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Abstract

In the present paper, we have proposed a class of ratio – type estimators
for estimating the population mean Ȳ of the study variate y under
double sampling in the presence of non-response, where information
on the auxiliary variable is not known. For an appropriate weight a
and a good range of α values, it is found that the proposed class of
estimators is more efficient than some estimators which are obtained
by applying congenial values of a and α. Comparison of the proposed
class of estimators with other estimators is also worked out. Also the
good range of α is obtained empirically for different values of a and k.

Keywords: Study variate, Auxiliary variate, Non-response, Double sampling, Bias,
Mean squared error.
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1. Introduction

In most of the socio-economic studies, several variables are considered simultaneously.
For example, while conducting a household survey, the investigator may be interested in
studying characteristics such as number of wage earners, per capita income, land holding,
number of illiterate persons, number of females etc, see Tripathi and Khare [15, p. 2255].
For the study of several variables generally, we assume that information in most cases is
not obtained at the first attempt even after some call-backs. An estimate obtained from
such incomplete data may be misleading, especially when the respondents differ from the
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non-respondents because the estimates can be biased, see Okafor and Lee [7, p. 183].
Hansen and Hurwitz [2] suggested a technique for adjusting non-response to address the
bias problem. Their idea is to take a sub sample from the non-respondents to get an
estimate for the subpopulation represented by the non-respondents. Using the Hansen
and Hurwitz [2] procedure, Cochran [1] suggested the ratio and regression estimators of
the population mean of the study variable, in which information on the auxiliary variable
is obtained from all the sample units, and the population mean of the auxiliary variable
is known, while some sample units failed to supply information on the study variable.
Later, various authors have paid their attention towards the estimation procedure for the
population mean in the presence of non-response using an auxiliary character x, including
Rao [8,9], Khare and Srivastava [3,5] and Singh and Kumar [11].

When the population mean X̄ of the auxiliary character x is not known, Khare and
Srivastava [4], Okafor and Lee [7], Singh and Kumar [10], Tabasum and Khan [13, 14]
have applied the Hansen and Hurwitz [2] technique for treating the non-response to
double sampling for ratio and regression estimation.

In this paper, for the case where the population mean X̄ of the auxiliary character
x is not known in advance, and motivated by Sisodia and Dwivedi [12], a class of ratio
and product estimators is presented in the presence of non-response. The expressions
for bias, mean squared error (MSE) and a condition for attaining minimum MSE of the
suggested class of estimators have been obtained under a large sample approximation.
We have also obtained the optimum values of the first and second phase sample and
sub sampling fraction which minimize the survey cost for specified precision. Numerical
illustration is given in support of the present study.

2. The suggested class of estimators

Let y and x be the main and the auxiliary characters with population means Ȳ and
X̄ respectively. When non-response occurs, the sub sampling procedure of Hansen and
Hurwitz [2] is an alternative to call-backs and similar procedures. In this approach, the
population of size N is assumed to be composed of two strata of sizes N1 and N2 = N−N1

of ‘respondents’ and ‘non-respondents’. When the population mean X̄ of the auxiliary
character x is not known, then to furnish an estimate of the population mean X̄ of the
auxiliary character x, a large first phase sample of size n′ is selected from a population
of N units by the simple random sampling without replacement (SRSWOR) method of
sampling and the auxiliary character x is measured. A smaller second phase sample of size
n (< n′) is selected by the SRSWOR sampling scheme, and the character y is measured
on it. Let us assume that in the first phase, all the n′ units supplied information on the
auxiliary character x. At the second phase, let n1 units respond on the main character y
and then n2 units do not respond in the sample of size n. Using the Hansen and Hurwitz
[2] approach to sub sampling, from the n2 non-respondents a sub-sample, of size m units
is selected using the SRSWOR sampling scheme, and enumerated by direct interview,
such that m = (n2/k), k > 1, where k is the inverse sampling rate. Here we assume that
response is obtained for all the m units. This method of double sampling can be applied
in a household survey where the household size is used as an auxiliary variate x for the
estimation of family expenditure. Information can be obtained completely on the family
size, while there may be some non-response on the household expenditure, see Tabasum
and Khan [13, p. 301].

Now, we have (n1 +m) responding units on y and consequently the estimator for the
population mean Ȳ of the study character y using the sub-sampling scheme suggested
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by Hansen and Hurwitz [2] is given by

(1) ȳ∗ = w1ȳ1 + w2ȳ2m,

where ȳ1 and ȳ2m denote the sample means of y based on n1 and m units respectively,
w1 = n1/n and w2 = n2/n.

The estimator ȳ∗ is unbiased and has variance

(2) Var (ȳ∗) =

(

1− f

n

)

S2
y +

W2 (k − 1)

n
S2
y(2),

where f = n/N , W2 = N2/N , S2
y and S2

y(2) are the population mean square of y for the
entire population and for the non-responding part of the population, respectively.

Similarly, for estimating the population mean X̄ of the auxiliary character x, the
estimator x̄∗ is given by

x̄∗ = w1x̄1 + w2x̄2m,

where x̄1 and x̄2m are the sample means of x based on n1 and m units, respectively.

Now, we define a class of ratio-cum-product type estimators as

(3) T ∗

d = (1− a) ȳ∗ + aȳ∗
(

x̄′
/

x̄∗
)α

; a > 0

where a and α are suitably chosen constants; x̄′ is the sample mean based on a large
preliminary sample of size n′.

For α > 0, T ∗

d is ratio-type estimator and for α < 0, T ∗

d is product-type estimator.

The following Table 1 gives some estimators of the population mean Ȳ which can be
obtained by suitable choice of the scalars a and α.

Table 1. Some members of the proposed class of ratio-cum-product

estimators T ∗

d

Values of a and α

Estimator a α

(i) Usual unbiased estimator: t∗d1 = ȳ∗ 0 0

(ii)

Ratio estimator

t∗d2 = ȳ∗
(

x̄′
/

x̄∗
)

by Khare and Srivastava [3], Okafor and Lee [7]
and Tabasum and Khan [13]

1 1

(iii) The estimator: t∗d3 = ȳ∗ (x̄′/x̄∗)
α

1 −

(iv) The estimator: t∗d4 = ȳ∗
{

2− (x̄′/x̄∗)
α}

-1 -

(v) The estimator: t∗d5 = ȳ∗ {(1− a) + a (x̄′/x̄∗)} − 1



592 S. Kumar, H. P. Singh, S. Bhougal, R. Gupta

3. Bias and variance of T ∗

d

The bias and variance of T ∗

d , to the first degree of approximation are given by

B (T ∗

d ) = aȲ α

[(

1

n
−

1

n′

){

(α+ 1)

2
− C

}

C2
x

+
W2 (k − 1)

n

{

(α+ 1)

2
− C(2)

}

C2
x(2)

]

,

(4)

Var (T ∗

d ) = Ȳ 2

[(

1

n
−

1

n′

)

{

C2
y + aα (aα− 2C)C2

x

}

+
W2 (k − 1)

n

{

C2
y(2) + aα

(

aα− 2C(2)

)

C2
x(2)

}

+

(

1

n′
−

1

N

)

C2
y

]

,

(5)

For large N , the variance of T ∗

d reduces to

(6)

Var (T ∗

d ) = Ȳ 2

[(

1

n
−

1

n′

)

{

aα (aα− 2C)C2
x

}

+
W2 (k − 1)

n

{

C2
y(2) + aα

(

aα− 2C(2)

)

C2
x(2)

}

+
C2

y

n

]

,

= Ȳ 2

{

1

n
C2

y +
W2 (k − 1)

n
C2

y(2) + a2α (α− 2α0)B

}

,

where

A =

{(

1

n
−

1

n′

)

C C2
x +

W2 (k − 1)

n
C(2)C

2
x(2)

}

,

B =

{(

1

n
−

1

n′

)

C2
x +

W2 (k − 1)

n
C2

x(2)

}

, C = (ρyxCy) /Cx,

C(2) =
(

ρyx(2)Cy(2)

) /

Cx(2), C2
y = S2

y

/

Ȳ 2, C2
y(2) = S2

y(2)

/

Ȳ 2, α0 = A/aB,

C2
x = S2

x

/

X̄2, C2
x(2) = S2

x(2)

/

X̄2, S2
y =

N
∑

i=1

(

yi − Ȳ1

) /

(N − 1),

S2
y(2) =

N2
∑

i=1

(

yi − Ȳ(2)

) /

(N2 − 1), S2
x =

N
∑

i=1

(

xi − X̄1

) /

(N − 1),

S2
x(2) =

N2
∑

i=1

(

xi − X̄(2)

) /

(N2 − 1),

ρyx and ρyx(2) are the correlation coefficients between y and x for the entire population
and for the non-responding group of the population respectively.

The variance of T ∗

d in (6) is minimized when

(7) α = A/ (aB) = αo (say),

The optimum value of α cannot be uniquely determined, as is clear from (7). Thus, to
obtain the optimum value of α, the value of a is fixed approximately in advance as being
a weight. Thus, substituting the optimum value of α for a given value of a from (7) in
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(6), we get

(8)

min .Var (T ∗

d ) = Ȳ 2

[(

1

n
−

1

n′

){

A (A− 2BC)

B2

}

C2
x

+
W2 (k − 1)

n

{

C2
y(2) +

A
(

A− 2BC(2)

)

B2
C2

x(2)

}

+
C2

y

n

]

= Ȳ 2

{

1

n
C2

y +
W2 (k − 1)

n
C2

y(2) −
A2

B

}

.

Now we state the following theorem:

3.1. Theorem. To the first degree of approximation,

MSE (T ∗

d ) ≥ Ȳ 2

{

1

n
C2

y +
W2 (k − 1)

n
C2

y(2) −
A2

B

}

,

with equality holding if

α = αo. �

The variance of t∗di, i = 1, 2 . . . , 5 to the first degree of approximation, can be obtained
by merely substituting suitable values of a and α into the variance of T ∗

d as follows:

Var (t∗d1) = Ȳ 2

{(

1

n
−

1

n′

)

C2
y +

W2 (k − 1)

n
C2

y(2)

}

,(9)

Var (t∗d2) = Ȳ 2

[(

1

n
−

1

n′

)

{

C2
y + (1− 2C)C2

x

}

+
W2 (k − 1)

n

{

C2
y(2) +

(

1− 2C(2)

)

C2
x(2)

}

+

(

1

n′
−

1

N

)

C2
y

]

,

(10)

Var (t∗d3) = Ȳ 2

[(

1

n
−

1

n′

)

{

C2
y + α (α− 2C)C2

x

}

+
W2 (k − 1)

n

{

C2
y(2) + α

(

α− 2C(2)

)

C2
x(2)

}

+

(

1

n′
−

1

N

)

C2
y

]

,

(11)

Var (t∗d4) = Ȳ 2

[(

1

n
−

1

n′

)

{

C2
y + α (α+ 2C)C2

x

}

+
W2 (k − 1)

n

{

C2
y(2) + α

(

α+ 2C(2)

)

C2
x(2)

}

+

(

1

n′
−

1

N

)

C2
y

]

,

(12)

Var (t∗d5) = Ȳ 2

[(

1

n
−

1

n′

)

{

C2
y + a (a− 2C)C2

x

}

+
W2 (k − 1)

n

{

C2
y(2) + a

(

a− 2C(2)

)

C2
x(2)

}

+

(

1

n′
−

1

N

)

C2
y

]

.

(13)

The expression for min .Var (T ∗

d ) in (8) implies that the estimator T ∗

d will always be better
than the estimators t∗di, i = 1, 2, . . . , 5 in αo. Nevertheless, we shall further determine a
range of α-values for which the estimator T ∗

d will always have smaller variance than that
of the estimators t∗di, i = 1, 2, . . . , 5.

4. Comparison of T ∗

d
with the other estimators

The range of α-values are derived in this section for which the variance of the estimator
T ∗

d is always less than that of the estimators t∗di, i = 1, 2, . . . , 5. The comparison of
Var (T ∗

d ) Vs Var (t∗di), i = 1, 2, . . . , 5, are given below:
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(i) Var (T ∗

d ) < Var (t∗d1) if |α− α0| < |α0|, or equivalently

(14) min . (0, 2α0) < α < max . (0, 2α0) .

(ii) Var (T ∗

d ) < Var (t∗d2) if |α− α0| <
∣

∣α0 −
1
a

∣

∣, or equivalently

(15) min . {0, (2α0 − 1/a)} < α < max . {0, (2α0 − 1/a)} .

(iii) Var (T ∗

d ) < Var (t∗d3) if |α− α0| <
∣

∣

∣
α0

a

(a+1)

∣

∣

∣
, or equivalently

(16) min . [0, {2α0 (a/a+ 1)}] < α < max . [0, {2α0 (a/a+ 1)}] .

(iv) Var (T ∗

d ) < Var (t∗d4) if |α− α0| <
∣

∣

∣
α0

a

(a−1)

∣

∣

∣
, or equivalently

(17) min . [0, {2α0 (a/a− 1)}] < α < max . [0, {2α0 (a/a− 1)}] .

(vi) Var (T ∗

d ) < Var (t∗d5) if |α− α0| < |α0 − 1|, or equivalently

(18) min . {0, (2α0 − 1)} < α < max . {0, (2α0 − 1)} .

The difference (for a given value of a) between α and its optimum value αo in the
above inequalities provide quite a good range of α-values making the estimators T ∗

d more
efficient than t∗di, i = 1, 2, . . . , 5.

5. Determination of n′,n and k

Let C∗ be the total cost (fixed) of the survey apart from overhead cost. The expected
total cost of the survey apart from overhead cost is given by

(19) C = c′1n
′ + n

(

c1 + c2W1 +
c3W2

k

)

where

c′1 = the cost per unit of identifying and observing the auxiliary character,

c1 = the cost per unit of mailing questionnaire/visiting the unit at the second phase,

c2 = the cost per unit of collecting and processing data obtained from n1 responding
units,

c3 = the cost per unit of obtaining and processing data ( after extra effort ) from the
sub sampled units, and

W1 = N1/N, W2 = N2/N denote the response and non-response rate in the popula-
tion.

The expressions Var (t∗di), i = 0, 1, . . . , 5; Var (t∗d0) = V ar (T ∗

d ) respectively, given by
(6) and (9) to (13), can be written as

(20) Var (t∗di) =

{

1

n
V0i +

1

n′
V1i +

k

n
V2i

}

+ (terms independent of n′, n and k)

for i = 0, 1, . . . , 5, where V0i, V1i and V2i are respectively the coefficients of the terms
(1/n), (1/n′) and (k/n) in the expressions for Var (t∗di), i = 0, 1, . . . , 5.

Let us define a function φ as follows:

(21) φ = Var (t∗di) + λi

{

c′1n
′ + n

(

c1 + c2W1 +
c3W2

k

)}

.
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Differentiating φ in (21) with respect to n′, n and k, and equating to zero, we have

n′ =

√

V1i

λic′1
,(22)

n =

√

(V0i + kV2i)

λi

(

c1 + c2W1 +
c3W2

k

) ,(23)

n

k
=

√

V2i

λic3W2
.(24)

Now putting the value of n from (23) in (24) we obtain the optimum value of k as

(25) kopt =

√

V0ic3W2

(c1 + c2W1)V2i
.

Using the value of kopt from (25), while putting the values of n′ and n from (22) and
(23) in (19), we have

(26)
√

λi =
1

C

{

√

V1ic′1 +

√

(

V0i + koptV2i

)

(

c1 + c2W1 +
c3W2

kopt

)

}

.

Thus the minimum value of Var (t∗di), i = 0, 1, . . . , 5 for the optimum values of n′, n and
k is given by

(27)

min .V ar (t∗di) =

[

1

C

{

√

V1ic′1 +

√

(

V0i + koptV2i

)

(

c1 + c2W1 +
c3W2

kopt

)

}2

−
S2
y

N

]

.

6. Empirical study

To illustrate the findings we consider some natural population data earlier considered
by Khare and Srivastava [4].

The population of 100 consecutive trips (after leaving 20 outlier values) measured by
two fuel meters for a small family car in normal usage given by Lewisi et al [6] has been
taken into consideration. The measurements of the turbine meter (in ml) are considered
as the main (study) character y, and the measurements of the displacement meter (in
cm3) are considered as the auxiliary character x. The last 25% of the values are treated
as non-response units.

The values of the parameters are as follows:

Ȳ = 3500.12, X̄ = 260.84, Cy = 0.5941, Cx = 0.5996, Cy(2) = 0.4931,

Cx(2) = 0.5151, C = 0.9759, C(2) = 0.9525, ρyx = 0.985, ρyx(2) = 0.995,

W2 = 0.25, N = 100, n′ = 50, n = 30.

We have computed the optimum value of α and the ranges of α needed for the proposed
estimator T ∗

d to be more efficient than t∗di, i = 1, 2, . . . , 5 and these are shown in Tables 2
and 3 respectively for different values of a and k.
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Table 2 The optimum value of α for the proposed estimator T ∗

d to be more

efficient than t∗di, i = 1, 2, . . . , 7 for different values of a and k

k → 1/2 1/3 1/4 1/5

a ↓

0.10 9.7143 9.6739 9.6491 9.6324

0.25 3.8857 3.8696 3.8596 3.8529

0.50 1.9429 1.9348 1.9298 1.9265

0.75 1.2952 1.2899 1.2865 1.2843

0.85 1.1429 1.1381 1.1352 1.1332

0.95 1.0226 1.0183 1.0157 1.0139

It is observed from Table 2 that:

(1) For a fixed value of a, the optimum value of α decreases as the value of k
decreases, while for a fixed value of k, it decreases as the value of a increases,

(2) When a approaches unity, the optimum values of α are almost stable for different
decreasing values of k; and

(3) When a is close to zero, the optimum value of α is larger compared to the value
of a and approaches unity for different values of k.

Table 3. Ranges of α for the proposed estimator T ∗

d to be more efficient

than t∗di, i = 1, 2, . . . , 5 for different values of a and k

k = 1/2

a ↓ Ranges of α for the estimator T ∗

d to be better than:

t∗d1 t∗d2 t∗d3 t∗d4 t∗d5

0.10 (0,19.43) (0,9.43) (0, 1.77) (0, -2.16) (0, 18.43)

0.25 (0, 7.77) (0,3.77) (0, 1.55) (0, -2.59) (0, 6.77)

0.50 (0, 3.89) (0, 1.89) (0, 1.30) (0, -3.89) (0, 2.89)

0.75 (0, 2.59) (0, 1.26) (0, 1.11) (0, -7.77) (0, 1.59)

0.85 (0, 2.29) (0, 1.11) (0, 1.05) (0, -12.95) (0, 1.29)

0.95 (0, 2.05) (0, 0.99) (0, 1.00) (0, -38.86) (0, 1.05)

k = 1/3

0.10 (0,19.35) (0, 9.35) (0, 1.76) (0, -2.15) (0, 18.35)

0.25 (0, 7.74) (0, 3.74) (0, 1.55) (0, -2.58) (0, 6.74)

0.50 (0, 3.87) (0, 1.87) (0, 1.29) (0, -3.87) (0, 2.87)

0.75 (0, 2.58) (0, 1.25) (0, 1.11) (0, -7.74) (0, 1.58)

0.85 (0, 2.28) (0, 1.10) (0, 1.05) (0, -12.90) (0, 1.28)

0.95 (0, 2.04) (0, 0.98) (0, 1.00) (0, -38.70) (0, 1.04)
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Table 3. Continued

k = 1/4

a ↓ Ranges of α for the estimator T ∗

d to be better than:

t∗d1 t∗d2 t∗d3 t∗d4 t∗d5

0.10 (0,19.30) (0, 9.30) (0, 1.75) (0, -2.14) (0, 18.30)

0.25 (0, 7.72) (0,0.37) (0, 1.54) (0, -2.57) (0, 6.72)

0.50 (0, 3.86) (0, 1.86) (0, 1.29) (0, -3.86) (0, 2.86)

0.75 (0, 2.57) (0, 1.24) (0, 1.10) (0, -7.72) (0, 1.57)

0.85 (0, 2.27) (0, 1.09) (0, 1.04) (0, -12.87) (0, 1.27)

0.95 (0, 2.03) (0, 0.98) (0, 0.99) (0, -38.60) (0, 1.03ss)

k = 1/5

0.10 (0,19.27) (0, 9.27) (0, 1.75) (0, -2.14) (0, 18.27)

0.25 (0, 7.71) (0, 3.71) (0, 1.54) (0, -2.57) (0, 6.71)

0.50 (0, 3.85) (0, 1.85) (0, 1.28) (0, -3.85) (0, 2.85)

0.75 (0, 2.57) (0, 1.24) (0, 1.10) (0, -7.71) (0, 1.57)

0.85 (0, 2.27) (0, 1.09) (0, 1.04) (0, -12.84) (0, 1.27)

0.95 (0, 2.03) (0, 0.98) (0, 0.99) (0, -38.53) (0, 1.03)

Table 3 exhibits the ranges of α for the estimator T ∗

d to be more efficient than t∗di,
i = 1, 2, . . . , 5 for different values of a and k. It is observed from Table 3 that for a fixed
value of a, the range of α decreases as the value of k decreases, while for a fixed value of
k, it decreases as the value of a increases for all the estimators t∗di, i = 1, 2, . . . , 5.

Thus we conclude that for fixed a and varying k, or for fixed k and varying a, there is
enough scope of selecting the scalar α to obtain better estimators than t∗di, i = 1, 2, . . . , 5.

6.1. Remark. Suppose that complete information on the auxiliary variable x is available
for both the first and second samples, and that incomplete information on the study
variable y is available. So, in this case, we use information on the (n1 +m) responding
units on the main character y, and complete information on the auxiliary variable x from
the sample of size n. We suggest a class of ratio-cum-product-type estimators Td for y
in the presence of non-response, which is given by

(28) Td = (1− a) ȳ∗ + aȳ∗

(

x̄′

x̄

)α

,

where (a, α) are as defined above. A large number of estimators can be identified for
suitable values of (a, α). For a = 0, the estimator Td reduces to the conventional estimator

ȳ∗, while for {(a, α) = (1, 1)}, it reduces to the estimator trd = ȳ∗

(

x̄′

x̄

)

envisaged by

Khare and Srivastava [4], and revisited by Tabasum and Khan [14].
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To the first degree of approximation, the bias and MSE of Td are respectively given
by

B (Td) =

(

1

n
−

1

n′

)

Ȳ
(aα

2

)

C2
x (α− 2C + 1) ,(29)

MSE (Td) = Y
2
[(

1

n
−

1

n′

)

{

C2
y + aαC2

x (aα− 2C)
}

+

(

1

n′
−

1

N

)

C2
y

+
W2 (k − 1)

n
C2

y(2)

]

.

(30)

The biases and MSE s of the estimators belonging to the class of estimators Td defined by
(28) can be obtained from (29) and (30) by giving suitable values to (a, α), respectively.

The MSE (Td) in (30) is minimized for

(31) α =
C

a
= α∗

0 (say)

Thus the resulting minimum MSE of Td is given by

(32)

min .MSE (Td) = Ȳ 2

[(

1

n
−

1

n′

)

C2
y

(

1− ρ2
)

+

(

1

n′
−

1

N

)

C2
y

+
W2 (k − 1)

n
C2

y(2)

]

.

Following the procedure adopted in Section 5, cost aspects can also be discussed.
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