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Abstract

We compute via a comparison function technique, a new bound for the
existence interval of the initial value problem for a fractional differential
equation given by means of Caputo derivatives. We improve in this
way the estimate of the existence interval obtained very recently in the
literature.
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1. Introduction

Fractional calculus is a powerful tool which plays an important role in the modeling
of multi-scale problems.

Fractional differential equations have been found appropriate to describe the dynam-
ics of complex systems in several branches of science and engineering [30, 28, 15, 19]. In
the paper [14] a detailed discussion of this topic is made. Various applications, like in
the reaction kinetics of proteins, the anomalous electron transport in amorphous materi-
als, the dielectrical or mechanical relaxation of polymers, the modeling of glass-forming
liquids and others, are successfully performed in numerous papers. See the presentations
from [22, 28].

Several recent advancements in the theory and applications of non-integer differenti-
ation and integration are described in [29, 19, 8, 18, 10, 20, 21, 23, 24]. For instance,
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fractional Lagrangian and Hamiltonian treatments of the field and mechanical systems
are proposed by Băleanu and Muslih in [29, pp. 115 and following]. Other results con-
cerning the promising new theory of fractional variational principles can be found in the
contributions [1, 3, 4, 5, 6, 16, 25].

Let us consider the initial value problem for a fractional differential equation (FIVP)
below

(1.1)

{

Da
0+ (x− x0) (t) = f(t, x(t)), t > 0,

x(0) = x0,

where the nonlinearity f : D = [0, T ] × [x0 − b, x0 + b] → R is assumed continuous and
T, b > 0 and x0 are fixed real numbers.

The differential operator Da
0+ in problem (1.1) is the Riemann-Liouville differential

operator of order 0 < a < 1, namely

D
a
0+(u)(t) =

1

Γ(1− a)
·
d

dt





t
∫

0

u(s)

(t− s)a
ds



 ,

where Γ(1− a) =
∫ +∞

0
e−tt−adt is the Gamma function. See [15, p. 70].

The motivation for inserting the initial datum x0 into the differential operator comes
from the physical origin of such mathematical models, and the reader can find compre-
hensive details in this respect in [28, p. 80], [11, p. 230]. The Riemann-Liouville operator
with an inserted datum is called a Caputo differential operator — see [7], [15, p. 91].

Assuming that the FIVP has a solution x(t), the formulas Γ(a)Γ(1− a) = π

sinπa
and

∫ t

0

f(s, x(s)) ds =
sin πa

π

∫ t

0

1

(t− s)a

∫ s

0

f(τ, x(τ ))

(s− τ )1−a
dτ ds,

see [2, p. 196], allow us to rewrite (1.1) via an integration as

(1.2)

∫ t

0

1

Γ(1− a)(t− s)a

[

x(s)− x0 −
1

Γ(a)

∫ s

0

f(τ, x(τ ))

(s− τ )1−a
dτ

]

ds = 0,

where t > 0.

We can regard from now on, by means of (1.2), any solution of FIVP (1.1) as a
(continuous) solution of the singular integral equation

(1.3) x(t) = x0 +
1

Γ(a)

∫ t

0

f(s, x(s))

(t− s)1−a
ds, t ≥ t0,

and vice versa. This fact is established in a rigorous manner in [15, Theorem 3.24, pp.
199-200] (for γ = r = 0 in the original notation).

Given the generality of f , we can replace it with Γ(a)−1f , which means that we shall
be interested in solving the next integral equation

(1.4) x(t) = x0 +

∫ t

0

f(s, x(s))

(t− s)1−a
ds, t ≥ t0.

It has been established in [11], see also the paper [17, Theorem 3.1] and the comprehensive
monograph [12, Sections 6.1, 6.2], that the equation (1.4) possesses at least one continuous
solution defined throughout the interval [0, T ⋆], where

T
⋆ = min

{

T,

(

ab

M

) 1
a

}

, M = sup
(t,x)∈D

|f(t, x)|.

The same estimate was derived in [15, Theorem 3.26 (iii), p. 206] in the case of f being
Lipschitzian with respect to the second variable. See also the authoritative paper [11] for
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a comprehensive discussion about existence and uniqueness results and several important
numerical consequences.

The reason for the second term in the estimate of T ⋆ is a consequence of asking that
x(t) from (1.4) be in [x0 − b, x0 + b] for any t ≥ 0. Precisely,

|x(t)− x0| ≤

∫ t

0

|f(t− s, x(t− s)|
ds

s1−a
≤ M ·

ta

a
≤ b,

which implies that the solution of (1.1) can last for at most

(1.5) T
⋆ ≤

(

ab

M

) 1
a

units of t.

In some circumstances, however, it is possible to improve significantly the estimate
(1.5). We shall present here such a result, based on a comparison function technique.
This procedure has been inspired by some recent attempts in the same direction for
ordinary differential equations, see the contributions [26, 27]. Let us emphasize that
similar estimates can be provided for initial value problems involving the plethora of
fractional derivatives that are used nowadays to model various complex phenomena from
science and technology. We have refrained from presenting the most general conclusion
due to the unnecessary intricacies of such a task.

2. Estimate of T ⋆

Let us set several quantities first. We introduce p, q > 1 such that (1 − a)q < 1 and
1
p
+ 1

q
= 1. We also define

c =
1

1− (1− a)q
=

1

q
·

1
1
q
− 1 + a

=
1

q
·

1

a− 1
p

=
p

q
·

1

ap− 1

=
p− 1

ap− 1
,

C = cp−1, and

λ = [1− (1− a)q]
p

q
=

1− (1− a)q

q − 1
=

1
q
− 1 + a

1− 1
q

=
a− 1

p

1
p

= ap− 1.

We introduce next the continuous functions g : [0, T ] × [−b, b] → R and w : [0, b] →
[0,+∞) given by

g(t, y) = f(t, x0 + y), w(r) = sup{|g(s, y)| : s ∈ [0, T ], |y| ≤ r}.

We notice that w(0) = 0 if and only if f(·, x0) is identically null in [0, T ]. By assuming
that w(0) > 0, we introduce the continuous function W : [0, bp] → [0,+∞) via the
formula

W (r) =

∫ r

0

dv
[

w
(

v
1
p

)]p = p

∫ r
1
p

0

[

ξ

w(ξ)

]p
dξ

ξ
.

The proof of our estimate relies on the fixed point result known as the Leray-Schauder
alternative, see [13, Theorem 5.3, pp. 61-62].
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2.1. Theorem. Let P : N → N be a completely continuous (compact) operator acting
on the normed linear space N . Then, either there exists y ∈ N such that

y = P (y)

or the set

E(P ) = {y ∈ N : y = ηP (y) for a certain η ∈ (0, 1)}

is unbounded. �

We shall take N = C([0, T ⋆],R) with the usual sup-norm, where assuming w(0) > 0,

(2.1)

T
⋆ = min

{

T,

[

W (bp)

C

] 1
1+λ

}

= min







T,

[

(

ap− 1

p− 1

)p−1

· p

∫ b

0

ξp−1

[w(ξ)]p
dξ

] 1
ap







,

and

P (y)(t) =

∫ t

0

g(s, y(s))

(t− s)1−a
ds, t ∈ [0, T ⋆], y ∈ N.

The compactness of the operator P is standard, see [9] – where Schauder’s fixed point
theorem has been employed to prove local existence of solution for the FIVP (1.1) – and
[15, p. 139].

We can now state and prove our result.

2.2. Theorem. The following alternative is valid: either the FIVP (1.1) has the constant
solution x = x0 throughout [0, T ], or it has at least one (non-constant) solution x(t) in
[0, T ⋆], where T ⋆ is given by (2.1).

Proof. Assume that w(0) > 0. According to Theorem 2.1, it is enough to establish that
the set E(P ) is bounded.

Take y ∈ E(P ). Then, we have the estimates

|y(t)| ≤

∫ t

0

|g(s, y(s))|

(t− s)1−a
ds ≤

∫ t

0

w(|y(s)|)

(t− s)1−a
ds

≤

{
∫ t

0

[

1

(t− s)1−a

]q

ds

}
1
q

·

{
∫ t

0

[w(|y(s)|)]pds

}
1
p

=
[

t
1−(1−a)q

c
] 1

q
·

{∫ t

0

[w(|y(s)|)]pds

}
1
p

and

(2.2)

|y(t)|p ≤ c
p−1

t
λ ·

∫ t

0

[w(|y(s)|)]p ds

= Ct
λ
z(t), z(t) =

∫ t

0

[w(|y(s)|)]p ds,

for any t ∈ [0, T ⋆].

Fix now t0 ∈ (0, T ⋆]. We deduce that

z
′(t) = [w(|y(t)|)]p ≤

[

w
(

(Ct
λ
0z(t))

1
p

)]p

, t ∈ [0, t0],
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and

[αz(t)]′
[

w
(

(αz(t))
1
p

)]p ≤ α, α = Ct
λ
0 .

Integrating in [0, t0], we obtain

(2.3) W (αz(t)) ≤ αt

and also, by taking t = t0 in (2.3),

(2.4) W (Ct
λ
z(t)) ≤ Ct

1+λ ≤ C(T ⋆)1+λ ≤ W (bp)

for any t ∈ [0, T ⋆].

Since the function W : [0, bp] → [0,W (bp)] is bijective, by combining the estimates
(2.2), (2.4), we conclude that

||y||N = sup
s∈[0,T⋆]

|y(s)| ≤ b, y ∈ E(P ).

We have established the boundedness of E(P ). �

3. Comparison of the estimates (1.5) and (2.1)

Set x0, L > 0 and take

f(t, x) = Lx, (t, x) ∈ D.

Then, M = L(x0 + b) and w(r) = L(x0 + r) for any r ∈ [0, b].

We have to compare the quantities

H1(b) =

[

ab

L(x0 + b)

] 1
a

and

H2(b) =

[

(

ap− 1

p− 1

)p−1

·
p

Lp

∫ b

0

ξp−1

(x0 + ξ)p
dξ

] 1
ap

,

where b ≥ 0.

Introduce the quantities Qi(b) = [Hi(b)]
ap for b ≥ 0, where i = 1, 2. Then, we notice

that

(3.1) lim
b→+∞

Q1(b) =
(

a

L

)p

.

On the other hand, since for b ≥ x0 it is clear that
∫ b

x0

ξp−1

(x0 + ξ)p
dξ ≥

(

1

2

)p ∫ b

x0

dξ

ξ
=

(

1

2

)p

· log

(

b

x0

)

,

we obtain that

(3.2) lim
b→+∞

Q2(b) = +∞.

The formulas (3.1), (3.2) show that the estimate (2.1) is much better than its classi-
cal counterpart (1.5) for large values of b, similarly to the case of ordinary differential
equations, see the paper [26] and its references.
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