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Abstract

In this paper, we prove the stability of Euler-Lagrange quadratic map-
pings in the framework of non-Archimedean normed spaces. Our results
in the setting of non-Archimedean normed spaces are different from the
results in the setting of normed spaces.
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1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: “When is it
true that a function which approximately satisfies a functional equation & must be close
to an exact solution of £7” If there exists an affirmative answer, we say that the equation
& is stable [4]. During the last decades several stability problems for various functional
equations have been investigated by numerous mathematicians. We refer the reader to
the survey articles [4, 5, 8, 19] and monographs [3, 6, 9, 10, 20], and references therein.

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| -] from K into [0, 00) such that |r| = 0 if and only if r = 0, |rs| = |r|[s|, and |r + s| <
max{|r|,|s|} for all r,s € K. Clearly |1/ = | —1| =1 and |n| < 1 for all n € N. By the
trivial valuation we mean the mapping | - | taking everything but 0 into 1 and |0] = 0.
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Let X be a vector space over a field K with a non-Archimedean non-trivial valuation
|-|. A function || - || : X — [0,00) is called a non-Archimedean norm if it satisfies the
following conditions:

(i) ||z|| = 0 if and only if z = 0;
(ii) For any r € K,z € X, |lrz| = |r|||=||;
(iii) The strong triangle inequality (ultrametric); namely,

o+ yll < max{[|z], [[yll} (z,y € X).
Then (X, || - ) is called a non-Archimedean normed space. Due to the fact that
[#n — zm|| < max{llzji1 -zl : m < j <n—1}, (n>m)

holds, a sequence {z,} is Cauchy if and only if {zn4+1 — .} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we mean one
in which every Cauchy sequence is convergent.

For any nonzero rational number x, there exists a unique integer n, € Z such that
x = ¢p"*, where a and b are integers not divisible by p. Then |z]p := p~™* defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric d(z,y) = |[x—y|p
is denoted by Q,, which is called the p-adic number field.

In [1], the authors investigated stability of approximate additive mappings f : Q, — R.
In [11, 12, 13], the stability of Cauchy, quadratic and cubic functional equations were
investigated in the context of non-Archimedean normed spaces.

In this paper, by following some ideas from [2, 12, 13, 16, 17, 18], we establish the
stability of Euler-Lagrange equations in the setting of non-Archimedean normed spaces.

Throughout the paper, we assume that X is a vector space and Y is a complete
non-Archimedean normed space.

2. Stability results

The functional equation f(xz 4+ y) + f(x —y) = 2f(z) + 2f(y) is called the quadratic
functional equation. In particular, every solution of the quadratic functional equation is
said to be a quadratic mapping. J. M. Rassias introduced the Fuler-Lagrange quadratic
mapping,

(21)  flar + azy) + flazz — ary) = (af + a3)[f () + f(y)],
see [14, 15].

J. M. Rassias introduced the generalized pertinent Fuler-Lagrange quadratic mappings
via his paper [16] and investigated the stability problem for the following generalized
functional equation
(22)  mimaQ(ar1z + azy) + Q(m2azx — miary) = (miaf +m2a3)[m2Q(z) + m1Q(y)],

for all vectors x,y € X, any fixed pair (a1, a2) of nonzero reals and any fixed pair (m1,m2)
of positive reals. Consider a nonlinear mapping @ : X — Y satisfying the fundamental
Fuler-Lagrange functional equation

m m
(2.3) m%mgQ(alx) + m1Q(maazz) = mgmgQ(m—;alx) + mgle(m—iagsc),

2 2
. _ mimag+1 _ (m1+m2)(m1a1+m2a2)
with mo = Rl and m = T

a1, a2 and any fixed positive reals mi, ma.

for all z € X, any fixed nonzero reals

A nonlinear mapping @ : X — Y is a called generalized Euler-Lagrange quadratic

if it satisfies (2.2) and (2.3). It is said that the nonlinear mappings Q : X — Y, and
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5 : X — Y are 2-dimensional Fuler-Lagrange quadratic weights of the first form if we
have
_ m%mgQ(Z—éalm) + m%m1Q(m—§a2x)

Q) = Ny ;

mima(mia? + mea3)

and

5(1:) _ mimaQ(a1z) + Q(ngazcc)

ma(mia? + moa2)
for all z € X.

2.1. Lemma. ([16]) Let Q : X — Y be a generalized Euler-Lagrange quadratic mapping
satisfying (2.2). If m # 1, then we have

Q(0) =0, Q(m"x) =m™ Q(x)
for all x € X and all integers n € 7Z. |

Suppose that f : X — Y is a mapping. We define a generalized Fuler-Lagrange
difference operator Dpl%2, of equation (2.2) as

Dbz f(x,y) == mamaf(arz + a2y) + f(maasz — mia1y)
— (m1ai + maa3)[maf(z) + m1f(y)].

In this section, we prove the stability of the generalized Euler-Lagrange quadratic func-
tional equation in non-Archimedean normed spaces.

2.2. Theorem. Let ¢ : X x X — [0,00) and ¢ : X — [0,00) be functions such that

p(m"z,m"y)

(2.4) nhﬁn;o EIED =0 (z,y€X)
and
25  1im 270 g (e x),

n— o0 |m|2"

(m1+ma)(myaf+maal
where, m = ( )

Tt T and |m| > 1 for any fized pair (a1;az2) of nonzero reals
and any fized pair (m1;me) of positive reals. Suppose that f : X — Y is a mapping
satisfying

(2:6)  [[1Dmy s f (@ 9)|| < (2, 9),
for all z,y € X, and
m m
(2.7)  Im3maf(arz) + mif(measz) — mémzf(m—lalx) - m(z)mlf(m_za2x) | < o).
0 0
Then there exists a unique generalized Euler-Lagrange mapping Q : X — Y such that

||f(:c)—Q(x)||gsup{ p(m"2,0)  |mi|[fO)]  d(m"z)

[m2n|[mommsa|’ [m?*||msa] 7 [m2"|[mommima|’

1)l :neNU{O}}.

(2.8)

(mlalm"z mgagm"Z)
¥ mo ) mo

[m27|/m2mima| 7 |m2m2mims|

Proof. Observe that the functional inequality (2.7) can be written as follows:

29  [F(=) - F@) < LG B ) IS

[mima(mia? +mea)| ~ |mommima|
Replacing = and y by 0 in (2.6) we have
[mamz f(0) + f(0) — mom(m1 +ma) f(0)|| < #(0,0),
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or

210 1£O)] < 2(0,0)

(m1+ma+1)(m—1)|

Moreover substituting y = 0 in (2.6), one concludes the functional inequality

lmimaf(a1z) + f(meazz) — mom[ma f(x) + m1 f(0)]|| < o(z,0)

Fi) - ) T ¢(z,0) _ _p(x,0)

@) - S(@) - 2O < A D) D)
Hence

@) - f@)| gmax{H?m—f( )50 H}
(2.11)

< max { A2 '"“'Hf(mn}.

[momma|” [ma]

In addition, replacing x,y in (2.6) by and

tional inequality

oo 50— [ (2502 (2225

mia maa
<<,0( 11:0 22%’)7

)

my aolx respectively, one gets the func-

moag®
mo

mo mo

or

f(m:c) f(()) _ miai maaz2

H m? | mPmama fe)| = mmamal ¥\ Tme " Tmo )
So

f(mz) = 1 miai | maaz £l
2.12 - < ‘
@12 |20 )| < max { e (it ) O

Using the functional inequalities (2.9), (2.11) and (2.12), and the triangle inequality, we
have the basic inequality

Ta) - L)

m2

H@ - 1@ < max {1@) = Fl. [F ) - Tl
. < max { L0 Ly gy, )

|mommal|’ |ma| |mommama|’
At A A
[m2mama| 7 [mPmima| |
Replacing by m™z in (2.13) we obtain
fm"z)  f(m" )
m2n m2(n+1)
p(m2,0) |l b(ma)
< S . S
(2.14) < max { EORD O, )

p(rugimre, maanie) ()] }

|m2rm2mymea| T Im2rm2mymea|
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It follows from (2.4), (2.5) and |m| > 1 that the sequence {f( x)} is Cauchy. Since Y is

complete, we conclude that {M} is convergent. Set Q(z) = hmww{fﬂn";n’”) }, Now,
from the inequalities (2.13) and (2.14), one gets the inequalities

f(m flmlz)  f(m'*'a) ,
H m2" — J(@)|| < maxq || m2  m2G+D) [:0<j<n-1
o(m’z,0) |ma| Y(miz)
< ; - _—_—
(215) S max { |m23m0mm2|7 |m21m2| Hf( )” |m21momm1m2|
mi1a m]x moa m]:c
p(or=, =2 o) 0<j<n-1
|m2im2maima| T mEm2mame| T T 7 T )

Taking the limit as n — oo in (2.15) we find that the mapping Q satisfies the inequality
(2.8).

Besides, we claim that the mapping ) satisfies the generalized Euler-Lagrange equa-
tion. In fact, it is clear from (2.6) that the following inequality
a a n n 1 n n
(2.16) ([ D5, f(m" z, m™y)|| < th(m z,m"y)
holds for all z,y € X and n € N. Taking the limit n — co we obtain from (2.4) that
D, @, y) = 0.

Now let @ : X — X be another generalized Euler-Lagrange mapping satisfying the
equation D192 Q(x,y) = 0 and the inequality

|ﬂm—@@”§mm{ pm™2,0)  [mallfO)  (m"a)

[m2n|[mommea|” [m2*[|ma| * [m2"||memmama|’

miagm”x moasm"x
P B )] AnGN}

|m2n|/m2mima| ' [m2rm2mima|

Since Q(z) = m2" ) Q(x) = Q(m %) for all z € G and all n € N. Thus we have

Q(m*z) _Q(m'z)
HQ(JT) H - H mgk - m2k

1 k k 1 ~ k k

< max WHQ(m z) — f(m $)|\7m|\Q(m z) — f(m z)]|

o B0 IO )

— |m2(n+k) ||m0mm2| ’ |m2(n+k)||m2| ? |m2(n+k) ||m0mm1m2| ’
pe n+k pe n+k

SO( nlalmmo ac7 ngagmmo x)

[HOI :neN}

|2 R [[m2mama| T Im2 TR m2myms |

= sup { | w(m?z,0) |mal|| £(0)]| P(mix)

m2i||/mommea|’ |m2i|ma| ’ |m2i||mommimsa|’

miaim’xz moasmlz

p(rammls mamis) )| :j>k}

|m2n||m2mima| 7 |m2im2mimo| =

Ifk—)oowehaveQ:@. O
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2.3. Theorem. Let ¢ : X X X — [0,00) and ¢ : X — [0,00) be two functions such that

(2.17)  lim |m|2"<p( £ Y ):0 (z,y € X)
n— o0

mn ’ mn
and

(2.18)  lim |m|2"¢(i
n— oo

mn

):0 (z € X),

2 2
(mﬁmfyzl(’:l;ifmwﬁ and 0 < |m| < 1 for any fized pair (a1;a2) of nonzero

reals and any fized pair (m1;m2) of positive reals, and f : X — Y is a mapping satisfying
(2.19)  [|1Dm 5, f (2,9l < ol y)

and

(2.20) Hm?mgf(alcc) + ma f(maasz) — m§m2f<:—;a1m) — mgmlf(%zagm) H < ¢Y(x)

where, m =

for all x,y € X. Then there ezists a unique generalized Euler-Lagrange mapping Q :
X =Y such that

m* (G5, 0) m [malIF O] [m* ()

mh mn

uﬂm—wwmu<mm{'

|momma| |ma] " Imommams|
(2.21)

|m%w0$23%%%>h#“ﬂfwm.neN}

|m2mimsa| T [mams]

Proof. Using the same method as in Theorem 2.2, we conclude that
Q(z) = lim {mznf(i)}
n—oo mm
is the unique Euler-Lagrange mapping satisfying (2.21). (|
In the next theorem we consider the case that m = 1.

2.4. Theorem. Assume that f: X =Y and ¢: X x X — [0,00) are two mappings for
which

(2.22)  ||Dm 5, f (2, 9)| < d(2,y)

_ (mitmo)(miait+maal)

holds for all z,y € X. Suppose that m := T =1, mea2 = mia1, and
if 1] > 1 then

lim 200

n—oo |l|2n

(if |I] < 1, then limpooo [I*" (&, &) = 0), where | := a1 + ax is given with |I| # 0, 1.
Then there exists a unique generalized Euler-Lagrange quadratic mapping Q : X — Y
satisfying D% Q(z,y) =0 and

sup o™z, ") £ 0)]| ‘neN if |l > 1
@) - Q)| < 2 2 iymal” T+ 2fmama] |
IIf(x) (@) < J1]2n+2 x oz P20
sup (_7—)77%»61\1 Flil <1,
|m1m2| A m1m2|

Moreover, if there exists a mapping ¢ : X — [0, 00), then the function f satisfies approz-
imately the following fundamental functional equation

Hm%mgf(alsc) + ma f(meazz) — mgmgf(%alx) — mgmlf(:—iagx) H < Y(x),



Euler-Lagrange Quadratic Functional Equations in Non-Archimedean Spaces 577

and if |l| > 1, then

(223) 1m 20U g

n— oo |l|2n

(if 1| < 1, then limp—sco |l () = 0) holds for all z € X.

Proof. From the fact that m : = (matma)(maitmaad) _ =1 and moas = mia1, we have

mimo—+1
mima+1  mia +as 2
= 5 = (a1 + az) .

mime miay

Replacing y by z in (2.22), we obtain

£ (lz) — P f ()] < max{ $(z,x) |FO)I }

[mumol” [mymo|

and so

l2n+2 l2n

Hf ("lx)  fw)

‘ < o0, ) |f(0)] Fiews

|l|2n+2 |m1m2| ’ |l|2n+2 |m1m2

and

len+2f( T )_lznf(l%)H <m {|l|2n+2¢(_2_7_2_)7|l|2n+2 £ (0)]] }

Jn+1 |mima| |mimse]
if I <1
for all z € X and nonnegative integers n.
Now by a similar process to the proof of our previous theorems we may find that the
sequences {f(ll;f)}7 when |I| > 1, and {{*" (%)}, when |I| > 1, are Cauchy and so are
convergent, and

. [
Q) = limp,—s oo s if 1] > 1,
limpoo 2" f(Z) if 1] <1,
has our desired properties. O

2.5. Corollary. Let |m| # 1, and p : [0,00) — [0,00) be defined by

2n
o ift = |m|"r, |m| > 1, r <|m|, n € NU{0}, r >0,
p(t) = m ift =, 0<|m[ <1, r<|m|, ne NU{0}, 7 >0,
t otherwise.

Suppose that 61,92 > 0, X is a normed space and f: X — Y fulfills the inequalities
1D £ (@, )| < 01 (p(llzl) + p(llylD) (v € X)

and
Hm%mgf(alx) + ma f(measz) — mgmgf(%alx) — mgmlf(:—iagsc) H
< da2p([lz])-

Then there ezists a unique generalized Euler-Lagrange mapping @ : G — X such that if
|m| > 1, then

@) — 0@)| <Sup{ p(@,0)  [mllfO] __ ()

|mommea|’ |ma| 7 |mommima|’

(2.24)

At A }

[m2mima| 7 [m2mima|
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and if 0 < |m| < 1, then

Im|o(57,0) [malll ) |m|i(x)
|mommea| ma| " Imommama|’

1f(x) = Q)] < Sup{

(s ) [m?l£ 0 }

[m2mima| 7 |mama|

2.6. Remark. The hypotheses in Corollary 2.5 give us an example for which the crucial
miz.miy)

assumption 252, £ —5 < o0 in the main theorem of [17] does not hold on balls of X
of the radius r > 0. Hence our results in the setting of non-Archimedean normed spaces
are different from those of [17].
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