_{2}\right|}\|f(0)\|, \frac{\psi\left(m^{n} x\right)}{\left|m^{2 n} m_{0} m m_{1} m_{2}\right|}, \\
& \\
& \left.\frac{\varphi\left(\frac{m_{1} a_{1} m^{n} x}{m_{0}}, \frac{m_{2} a_{2} m^{n} x}{m_{0}}\right)}{\left|m^{2 n} m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2 n} m^{2} m_{1} m_{2}\right|}\right\} .
\end{align*}
$$

It follows from (2.4), (2.5) and $|m|>1$ that the sequence $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}$ is Cauchy. Since Y is complete, we conclude that $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}$ is convergent. Set $Q(x)=\lim _{n \rightarrow \infty}\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}$, Now, from the inequalities (2.13) and (2.14), one gets the inequalities

$$
\begin{align*}
\left\|\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)\right\| \leq & \max \left\{\left\|\frac{f\left(m^{j} x\right)}{m^{2 j}}-\frac{f\left(m^{j+1} x\right)}{m^{2(j+1)}}\right\|: 0 \leq j \leq n-1\right\} \\
\leq & \max \left\{\frac{\varphi\left(m^{j} x, 0\right)}{\left|m^{2 j} m_{0} m m_{2}\right|}, \frac{\left|m_{1}\right|}{\left|m^{2 j} m_{2}\right|}\|f(0)\|, \frac{\psi\left(m^{j} x\right)}{\left|m^{2 j} m_{0} m m_{1} m_{2}\right|}\right. \tag{2.15}\\
& \left.\frac{\varphi\left(\frac{m_{1} a_{1} m^{j} x}{m_{0}}, \frac{m_{2} a_{2} m^{j} x}{m_{0}}\right)}{\left|m^{2 j} m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2 j} m^{2} m_{1} m_{2}\right|}: 0 \leq j \leq n-1\right\} .
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (2.15) we find that the mapping Q satisfies the inequality (2.8).

Besides, we claim that the mapping Q satisfies the generalized Euler-Lagrange equation. In fact, it is clear from (2.6) that the following inequality

$$
\begin{equation*}
\left\|D_{m_{1}, m_{2}}^{a_{1}, a_{2}} f\left(m^{n} x, m^{n} y\right)\right\| \leq \frac{1}{\left|m^{2 n}\right|} \varphi\left(m^{n} x, m^{n} y\right) \tag{2.16}
\end{equation*}
$$

holds for all $x, y \in X$ and $n \in \mathbb{N}$. Taking the limit $n \rightarrow \infty$ we obtain from (2.4) that $D_{m_{1}, m_{2}}^{a_{1}, a_{2}} Q(x, y)=0$.

Now let $\widehat{Q}: X \rightarrow X$ be another generalized Euler-Lagrange mapping satisfying the equation $D_{m_{1}, m_{2}}^{a_{1}, a_{2}} \widehat{Q}(x, y)=0$ and the inequality

$$
\begin{aligned}
&\|f(x)-\widehat{Q}(x)\| \leq \sup \left\{\frac{\varphi\left(m^{n} x, 0\right)}{\left|m^{2 n}\right|\left|m_{0} m m_{2}\right|}, \frac{\left|m_{1}\right|| | f(0) \|}{\left|m^{2 n}\right|\left|m_{2}\right|}, \frac{\psi\left(m^{n} x\right)}{\left|m^{2 n}\right|\left|m_{0} m m_{1} m_{2}\right|}\right., \\
&\left.\frac{\varphi\left(\frac{m_{1} a_{1} m^{n} x}{m_{0}}, \frac{m_{2} a_{2} m^{n} x}{m_{0}}\right)}{\left|m^{2 n}\right|\left|m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2 n} m^{2} m_{1} m_{2}\right|}: n \in \mathbb{N}\right\} .
\end{aligned}
$$

Since $Q(x)=\frac{Q\left(m^{n} x\right)}{m^{2 n}}, \widehat{Q}(x)=\frac{\widehat{Q}\left(m^{n} x\right)}{m^{2 n}}$ for all $x \in G$ and all $n \in \mathbb{N}$. Thus we have

$$
\begin{aligned}
&\|Q(x)-\widehat{Q}(x)\|=\left\|\frac{Q\left(m^{k} x\right)}{m^{2 k}}-\frac{\widehat{Q}\left(m^{k} x\right)}{m^{2 k}}\right\| \\
& \leq \max \left\{\frac{1}{\left|m^{2 k}\right|}\left\|Q\left(m^{k} x\right)-f\left(m^{k} x\right)\right\|, \frac{1}{\left|m^{2 k}\right|}\left\|\widehat{Q}\left(m^{k} x\right)-f\left(m^{k} x\right)\right\|\right\} \\
& \leq \sup \left\{\frac{\varphi\left(m^{n+k} x, 0\right)}{\left|m^{2(n+k)}\right|\left|m_{0} m m_{2}\right|}, \frac{\left|m_{1}\right|\|f(0)\|}{\left|m^{2(n+k)} \| m_{2}\right|}, \frac{\psi\left(m^{n+k} x\right)}{\left|m^{2(n+k)} \| m_{0} m m_{1} m_{2}\right|},\right. \\
&\left.\frac{\varphi\left(\frac{m_{1} a_{1} m^{n+k} x}{m_{0}}, \frac{m_{2} a_{2} m^{n+k} x}{m_{0}}\right)}{\left|m^{2(n+k)}\right|\left|m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\mid m^{2(n+k) m^{2} m_{1} m_{2} \mid}}: n \in \mathbb{N}\right\} \\
&= \sup \left\{\frac{\varphi\left(m^{j} x, 0\right)}{\left|m^{2 j}\right|\left|m_{0} m m_{2}\right|}, \frac{\left|m_{1}\right|\|f(0)\|}{\left|m^{2 j}\right| m_{2} \mid}, \frac{\psi\left(m^{j} x\right)}{\left|m^{2 j}\right|\left|m_{0} m m_{1} m_{2}\right|},\right. \\
&\left.\frac{\varphi\left(\frac{m_{1} a_{1} m^{j} x}{m_{0}}, \frac{m_{2} a_{2} m^{j} x}{m_{0}}\right)}{\left|m^{2 n}\right|\left|m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2 j} m^{2} m_{1} m_{2}\right|}: j \geq k\right\} .
\end{aligned}
$$

If $k \rightarrow \infty$ we have $Q=\widehat{Q}$.
2.3. Theorem. Let $\varphi: X \times X \rightarrow[0, \infty)$ and $\psi: X \rightarrow[0, \infty)$ be two functions such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|m|^{2 n} \varphi\left(\frac{x}{m^{n}}, \frac{y}{m^{n}}\right)=0 \quad(x, y \in X) \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|m|^{2 n} \psi\left(\frac{x}{m^{n}}\right)=0 \quad(x \in X) \tag{2.18}
\end{equation*}
$$

where, $m=\frac{\left(m_{1}+m_{2}\right)\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}{m_{1} m_{2}+1}$ and $0<|m|<1$ for any fixed pair $\left(a_{1} ; a_{2}\right)$ of nonzero reals and any fixed pair $\left(m_{1} ; m_{2}\right)$ of positive reals, and $f: X \rightarrow Y$ is a mapping satisfying

$$
\begin{equation*}
\left\|D_{m_{1}, m_{2}}^{a_{1}, a_{2}} f(x, y)\right\| \leq \varphi(x, y) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|m_{1}^{2} m_{2} f\left(a_{1} x\right)+m_{1} f\left(m_{2} a_{2} x\right)-m_{0}^{2} m_{2} f\left(\frac{m_{1}}{m_{0}} a_{1} x\right)-m_{0}^{2} m_{1} f\left(\frac{m_{2}}{m_{0}} a_{2} x\right)\right\| \leq \psi(x) \tag{2.20}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique generalized Euler-Lagrange mapping Q : $X \rightarrow Y$ such that

$$
\begin{array}{r}
\|f(x)-Q(x)\| \leq \sup \left\{\frac{\left|m^{2 n+1}\right| \varphi\left(\frac{x}{m^{n}}, 0\right)}{\left|m_{0} m m_{2}\right|}, \frac{\left|m^{2 n}\right|\left|m_{1}\right|\|f(0)\|}{\left|m_{2}\right|}, \frac{\left|m^{2 n+1}\right| \psi\left(\frac{x}{m^{n}}\right)}{\left|m_{0} m m_{1} m_{2}\right|}\right. \tag{2.21}\\
\left.\frac{\left|m^{2 n}\right| \varphi\left(\frac{m_{1} a_{1} x}{m^{n} m_{0}}, \frac{m_{2} a_{2} x}{m^{n} m_{0}}\right)}{\left|m^{2} m_{1} m_{2}\right|}, \frac{\mid m^{2 n+2}\|f(0)\|}{\left|m_{1} m_{2}\right|}: n \in \mathbb{N}\right\} .
\end{array}
$$

Proof. Using the same method as in Theorem 2.2, we conclude that

$$
Q(x)=\lim _{n \rightarrow \infty}\left\{m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\}
$$

is the unique Euler-Lagrange mapping satisfying (2.21).
In the next theorem we consider the case that $m=1$.
2.4. Theorem. Assume that $f: X \rightarrow Y$ and $\phi: X \times X \rightarrow[0, \infty)$ are two mappings for which
(2.22) $\left\|D_{m_{1}, m_{2}}^{a_{1}, a_{2}} f(x, y)\right\| \leq \phi(x, y)$
holds for all $x, y \in X$. Suppose that $m:=\frac{\left(m_{1}+m_{2}\right)\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}{m_{1} m_{2}+1}=1, m_{2} a_{2}=m_{1} a_{1}$, and if $|l|>1$ then

$$
\lim _{n \rightarrow \infty} \frac{\phi\left(l^{n} x, l^{n} x\right)}{|l|^{2 n}}=0
$$

(if $|l|<1$, then $\lim _{n \rightarrow \infty}|l|^{2 n} \phi\left(\frac{x}{l^{n}}, \frac{x}{l^{n}}\right)=0$), where $l:=a_{1}+a_{2}$ is given with $|l| \neq 0,1$. Then there exists a unique generalized Euler-Lagrange quadratic mapping $Q: X \rightarrow Y$ satisfying $D_{m_{1}, m_{2}}^{a_{1}, a_{2}} Q(x, y)=0$ and

$$
\|f(x)-Q(x)\| \leq \begin{cases}\sup \left\{\frac{\phi\left(l^{n} x, l^{n} x\right)}{|l|^{2 n+2}\left|m_{1} m_{2}\right|}, \frac{\|f(0)\|}{|l|^{2 n+2}\left|m_{1} m_{2}\right|}: n \in \mathbb{N}\right\} & \text { if }|l|>1, \\ \sup \left\{\frac{|l|^{2 n+2}}{\left|m_{1} m_{2}\right|} \phi\left(\frac{x}{l^{n}}, \frac{x}{l^{n}}\right), \frac{|l|^{2 n+2}\|f(0)\|}{m_{1} m_{2} \mid}: n \in \mathbb{N}\right\} & \text { if }|l|<1 .\end{cases}
$$

Moreover, if there exists a mapping $\psi: X \rightarrow[0, \infty)$, then the function f satisfies approximately the following fundamental functional equation

$$
\left\|m_{1}^{2} m_{2} f\left(a_{1} x\right)+m_{1} f\left(m_{2} a_{2} x\right)-m_{0}^{2} m_{2} f\left(\frac{m_{1}}{m_{0}} a_{1} x\right)-m_{0}^{2} m_{1} f\left(\frac{m_{2}}{m_{0}} a_{2} x\right)\right\| \leq \psi(x),
$$

and if $|l|>1$, then
(2.23) $\lim _{n \rightarrow \infty} \frac{\psi\left(l^{n} x\right)}{|l|^{2 n}}=0$
(if $|l|<1$, then $\lim _{n \rightarrow \infty}|l|^{2 n} \psi\left(\frac{x}{l \mid n}\right)=0$) holds for all $x \in X$.
Proof. From the fact that $m:=\frac{\left(m_{1}+m_{2}\right)\left(m_{1} a_{1}^{2}+m_{2} a_{2}^{2}\right)}{m_{1} m_{2}+1}=1$ and $m_{2} a_{2}=m_{1} a_{1}$, we have

$$
\frac{m_{1} m_{2}+1}{m_{1} m_{2}}=\frac{m_{1}^{2} a_{1}+a_{2}}{m_{1}^{2} a_{1}}=\left(a_{1}+a_{2}\right)^{2} .
$$

Replacing y by x in (2.22), we obtain

$$
\left\|f(l x)-l^{2} f(x)\right\| \leq \max \left\{\frac{\phi(x, x)}{\left|m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m_{1} m_{2}\right|}\right\}
$$

and so

$$
\left\|\frac{f\left(l^{n+1} x\right)}{l^{2 n+2}}-\frac{f\left(l^{n} x\right)}{l^{2 n}}\right\| \leq \max \left\{\frac{\phi\left(l^{2 n} x, l^{2 n} x\right)}{|l|^{2 n+2}\left|m_{1} m_{2}\right|}, \frac{\|f(0)\|}{|l|^{2 n+2}\left|m_{1} m_{2}\right|}\right\} \text { if }|l|>1
$$

and

$$
\left\|l^{2 n+2} f\left(\frac{x}{l^{n+1}}\right)-l^{2 n} f\left(\frac{x}{l^{n}}\right)\right\| \leq \max \left\{|l|^{2 n+2} \frac{\phi\left(\frac{x}{l^{2 n}}, \frac{x}{l^{2 n}}\right)}{\left|m_{1} m_{2}\right|},|l|^{2 n+2} \frac{\|f(0)\|}{\left|m_{1} m_{2}\right|}\right\}
$$

for all $x \in X$ and nonnegative integers n.
Now by a similar process to the proof of our previous theorems we may find that the sequences $\left\{\frac{f\left(l^{n} x\right)}{l^{2 n}}\right\}$, when $|l|>1$, and $\left\{l^{2 n} f\left(\frac{x}{l^{n}}\right)\right\}$, when $|l|>1$, are Cauchy and so are convergent, and

$$
Q(x):= \begin{cases}\lim _{n \rightarrow \infty} \frac{f\left(l^{n} x\right)}{l^{2 n}} & \text { if }|l|>1, \\ \lim _{n \rightarrow \infty} l^{2 n} f\left(\frac{x}{l^{n}}\right) & \text { if }|l|<1,\end{cases}
$$

has our desired properties.
2.5. Corollary. Let $|m| \neq 1$, and $\rho:[0, \infty) \rightarrow[0, \infty)$ be defined by

$$
\rho(t)= \begin{cases}\frac{|m|^{2 n}}{n+1} 1 & \text { if } t=|m|^{n} r,|m|>1, r<|m|, n \in \mathbb{N} \cup\{0\}, r>0 \\ \frac{|m|^{2 n}(n+1)}{} & \text { if } t=\frac{r}{|m|^{n}}, 0<|m|<1, r<|m|, n \in \mathbb{N} \cup\{0\}, r>0, \\ t & \text { otherwise }\end{cases}
$$

Suppose that $\delta_{1}, \delta_{2}>0, X$ is a normed space and $f: X \rightarrow Y$ fulfills the inequalities

$$
\left\|D_{m_{1}, m_{2}}^{a_{1}, a_{2}} f(x, y)\right\| \leq \delta_{1}(\rho(\|x\|)+\rho(\|y\|)) \quad(x, y \in X)
$$

and

$$
\begin{align*}
\| m_{1}^{2} m_{2} f\left(a_{1} x\right)+m_{1} f\left(m_{2} a_{2} x\right) & -m_{0}^{2} m_{2} f\left(\frac{m_{1}}{m_{0}} a_{1} x\right)-m_{0}^{2} m_{1} f\left(\frac{m_{2}}{m_{0}} a_{2} x\right) \| \tag{2.24}\\
\leq & \delta_{2} \rho(\|x\|) .
\end{align*}
$$

Then there exists a unique generalized Euler-Lagrange mapping $Q: G \rightarrow X$ such that if $|m|>1$, then

$$
\begin{aligned}
\|f(x)-Q(x)\| \leq \sup \left\{\frac{\varphi(x, 0)}{\left|m_{0} m m_{2}\right|},\right. & \frac{\left|m_{1}\right||\mid f(0) \|}{\left|m_{2}\right|}, \frac{\psi(x)}{\left|m_{0} m m_{1} m_{2}\right|} \\
& \left.\frac{\varphi\left(\frac{m_{1} a_{1} x}{m_{0}}, \frac{m_{2} a_{2} x}{m_{0}}\right)}{\left|m^{2} m_{1} m_{2}\right|}, \frac{\|f(0)\|}{\left|m^{2} m_{1} m_{2}\right|}\right\}
\end{aligned}
$$

and if $0<|m|<1$, then

$$
\begin{aligned}
\|f(x)-Q(x)\| \leq \sup \left\{\frac{|m| \varphi\left(\frac{x}{m^{n}}, 0\right)}{\left|m_{0} m m_{2}\right|},\right. & \frac{\left|m_{1}\right||\mid f(0) \|}{m_{2} \mid}, \frac{|m| \psi(x)}{\left|m_{0} m m_{1} m_{2}\right|}, \\
& \left.\frac{\left\lvert\, \varphi\left(\frac{m_{1} a_{1} x}{m_{0}}, \frac{m_{2} a_{2} x}{m_{0}}\right)\right.}{\left|m^{2} m_{1} m_{2}\right|}, \frac{\mid m^{2}\|f(0)\|}{\left|m_{1} m_{2}\right|}\right\} .
\end{aligned}
$$

2.6. Remark. The hypotheses in Corollary 2.5 give us an example for which the crucial assumption $\Sigma_{i=0}^{\infty} \frac{\varphi\left(m^{i} x, m^{i} y\right)}{m^{2 i}}<\infty$ in the main theorem of [17] does not hold on balls of X of the radius $r>0$. Hence our results in the setting of non-Archimedean normed spaces are different from those of [17].

Acknowledgement

The authors would like to thank the referees for giving useful suggestions and comments for the improvement of this paper.

References

[1] Arriola, L. M. and Beyer, W. A. Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31, 125-132, 2005/2006.
[2] Cho, Y. J., Park, C. and Saadati, R. Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Letters 10, 1238-1242, 2010.
[3] Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type (Hadronic Press, Palm Harbor, Florida, 2003).
[4] Forti, G. L. Hyers-Ulam stability of functional equations in several variables Aequationes Math. 50, 143-190, 1995.
[5] Hyers, D. H. and Rassias, Th. M. Approximate homomorphisms, Aequationes Math. 44, 125-153, 1992.
[6] Hyers, D.H., Isac, G. and Rassias, Th. M. Stability of Functional Equations in Several Variables (Birkhäuser, Basel, 1998).
[7] Jun, K. and Kim, H. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274, 867-878, 2002.
[8] Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis (Hadronic Press lnc., Palm Harbor, Florida, 2001).
[9] Lee, Y. and Chung, S. Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Letters 21, 694-700, 2008.
[10] Kim, H. and Rassias, J. M. Generalization of Ulam stability problem for Euler-Lagrange quadratic mappings, J. Math. Anal. Appl. 336, 277-296, 2007.
[11] Moslehian, M.S. The Jensen functional equation in non-Archimedian normed spaces, J. Funct. Spaces. Appl. 2 (1), 13-24, 2009.
[12] Moslehian, M. S. and Rassias, Th. M. Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math. 2, 325-334, 2007.
[13] Moslehian, M. S. and Sadeghi, Gh. Stability of tow type of cubic functional equations in non-Archimedian spaces, Real. Anal. Exchange 33, 375-383, 2008.
[14] Rassias, J. M. On the stability of the non-linear Euler-Lagrange functional equation in real normed linear spaces, J. Math. Phys. Sci. 28, 231-235, 1994.
[15] Rassias, J. M. On the stability of the general Euler-Lagrange functional equation, Demonstratio Math. 29, 755-766, 1996.
[16] Rassias, J. M. Solution of the Ulam stability problem for Euler-Lagrange quadratic mapping, J. Math. Anal. Appl. 220, 613-639, 1998.
[17] Rassias, J. M. On the stability of the multi-dimensional Euler-Lagrange functional equation, J. Indian Math. Soc. 66, 1-9, 1999.
[18] Rassias J. M. and Rassias, M. J. Refined Ulam stability for Euler-Lagrange type mappings in Hilbert spaces, Intern. J. Appl. Math. Stat. 7, 126-132, 2007.
[19] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62, 23-130, 2000.
[20] Rassias, Th. M. Functional Equations, Inequalities and Applications (Kluwer Academic Publishers, Dordrecht, Boston and London, 2003).

[^0]: *Department of Mathematics and Computer Sciences, Sabzevar Tarbiat Moallem University, Sabzevar, Iran. E-mail: (Gh. Sadeghi) ghadir54@yahoo. com (M. Janfada) m-janfada@sttu.ac.ir
 ${ }^{\dagger}$ Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran. E-mail: rsaadati@eml.cc
 ${ }^{\ddagger}$ Corresponding Author.
 ${ }^{\text {§ }}$ Section of Mathematics and Informatics, Pedagogical Department, National and Capodistrian University of Athens, 4, Agamemnonos St., Aghia Paraskevi, Athens 15342, Greece.
 E-mail: jrassias@primedu.uoa.gr

