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Abstract

In this paper, we prove the stability of Euler-Lagrange quadratic map-
pings in the framework of non-Archimedean normed spaces. Our results
in the setting of non-Archimedean normed spaces are different from the
results in the setting of normed spaces.
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1. Introduction and preliminaries

A classical question in the theory of functional equations is the following: “When is it
true that a function which approximately satisfies a functional equation E must be close
to an exact solution of E?” If there exists an affirmative answer, we say that the equation
E is stable [4]. During the last decades several stability problems for various functional
equations have been investigated by numerous mathematicians. We refer the reader to
the survey articles [4, 5, 8, 19] and monographs [3, 6, 9, 10, 20], and references therein.

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r| |s|, and |r + s| ≤
max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the
trivial valuation we mean the mapping | · | taking everything but 0 into 1 and |0| = 0.
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Let X be a vector space over a field K with a non-Archimedean non-trivial valuation
| · |. A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if it satisfies the
following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) For any r ∈ K,x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) The strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1}, (n > m)

holds, a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we mean one
in which every Cauchy sequence is convergent.

For any nonzero rational number x, there exists a unique integer nx ∈ Z such that
x = a

b
pnx , where a and b are integers not divisible by p. Then |x|p := p−nx defines a non-

Archimedean norm onQ. The completion of Q with respect to the metric d(x, y) = |x−y|p
is denoted by Qp, which is called the p-adic number field.

In [1], the authors investigated stability of approximate additive mappings f : Qp → R.
In [11, 12, 13], the stability of Cauchy, quadratic and cubic functional equations were
investigated in the context of non-Archimedean normed spaces.

In this paper, by following some ideas from [2, 12, 13, 16, 17, 18], we establish the
stability of Euler-Lagrange equations in the setting of non-Archimedean normed spaces.

Throughout the paper, we assume that X is a vector space and Y is a complete
non-Archimedean normed space.

2. Stability results

The functional equation f(x + y) + f(x − y) = 2f(x) + 2f(y) is called the quadratic
functional equation. In particular, every solution of the quadratic functional equation is
said to be a quadratic mapping. J.M. Rassias introduced the Euler-Lagrange quadratic
mapping,

(2.1) f(a1x+ a2y) + f(a2x− a1y) =
(
a
2
1 + a

2
2

)
[f(x) + f(y)],

see [14, 15].

J.M. Rassias introduced the generalized pertinent Euler-Lagrange quadratic mappings
via his paper [16] and investigated the stability problem for the following generalized
functional equation

(2.2) m1m2Q(a1x+ a2y)+Q(m2a2x−m1a1y) =
(
m1a

2
1 +m2a

2
2

)
[m2Q(x)+m1Q(y)],

for all vectors x, y ∈ X, any fixed pair (a1, a2) of nonzero reals and any fixed pair (m1,m2)
of positive reals. Consider a nonlinear mapping Q : X → Y satisfying the fundamental
Euler-Lagrange functional equation

(2.3) m
2
1m2Q(a1x) +m1Q(m2a2x) = m

2
0m2Q

(
m1

m0
a1x

)
+m

2
0m1Q

(
m2

m0
a2x

)
,

with m0 = m1m2+1
m1+m2

, and m =
(m1+m2)(m1a

2
1+m2a

2
2)

m1m2+1
for all x ∈ X, any fixed nonzero reals

a1, a2 and any fixed positive reals m1,m2.

A nonlinear mapping Q : X → Y is a called generalized Euler-Lagrange quadratic
if it satisfies (2.2) and (2.3). It is said that the nonlinear mappings Q : X → Y , and
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Q : X → Y are 2-dimensional Euler-Lagrange quadratic weights of the first form if we
have

Q(x) =
m2

0m2Q
(
m1

m0
a1x

)
+m2

0m1Q
(
m2

m0
a2x

)

m1m2(m1a21 +m2a22)
,

and

Q(x) =
m1m2Q(a1x) +Q(m2a2x)

m2(m1a21 +m2a22)

for all x ∈ X.

2.1. Lemma. ([16]) Let Q : X → Y be a generalized Euler-Lagrange quadratic mapping
satisfying (2.2). If m 6= 1, then we have

Q(0) = 0, Q(mn
x) = m

2n
Q(x)

for all x ∈ X and all integers n ∈ Z. �

Suppose that f : X → Y is a mapping. We define a generalized Euler-Lagrange
difference operator Da1,a2

m1,m2
of equation (2.2) as

D
a1,a2
m1 ,m2

f(x, y) := m1m2f(a1x+ a2y) + f(m2a2x−m1a1y)

− (m1a
2
1 +m2a

2
2)[m2f(x) +m1f(y)].

In this section, we prove the stability of the generalized Euler-Lagrange quadratic func-
tional equation in non-Archimedean normed spaces.

2.2. Theorem. Let ϕ : X ×X → [0,∞) and ψ : X → [0,∞) be functions such that

(2.4) lim
n→∞

ϕ(mnx,mny)

|m|2n
= 0 (x, y ∈ X)

and

(2.5) lim
n→∞

ψ(mnx)

|m|2n
= 0 (x ∈ X),

where, m =
(m1+m2)

(
m1a

2
1+m2a

2
2

)

m1m2+1
and |m| > 1 for any fixed pair (a1; a2) of nonzero reals

and any fixed pair (m1;m2) of positive reals. Suppose that f : X → Y is a mapping
satisfying

(2.6) ‖Da1,a2
m1 ,m2

f(x, y)‖ ≤ ϕ(x, y),

for all x, y ∈ X, and

(2.7) ‖m2
1m2f(a1x) +m1f(m2a2x)−m

2
0m2f

(
m1

m0
a1x

)
−m

2
0m1f

(
m2

m0
a2x

)
‖ ≤ ψ(x).

Then there exists a unique generalized Euler-Lagrange mapping Q : X → Y such that

(2.8)

‖f(x)−Q(x)‖ ≤ sup

{
ϕ(mnx, 0)

|m2n||m0mm2|
,
|m1|‖f(0)‖

|m2n||m2|
,

ψ(mnx)

|m2n||m0mm1m2|
,

ϕ(m1a1m
nx

m0
, m2a2m

nx

m0
)

|m2n||m2m1m2|
,

‖f(0)‖

|m2nm2m1m2|
: n ∈ N ∪ {0}

}

.

Proof. Observe that the functional inequality (2.7) can be written as follows:

(2.9) ‖f(x)− f(x)‖ ≤
ψ(x)

|m1m2(m1a21 +m2a22)|
=

ψ(x)

|m0mm1m2|
(x ∈ X).

Replacing x and y by 0 in (2.6) we have

‖m1m2f(0) + f(0)−m0m(m1 +m2)f(0)‖ ≤ ϕ(0, 0),
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or

(2.10) ‖f(0)‖ ≤
ϕ(0, 0)

|(m1 +m2 + 1)(m− 1)|
.

Moreover substituting y = 0 in (2.6), one concludes the functional inequality

‖m1m2f(a1x) + f(m2a2x)−m0m[m2f(x) +m1f(0)]‖ ≤ ϕ(x, 0)

or

‖f(x)− f(x)−
m1

m2
f(0)‖ ≤

ϕ(x, 0)

|m2(m1a21 +m2a22)|
=

ϕ(x, 0)

|m0mm2)|
.

Hence

(2.11)

‖f(x)− f(x)‖ ≤ max

{∥∥∥∥f(x)− f(x)−
m1

m2
f(0)

∥∥∥∥ ,
∥∥∥∥
m1

m2
f(0)

∥∥∥∥

}

≤ max

{
ϕ(x, 0)

|m0mm2|
,
|m1|

|m2|
‖f(0)‖

}
.

In addition, replacing x, y in (2.6) by m1a1x

m0
and m2a2x

m0
respectively, one gets the func-

tional inequality
∥∥∥∥m1m2f(mx) + f(0) −m0m

[
m2f

(
m1a1x

m0

)
+m1f

(
m2a2x

m0

)]∥∥∥∥

≤ ϕ
(
m1a1

m0
x,
m2a2

m0
x
)
,

or
∥∥∥∥
f(mx)

m2
+

f(0)

m2m1m2
− f(x)

∥∥∥∥ ≤
1

|m2m1m2|
ϕ

(
m1a1

m0
x,
m2a2

m0
x

)
.

So

(2.12)

∥∥∥∥
f(mx)

m2
− f(x)

∥∥∥∥ ≤ max

{
1

|m2m1m2|
ϕ

(
m1a1

m0
x,
m2a2

m0
x

)
,

‖f(0)‖

|m2m1m2|

}
.

Using the functional inequalities (2.9), (2.11) and (2.12), and the triangle inequality, we
have the basic inequality

(2.13)

∥∥∥∥
f(mx)

m2
− f(x)

∥∥∥∥ ≤ max

{
‖f(x)− f(x)‖, ‖f(x)− f(x)‖,

∥∥∥∥f(x)−
f(mx)

m2

∥∥∥∥

}

≤ max

{
ϕ(x, 0)

|m0mm2|
,
|m1|

|m2|
‖f(0)‖,

ψ(x)

|m0mm1m2|
,

ϕ(m1a1x

m0
, m2a2x

m0
)

|m2m1m2|
,

‖f(0)‖

|m2m1m2|

}

.

Replacing x by mnx in (2.13) we obtain

(2.14)

∥∥∥∥
f(mnx)

m2n
−
f(mn+1x)

m2(n+1)

∥∥∥∥

≤ max

{
ϕ(mnx, 0)

|m2nm0mm2|
,

|m1|

|m2nm2|
‖f(0)‖,

ψ(mnx)

|m2nm0mm1m2|
,

ϕ(m1a1m
nx

m0
, m2a2m

nx

m0
)

|m2nm2m1m2|
,

‖f(0)‖

|m2nm2m1m2|

}
.
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It follows from (2.4), (2.5) and |m| > 1 that the sequence { f(mnx)

m2n } is Cauchy. Since Y is

complete, we conclude that { f(mnx)

m2n } is convergent. Set Q(x) = limn→∞{ f(mnx)

m2n }, Now,
from the inequalities (2.13) and (2.14), one gets the inequalities

(2.15)

∥∥∥∥
f(mnx)

m2n
− f(x)

∥∥∥∥ ≤ max

{
‖
f(mjx)

m2j
−
f(mj+1x)

m2(j+1)
‖ : 0 ≤ j ≤ n− 1

}

≤ max

{
ϕ(mjx, 0)

|m2jm0mm2|
,

|m1|

|m2jm2|
‖f(0)‖,

ψ(mjx)

|m2jm0mm1m2|
,

ϕ(m1a1m
jx

m0
, m2a2m

jx

m0
)

|m2jm2m1m2|
,

‖f(0)‖

|m2jm2m1m2|
: 0 ≤ j ≤ n− 1

}
.

Taking the limit as n→ ∞ in (2.15) we find that the mapping Q satisfies the inequality
(2.8).

Besides, we claim that the mapping Q satisfies the generalized Euler-Lagrange equa-
tion. In fact, it is clear from (2.6) that the following inequality

(2.16) ‖Da1,a2
m1 ,m2

f(mn
x,m

n
y)‖ ≤

1

|m2n|
ϕ(mn

x,m
n
y)

holds for all x, y ∈ X and n ∈ N. Taking the limit n → ∞ we obtain from (2.4) that
Da1,a2

m1,m2
Q(x, y) = 0.

Now let Q̂ : X → X be another generalized Euler-Lagrange mapping satisfying the

equation Da1,a2
m1,m2

Q̂(x, y) = 0 and the inequality

‖f(x)− Q̂(x)‖ ≤ sup

{
ϕ(mnx, 0)

|m2n||m0mm2|
,
|m1|‖f(0)‖

|m2n||m2|
,

ψ(mnx)

|m2n||m0mm1m2|
,

ϕ(m1a1m
nx

m0
, m2a2m

nx

m0
)

|m2n||m2m1m2|
,

‖f(0)‖

|m2nm2m1m2|
: n ∈ N

}

.

Since Q(x) = Q(mnx)

m2n , Q̂(x) = Q̂(mnx)

m2n for all x ∈ G and all n ∈ N. Thus we have

‖Q(x)− Q̂(x)‖ =

∥∥∥∥
Q(mkx)

m2k
−
Q̂(mkx)

m2k

∥∥∥∥

≤ max

{
1

|m2k|
‖Q(mk

x)− f(mk
x)‖,

1

|m2k|
‖Q̂(mk

x)− f(mk
x)‖

}

≤ sup

{
ϕ(mn+kx, 0)

|m2(n+k)||m0mm2|
,

|m1|‖f(0)‖

|m2(n+k)||m2|
,

ψ(mn+kx)

|m2(n+k)||m0mm1m2|
,

ϕ(m1a1m
n+kx

m0
, m2a2m

n+kx

m0
)

|m2(n+k)||m2m1m2|
,

‖f(0)‖

|m2(n+k)m2m1m2|
: n ∈ N

}

= sup

{
ϕ(mjx, 0)

|m2j ||m0mm2|
,
|m1|‖f(0)‖

|m2j |m2|
,

ψ(mjx)

|m2j ||m0mm1m2|
,

ϕ(m1a1m
jx

m0
, m2a2m

jx

m0
)

|m2n||m2m1m2|
,

‖f(0)‖

|m2jm2m1m2|
: j ≥ k

}
.

If k → ∞ we have Q = Q̂. �
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2.3. Theorem. Let ϕ : X ×X → [0,∞) and ψ : X → [0,∞) be two functions such that

(2.17) lim
n→∞

|m|2nϕ
(
x

mn
,
y

mn

)
= 0 (x, y ∈ X)

and

(2.18) lim
n→∞

|m|2nψ
( x

mn

)
= 0 (x ∈ X),

where, m =
(m1+m2)(m1a

2
1+m2a

2
2)

m1m2+1
and 0 < |m| < 1 for any fixed pair (a1; a2) of nonzero

reals and any fixed pair (m1;m2) of positive reals, and f : X → Y is a mapping satisfying

(2.19) ‖Da1,a2
m1 ,m2

f(x, y)‖ ≤ ϕ(x, y)

and

(2.20)
∥∥∥m2

1m2f(a1x) +m1f(m2a2x)−m
2
0m2f

(
m1

m0
a1x

)
−m

2
0m1f

(
m2

m0
a2x

)∥∥∥ ≤ ψ(x)

for all x, y ∈ X. Then there exists a unique generalized Euler-Lagrange mapping Q :
X → Y such that

(2.21)

‖f(x)−Q(x)‖ ≤ sup

{
|m2n+1|ϕ( x

mn , 0)

|m0mm2|
,
|m2n||m1|‖f(0)‖

|m2|
,
|m2n+1|ψ( x

mn )

|m0mm1m2|
,

|m2n|ϕ(m1a1x

mnm0
, m2a2x

mnm0
)

|m2m1m2|
,
|m2n+2‖f(0)‖

|m1m2|
: n ∈ N

}

.

Proof. Using the same method as in Theorem 2.2, we conclude that

Q(x) = lim
n→∞

{
m

2n
f
( x

mn

)}

is the unique Euler-Lagrange mapping satisfying (2.21). �

In the next theorem we consider the case that m = 1.

2.4. Theorem. Assume that f : X → Y and φ : X ×X → [0,∞) are two mappings for
which

(2.22) ‖Da1,a2
m1 ,m2

f(x, y)‖ ≤ φ(x, y)

holds for all x, y ∈ X. Suppose that m :=
(m1+m2)(m1a

2
1+m2a

2
2)

m1m2+1
= 1, m2a2 = m1a1, and

if |l| > 1 then

lim
n→∞

φ(lnx, lnx)

|l|2n
= 0

(if |l| < 1, then limn→∞ |l|2nφ( x
ln
, x
ln
) = 0), where l := a1 + a2 is given with |l| 6= 0, 1.

Then there exists a unique generalized Euler-Lagrange quadratic mapping Q : X → Y

satisfying Da1,a2
m1,m2

Q(x, y) = 0 and

‖f(x)−Q(x)‖ ≤






sup

{
φ(lnx, lnx)

|l|2n+2|m1m2|
,

‖f(0)‖

|l|2n+2|m1m2|
: n ∈ N

}
if |l| > 1,

sup

{
|l|2n+2

|m1m2|
φ
( x
ln
,
x

ln

)
,
|l|2n+2‖f(0)‖

m1m2|
: n ∈ N

}
if |l| < 1.

Moreover, if there exists a mapping ψ : X → [0,∞), then the function f satisfies approx-
imately the following fundamental functional equation

∥∥∥m2
1m2f(a1x) +m1f(m2a2x)−m

2
0m2f

(m1

m0
a1x

)
−m

2
0m1f

(m2

m0
a2x

)∥∥∥ ≤ ψ(x),
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and if |l| > 1, then

(2.23) lim
n→∞

ψ(lnx)

|l|2n
= 0

(if |l| < 1, then limn→∞ |l|2nψ
(

x
|l|n

)
= 0) holds for all x ∈ X.

Proof. From the fact that m :=
(m1+m2)(m1a

2
1+m2a

2
2)

m1m2+1
= 1 and m2a2 = m1a1, we have

m1m2 + 1

m1m2
=
m2

1a1 + a2

m2
1a1

= (a1 + a2)
2
.

Replacing y by x in (2.22), we obtain

‖f(lx) − l
2
f(x)‖ ≤ max

{
φ(x, x)

|m1m2|
,
‖f(0)‖

|m1m2|

}

and so ∥∥∥∥
f(ln+1x)

l2n+2
−
f(lnx)

l2n

∥∥∥∥ ≤ max

{
φ(l2nx, l2nx)

|l|2n+2|m1m2|
,

‖f(0)‖

|l|2n+2|m1m2|

}
if |l| > 1

and
∥∥∥l2n+2

f
(

x

ln+1

)
− l

2n
f
(
x

ln

)∥∥∥ ≤ max

{
|l|2n+2 φ

(
x

l2n
, x
l2n

)

|m1m2|
, |l|2n+2 ‖f(0)‖

|m1m2|

}

if |l| < 1

for all x ∈ X and nonnegative integers n.

Now by a similar process to the proof of our previous theorems we may find that the

sequences { f(lnx)

l2n
}, when |l| > 1, and {l2nf( x

ln
)}, when |l| > 1, are Cauchy and so are

convergent, and

Q(x) :=





limn→∞

f(lnx)

l2n
if |l| > 1,

limn→∞ l2nf( x
ln
) if |l| < 1,

has our desired properties. �

2.5. Corollary. Let |m| 6= 1, and ρ : [0,∞) → [0,∞) be defined by

ρ(t) =






|m|2n

n+1
if t = |m|nr, |m| > 1, r < |m|, n ∈ N ∪ {0}, r > 0,

1
|m|2n(n+1)

if t = r
|m|n

, 0 < |m| < 1, r < |m|, n ∈ N ∪ {0}, r > 0,

t otherwise.

Suppose that δ1, δ2 > 0, X is a normed space and f : X → Y fulfills the inequalities

‖Da1,a2
m1 ,m2

f(x, y)‖ ≤ δ1 (ρ(‖x‖) + ρ(‖y‖)) (x, y ∈ X)

and

(2.24)

∥∥∥m2
1m2f(a1x) +m1f(m2a2x)−m

2
0m2f

(m1

m0
a1x

)
−m

2
0m1f

(m2

m0
a2x

)∥∥∥

≤ δ2ρ(‖x‖).

Then there exists a unique generalized Euler-Lagrange mapping Q : G → X such that if
|m| > 1, then

‖f(x)−Q(x)‖ ≤ sup

{
ϕ(x, 0)

|m0mm2|
,
|m1|‖f(0)‖

|m2|
,

ψ(x)

|m0mm1m2|
,

ϕ(m1a1x

m0
, m2a2x

m0
)

|m2m1m2|
,

‖f(0)‖

|m2m1m2|

}

,
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and if 0 < |m| < 1, then

‖f(x)−Q(x)‖ ≤ sup

{
|m|ϕ( x

mn , 0)

|m0mm2|
,
|m1|‖f(0)‖

m2|
,

|m|ψ(x)

|m0mm1m2|
,

|ϕ(m1a1x

m0
, m2a2x

m0
)

|m2m1m2|
,
|m2‖f(0)‖

|m1m2|

}
.

2.6. Remark. The hypotheses in Corollary 2.5 give us an example for which the crucial

assumption Σ∞
i=0

ϕ(mix,miy)

m2i <∞ in the main theorem of [17] does not hold on balls of X
of the radius r > 0. Hence our results in the setting of non-Archimedean normed spaces
are different from those of [17].
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