
Hacettepe Journal of Mathematics and Statistics
Volume 40 (3) (2011), 367 – 374

ON GENERALIZED DERIVATIONS AND

COMMUTATIVITY OF PRIME AND

SEMIPRIME RINGS

Asma Ali∗†, Deepak Kumar∗ and Phool Miyan∗

Received 07 : 01 : 2010 : Accepted 31 : 05 : 2010

Abstract

Let R be a prime ring and θ, φ endomorphisms of R. An addi-
tive mapping F : R −→ R is called a generalized (θ, φ)-derivation
on R if there exists a (θ, φ)-derivation d : R −→ R such that
F (xy) = F (x)θ(y) + φ(x)d(y) for all x, y ∈ R. Let S be a non-
empty subset of R. In the present paper for various choices of S

we study the commutativity of a semiprime (prime) ring R admit-
ting a generalized (θ, φ)-derivation F satisfying any one of the prop-
erties: (i) F (x)F (y) − xy ∈ Z(R), (ii) F (x)F (y) + xy ∈ Z(R),
(iii) F (x)F (y) − yx ∈ Z(R), (iv) F (x)F (y) + yx ∈ Z(R),
(v) F [x, y] − [x, y] ∈ Z(R), (vi) F [x, y] + [x, y] ∈ Z(R),
(vii) F (x ◦ y) − x ◦ y ∈ Z(R), and (viii) F (x ◦ y) + x ◦ y ∈ Z(R),
for all x, y ∈ S.

Keywords: Lie ideals, Torsion free rings, Derivations, (θ, φ)-derivations, Generalized
derivations, Generalized (θ, φ)-derivations.
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Introduction

Let R be an associative ring with centre Z(R). A ring R is said to be prime (resp.
semiprime) if aRb = {0} implies that either a = 0 or b = 0 (resp. aRa = {0} implies that
a = 0). For any x, y ∈ R we shall write [x, y] = xy− yx and x ◦ y = xy+ yx. An additive
subgroup U of R is said to be a Lie ideal of R if [x, u] ∈ U for all x ∈ R and u ∈ U .
An additive mapping d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y) for all
x, y ∈ R. Let θ, φ be endomorphisms of R. An additive mapping d : R −→ R is called
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a (θ, φ)-derivation if d(xy) = d(x)θ(y) + φ(x)d(y) for all x, y ∈ R. An additive mapping
F : R −→ R is called a generalized (θ, φ)-derivation on R if there exists a (θ, φ)-derivation
d : R −→ R such that F (xy) = F (x)θ(y) + φ(x)d(y) for all x, y ∈ R.

We shall call a generalized (θ, I)-derivation a generalized θ-derivation, where I is the
identity automorphism of R. Similarly a generalized (I, φ)-derivation will be called a
generalized φ-derivation

1. Lie ideals and generalized derivations in prime rings

In order to prove our theorems, we will make extensive use of the following known
results.

1.1. Lemma. [5, Lemma 4] If U 6⊆ Z(R) is a Lie ideal of a 2-torsion free prime ring R,

and a, b ∈ R are such that aUb = (0), then either a = 0 or b = 0. �

1.2. Lemma. [3, Lemma 3.4] Let R be a 2-torsion free prime ring and U 6⊆ Z(R) a Lie

ideal of R such that u2 ∈ U for all u ∈ U . If the elements a ∈ U and b ∈ R are such that

axb+ bxa = 0, then axb = bxa = 0 for all x ∈ U . �

1.3. Lemma. [2, Theorem 7] Let R be a 2-torsion free prime ring and U a nonzero Lie

ideal of R. If R admits a nonzero derivation d such that [d(u), u] ∈ Z(R), for all u ∈ U ,

then U ⊆ Z(R). �

1.4. Theorem. Let R be a 2-torsion free prime ring and U a Lie ideal of R such that

u2 ∈ U for all u ∈ U . If R admits a generalized derivation F with associated nonzero

derivation d such that F ([x, y])− [d(x), d(y)] = 0, for all x, y ∈ U , then U ⊆ Z(R).

Proof. Suppose that U 6⊆ Z(R). By assumption we have

(1.1) F [x, y] = [d(x), d(y)], for all x, y ∈ U.

Replacing y by 2yx in (1.1) and using the fact that R is 2-torsion free, we get

(1.2) F ([x, y])x+[x, y]d(x) = [d(x), d(y)]x+d(y)[d(x),x]+[d(x), y]d(x), for all x, y ∈ U.

Comparing (1.1) and (1.2), we have

(1.3) [x, y]d(x) = d(y)[d(x), x] + [d(x), y]d(x), for all x, y ∈ U.

Now substituting 2yx for y in (1.3) and using (1.3), we obtain

(1.4) d(x)y[d(x), x] + [d(x), x]yd(x) = 0, for all x, y ∈ U.

Since [d(x), x] ∈ U , Lemma 1.2 yields that d(x)y[d(x), x] = 0, for all x, y ∈ U . That is
d(x)U [d(x), x] = (0) for all x ∈ U . Application of Lemma 1.1 yields that d(x) = 0 or
[d(x), x] = 0, for all x ∈ U . Since d is a nonzero derivation, [d(x), x] = 0, for all x ∈ U .
Thus Lemma 1.3 implies that U ⊆ Z(R), which is a contradiction. Hence the theorem is
proved. �

Using similar arguments to the above, we can prove the following:

1.5. Theorem. Let R be a 2-torsion free prime ring and U a Lie ideal of R such that

u2 ∈ U for all u ∈ U . If R admits a generalized derivation F with associated nonzero

derivation d such that F [x, y] + [d(x), d(y)] = 0, for all x, y ∈ U , then U ⊆ Z(R). �
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2. One sided ideals and generalized derivations in prime and
semiprime rings

Daif and Bell [7] proved that if a semiprime ring R admits a derivation d such that
either d([x, y]) + [x, y] = 0 or d([x, y])− [x, y] = 0, for all x, y, in a nonzero ideal I of R,
then R is necessarily commutative. Hongan [8] generalized the above result, considering
R satisfying the conditions d([x, y]) + [x, y] ∈ Z(R) and d([x, y]) − [x, y] ∈ Z(R), for all
x, y ∈ I . Motivated by the above observations, we explore the commutativity of a prime
ring admitting a generalized derivation F satisfying any one of the following conditions:

(i) F ([x, y])− [x, y] ∈ Z(R),
(ii) F ([x, y]) + [x, y] ∈ Z(R),
(iii) F (x ◦ y)− (x ◦ y) ∈ Z(R), and
(iv) F (x ◦ y) + (x ◦ y) ∈ Z(R),

for all x, y in some appropriate subsets of R.

2.1. Lemma. [9, Lemma 3] If a prime ring R contains a nonzero commutative right

ideal I, then R is commutative. �

2.2. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose

that R admits a generalized derivation F with associated nonzero derivation d such that

d(Z(R)) 6= (0). If F ([x, y])− [x, y] ∈ Z(R) for all x, y ∈ I, then R is commutative.

Proof. Since d(Z(R)) 6= (0), there exists c ∈ Z(R) such that d(c) 6= 0. Thus d(c) ∈ Z(R).
By assumption, we have

(2.1) F ([x, y])− [x, y] ∈ Z(R), for all x, y ∈ I.

Replacing y by yc in (2.1), we have

(2.2) {F ([x, y])− [x, y]}c+ [x, y]d(c) ∈ Z(R), for all x, y ∈ I.

This implies that [[x, y]d(c), r] = 0, for all x, y ∈ I and r ∈ R. That is, [[x, y], r]d(c) = 0,
for all x, y ∈ I and r ∈ R. Since R is prime and d(c) 6= 0, we find that [[x, y], r] = 0 for
all x, y ∈ I and r ∈ R. Replacing y by yx, we have

(2.3) [x, y][x, r] + [[x, y], r]x = 0, for all x, y ∈ I, r ∈ R

In view of the fact that [[x, y], r] = 0, relation (2.3) yields that [x, y][x, r] = 0 for all
x, y ∈ I and r ∈ R. Replace r by ry, to obtain [x, y]r[x, y] = 0 for all x, y ∈ I and r ∈ R,
that is, [x, y]R[x, y] = (0) for all x, y ∈ I . The primeness of R yields that [x, y] = 0 for all
x, y ∈ I , i.e. I is a commutative right ideal. Hence application of Lemma 2.1 completes
the proof of the theorem. �

2.3. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose

that R admits a generalized derivation F with associated nonzero derivation d such that

d(Z(R)) 6= (0). If F ([x, y]) + [x, y] ∈ Z(R) for all x, y ∈ I, then R is commutative.

Proof. If R satisfies the assumption F ([x, y]) + [x, y] ∈ Z(R) for all x, y ∈ I , then the
generalized derivation (−F ) also satisfies (−F )([x, y])− [x, y] ∈ Z(R) for all x, y ∈ I , and
hence the proof follows from Theorem 2.2. �

2.4. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose

that R admits a generalized derivation F with associated nonzero derivation d such that

d(Z(R)) 6= (0). If F (x ◦ y)− (x ◦ y) ∈ Z(R) for all x, y ∈ I, then R is commutative.
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Proof. By assumption, we have

(2.4) F (x ◦ y)− (x ◦ y) ∈ Z(R), for all x, y ∈ I.

Since d(Z(R)) 6= (0), there exists c ∈ Z(R) such that d(c) 6= 0 and d(c) ∈ Z(R).
Replacing y by yc in (2.4), we have

(2.5) {F (x ◦ y)− x ◦ y}c+ (x ◦ y)d(c) ∈ Z(R), for all x, y ∈ I.

That is, (x ◦ y)d(c) ∈ Z(R), for all x, y ∈ I . Since d(c) 6= 0 and R is prime, it follows
that (x ◦ y) ∈ Z(R) for all x, y ∈ I . Thus [(x ◦ y), r] = 0 for all x, y ∈ I and r ∈ R.
Substituting yx for y, we obtain (x ◦ y)[x, r] = 0 for all x, y ∈ I and r ∈ R. Replacing
r by sr, we find that (x ◦ y)R[x, r] = (0) for all x, y ∈ I and r ∈ R. Now the primeness
of R, for each x ∈ I , gives either (x ◦ y) = 0 or [r, x] = 0 for all y ∈ I and r ∈ R. Let
I1 = {x ∈ I | (x ◦ y) = 0 for all y ∈ I} and I2 = {x ∈ I | [r, x] = 0, for all r ∈ R}.
Then I1 and I2 are both additive subgroups of I whose union is I . Hence either I1 = I

or I2 = I .

If I1 = I , then (x ◦ y) = 0 for all x, y ∈ I . Now replace y by yz, to get (x ◦ yz) =
(x ◦ y)z − y[x, z] = 0, which gives y[x, z] = 0 for all x, y, z ∈ I . Thus yR[x, z] = 0 for all
x, y, z ∈ I . Since I is a nonzero right ideal of R, the primeness of R yields that [x, z] = 0
for all x, z ∈ I . Thus I is commutative and an application of Lemma 2.1 gives that R

is commutative. On the other hand if I2 = I , then [r, x] = 0 for all r ∈ R and x ∈ I .
Substituting xs for x, we get x[r, s] = 0 for all x ∈ I and r, s ∈ R. Since I is a nonzero
right ideal of R, [r, s] = 0 for all r, s ∈ R. Hence in both the cases R is commutative. �

Using the same techniques with the necessary variations, we get the following:

2.5. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose

that R admits a generalized derivation F with associated nonzero derivation d such that

d(Z(R)) 6= (0). If F (x ◦ y) + (x ◦ y) ∈ Z(R) for all x, y ∈ I, then R is commutative. �

The following example demonstrates that the above results do not hold for arbitrary
rings.

2.6. Example. Consider S as any ring. Let R =

{(

a b

0 0

) ∣

∣

∣

∣

a, b ∈ S

}

and let I =
{(

0 b

0 0

) ∣

∣

∣

∣

b ∈ S

}

be an ideal of R. Define F : R −→ R by F (x) = 2e11x− xe11. Then

F is a generalized derivation with associated derivation d given by d(x) = e11x − xe11.
It can be easily seen that R satisfies the properties (i) F ([x, y]) − [x, y] ∈ Z(R), (ii)
F ([x, y])+ [x, y] ∈ Z(R), (iii) F (x ◦ y)− (x ◦ y) ∈ Z(R) and (iv) F (x ◦ y)+ (x ◦ y) ∈ Z(R)
for all x, y ∈ I . However, R is not commutative.

The following Lemmas are generalizations of a result of Mayne [9] and a result of
Bresar [6, Lemma 4], respectively.

2.7. Lemma. [4, Theorem 3] Let R be a semiprime ring and I a nonzero left ideal of

R. If R admits a derivation d such that d(I) 6= (0) and [d(x), x] ∈ Z(R) for all x ∈ I,

then I ⊆ Z(R). �

2.8. Lemma. [3, Lemma 2.6] Let R be a 2-torsion free semiprime ring and I a nonzero

left ideal of R. If a, b ∈ R and axb + bxa = 0 for all x ∈ I, then axb = bxa = 0 for all

x ∈ I. �

2.9. Theorem. Let R be a 2-torsion free semiprime ring and I a nonzero left ideal of

R such that Ar(I) = 0, the right annihilator of I. If R admits a generalized derivation F

with associated nonzero derivation d such that F [x, y]− [d(x), d(y)] = 0 for all x, y ∈ I,

then I ⊆ Z(R).
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Proof. By assumption, we have

(2.6) F [x, y]− [d(x), d(y)] = 0, for all x, y ∈ I.

Replacing y by yx in (2.6), we get

(2.7) F ([x, y])x+[x, y]d(x) = [d(x), d(y)]x+d(y)[d(x),x]+[d(x), y]d(x), for all x, y ∈ I.

Comparing (2.6) and (2.7), we have

(2.8) [x, y]d(x) = d(y)[d(x), x] + [d(x), y]d(x), for all x, y ∈ I.

Now substituting xy for y in (2.8) and using (2.8), we obtain

(2.9) d(x)y[d(x), x] + [d(x), x]yd(x) = 0, for all x, y ∈ I.

Application of Lemma 2.8 yields that d(x)y[d(x), x] = 0, for all x, y ∈ I . This implies
that [d(x), x]y[d(x), x] = 0, for all x, y ∈ I . Thus, we have [d(x), x]I [d(x), x] = (0), i.e.
(I [d(x), x])2 = (0). Hence I [d(x), x] is a nilpotent left ideal of R. Since R is semiprime,
I [d(x), x] = (0), for all x ∈ I . By our hypothesis [d(x), x] = 0 for all x ∈ I . Hence by
Lemma 2.7, we have I ⊆ Z(R). �

Using similar arguments to the above we can prove the following:

2.10. Theorem. Let R be a 2-torsion free semiprime ring and I a left ideal of R such

that Ar(I) = 0, the right annihilator of I. If R admits a generalized derivation F with

associated nonzero derivation d such that F [x, y] + [d(x), d(y)] = 0 for all x, y ∈ I, then

I ⊆ Z(R). �

3. Ideals and generalized (θ, φ)-derivations in prime rings

3.1. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose that φ

is an automorphism of R. If R admits a generalized φ-derivation F with associated φ-

derivation d such that F (xy) − xy ∈ Z(R) for all x, y ∈ I, then either d = 0 or R is

commutative.

Proof. By assumption, we have F (xy)− xy ∈ Z(R) for all x, y ∈ I . This can be written
as F (x)y + φ(x)d(y)− xy ∈ Z(R). Replacing y by yz, we obtain

(3.1) F (x)yz + φ(x)d(y)z + φ(x)φ(y)d(z)− xyz ∈ Z(R), for all x, y, z ∈ I.

Thus, in particular

(3.2) [(F (x)y + φ(x)d(y)− xy)z + φ(x)φ(y)d(z), z] = 0, for all x, y, z ∈ I.

Using (3.1) and (3.2), we get

(3.3) [φ(x)φ(y)d(z), z] = 0, for all x, y, z ∈ I.

Replacing x by rx in the above expression we obtain [φ(r), z]φ(x)φ(y)d(z) = 0 for all
x, y, z ∈ I and r ∈ R. Now replace y by yr, to get [φ(r), z]φ(x)φ(r)φ(y)(d(z)) = 0 for all
x, y, z ∈ I . That is, [φ(r), z]φ(x)Rφ(y)(d(z)) = (0) for all x, y, z ∈ I . Thus, the primeness
of R yields that for each z ∈ I , either [φ(r), z]φ(x) = 0 or φ(y)d(z) = 0.

Let I1 = {z ∈ I | [φ(r), z]φ(x) = 0, for all x ∈ I and r ∈ R} and I2 = {z ∈ I |
φ(y)d(z) = 0, for all x ∈ I}. Then I1 and I2 are two additive subgroups of I whose
union is I . Therefore either I1 = I or I2 = I .

If I2 = I then φ(y)d(z) = 0 for all y, z ∈ I . Replace y by [y, r] to get [φ(y), φ(r)]d(z) =
0 for all y, z ∈ I and r ∈ R. Now replace r by sr to get [φ(y), φ(s)]φ(r)d(z) = 0 for all
y, z ∈ I and r, s ∈ R i.e., [φ(y), φ(s)]Rd(z) = (0), for all y, z ∈ I and s ∈ R. Again the
primeness of R gives that either [φ(y), φ(s)] = 0 or d(z) = 0 for all y ∈ I and s ∈ R. If
[φ(y), φ(s)] = 0, for all y ∈ I and s ∈ R, then [y, s] = 0 i.e., I is commutative. Hence R
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is commutative by Lemma 2.1. On the other hand if d(z) = 0 for all z ∈ I , this implies
that d = 0 on R.

Now assume the remaining possibility, i.e. I1 = I . Now we have [φ(r), z]φ(x) = 0
for all x, z ∈ I and r ∈ R. That is, φ−1[φ(r), z]RI = (0) for all z ∈ I . The primeness
of R implies that [φ(r), z] = 0 for all z ∈ I and r ∈ R, and hence we get the required
result. �

One can note that if R admits a generalized φ-derivation F satisfying F (xy) + xy ∈
Z(R) for all x, y ∈ I , then the generalized φ-derivation (−F ) also satisfies (−F )(xy)−xy ∈
Z(R) for all x, y ∈ I . Hence in view of Theorem 3.1 we conclude the following:

3.2. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose φ is an

automorphism of R. If R admits a generalized φ-derivation F with associated φ-derivation

d such that F (xy)+xy ∈ Z(R) for all x, y ∈ I, then either d = 0 or R is commutative. �

3.3. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose φ is an

automorphism of R. If F is a generalized φ-derivation with associated φ-derivation d

such that F (xy)− yx ∈ Z(R) for all x, y ∈ I, then either d = 0 or R is commutative.

Proof. For any x, y ∈ I we have F (xy) − yx ∈ Z(R). This can be written as F (x)y +
φ(x)d(y)− yx ∈ Z(R) for all x, y ∈ I . Substituting xy for x, we obtain

(3.4) F (x)yy + φ(x)d(y)y + φ(x)φ(y)d(y)− yxy ∈ Z(R), for all x, y ∈ I.

In particular

(3.5) [(F (x)y + φ(x)d(y)− yx)y + φ(x)φ(y)d(y), y] = 0, for all x, y ∈ I.

An application of (3.4) and (3.5) gives [φ(x)φ(y)d(y), y] = 0 for all x, y ∈ I , i.e.

(3.6) φ(x)φ(y)[d(y), y] + φ(x)[φ(y), y]d(y) + [φ(x), y]φ(y)d(y), for all x, y ∈ I.

Replacing x by zx in (3.6) and using (3.6), we find that

(3.7) [φ(z), y]φ(x)φ(y)d(y) = 0, for all x, y, z ∈ I.

Replacing x by xr in (3.7), we get [φ(z), y]φ(x)φ(r)φ(y)d(y) = 0 for all x, y, z ∈ I , r ∈ R,
i.e. [φ(z), y]φ(x)Rφ(y)d(y) = (0) for all x, y, z ∈ I . Thus the primeness of R gives that
for each y ∈ I , either [φ(z), y]φ(x) = 0 or φ(y)d(y) = 0, for all y ∈ I . The sets y ∈ I

for which these two properties hold, are additive subgroups of I whose union is I . Then
either [φ(z), y]φ(x) = 0 or φ(y)d(y) = 0, for all x, y, z ∈ I . If φ(y)d(y) = 0, for all y ∈ I ,
then linearization gives

(3.8) φ(x)d(y) + φ(y)d(x) = 0, for all x, y ∈ I.

Replace y by zy to get

(3.9) φ(x)d(z)y + φ(x)φ(z)d(y) + φ(z)φ(y)d(x) = 0, for all x, y ∈ I.

Comparing (3.8) and (3.9), we get φ(x)d(z)y + φ(x)φ(z)d(y)− φ(z)φ(x)d(y) = 0 for all
x, y, z ∈ I . That is,

(3.10) φ(x)d(z)yr+[φ(x),φ(z)]d(y)r+[φ(x), φ(z)]φ(y)d(r) = 0, for all x, y, z ∈ I, r ∈ R.

An application of (3.9) in (3.10) yields that [φ(x), φ(z)]φ(y)d(r) = 0 for all x, y, z ∈ I

and r ∈ R. Now replace y by ys to get [φ(x), φ(z)]φ(y)φ(s)d(r) = 0 for all x, y, z ∈ I

and r, s ∈ R, i.e. [φ(x), φ(z)]φ(y)Rd(r) = (0) for all x, y, z ∈ I and r ∈ R. Thus the
primeness of R implies that either [φ(x), φ(z)]φ(y) = 0 or d(r) = 0, for all x, y, z ∈ I and
r ∈ R. Assume [x, z]y = 0. Then [x, z] = 0 for all x, z ∈ I . Since I is a nonzero ideal
of a prime ring R, then R is commutative by Lemma 2.1. On the other hand we have
[φ(z), y]φ(x) = 0 for all x, y, z ∈ I . Substituting x for rx we get [φ(z), y]φ(r)φ(x) = 0 for
all x, y, z ∈ I and r ∈ R. That is, [φ(z), y]Rφ(x) = (0) for all x, y, z ∈ I . Since I is a
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nonzero ideal and R is prime, [φ(z), y] = 0 for all y, z ∈ I . Again I is commutative so R

is commutative by Lemma 2.1. Hence the theorem is completely proved. �

Arguing as above we can prove the following:

3.4. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose φ is an

automorphism of R. If F is a generalized φ-derivation with associated φ-derivation d is

such that F (xy)+ yx ∈ Z(R) for all x, y ∈ I, then either d = 0 or R is commutative. �

3.5. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose φ is an

automorphism of R. If R admits a generalized φ-derivation F with associated nonzero

φ-derivation d such that F (x)F (y)− xy ∈ Z(R) for all x, y ∈ I, then either d = 0 or R

is commutative.

Proof. By assumption we have F (x)F (y)− xy ∈ Z(R) for all x, y ∈ I . Replacing y by
yr, we find that

(3.11) (F (x)F (y)− xy)r + F (x)φ(y)d(r) ∈ Z(R), for all x, y ∈ I, r ∈ R.

This implies that

(3.12) [F (x)φ(y)d(r), r] = 0, for all x, y ∈ I, r ∈ R.

This can be rewritten as

(3.13) F (x)[φ(y)d(r), r] + [F (x), r]φ(y)d(r) = 0, for all x, y ∈ I, r ∈ R.

Substituting (φ−1(F (x)))y for y in (3.14) and using (3.14), we find that

(3.14) [F (x), r]F (x)φ(y)d(r) = 0, for all x, y ∈ I, r ∈ R.

That is, [F (x), r]F (x))Rφ(y)d(r) = (0). Thus for each r ∈ R the primeness of R

forces that either [F (x), r]F (x) = 0 or φ(y)d(r) = 0. The sets of all r ∈ R for which
these two properties hold form additive subgroups of R whose union is I . Hence either
[F (x), r]F (x) = 0 or φ(y)d(r) = 0 for all x, y ∈ I and r ∈ R. If φ(y)d(r) = 0 then replace
y by ys, to obtain φ(y)φ(s)d(r) = 0 for all y ∈ I and r, s ∈ R, i.e. φ(y)Rd(r) = (0) for
all r ∈ R and y ∈ I .

Since I is a nonzero ideal of R and R is prime, the above relation yields that d(r) = 0
for all r ∈ R. Therefore we assume the remaining possibility that [F (x), r]F (x) = 0 for all
x ∈ I and r ∈ R. Substituting r by sr and using this we find that [F (x), r]RF (x) = (0)
for all x ∈ I and r ∈ R. The primeness of R implies that for each x ∈ I , either F (x) = 0
or [F (x), r] = 0. Thus in each case we have [F (x), r] = 0 for all x ∈ I and r ∈ R.
Replacing x by xr and using this we find that

(3.15) [φ(x), r]d(r) + φ(x)[d(r), r] = 0, for all x ∈ I, r ∈ R.

Now again replace x by sx in (3.15) to get

(3.16) φ(s)[φ(x), r]d(r) + [φ(s), r]φ(x)d(r) + φ(s)φ(x)[d(r), r] = 0, for all x ∈ I, r ∈ R.

Comparing (3.15) and (3.16), we get [φ(s), r]φ(x)d(r) = 0 for all x ∈ I and r, s ∈ R.
That is, [φ(s), r]φ(x)Rd(r) = (0) for all x ∈ I and r, s ∈ R. Thus, the primeness of R
gives either [φ(s), r]φ(x) = 0 or d(r) = 0.

If [φ(s), r]φ(x) = 0 for all r, s ∈ R and x ∈ I , we have [φ(s), r] = 0 for all r, s ∈ R.
Hence, using Lemma 2.1, we get the required result. �

Using the same arguments we can prove the following:
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3.6. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose φ is an

automorphism of R. If R admits a generalized φ-derivation F with associated φ-derivation

d such that F (x)F (y)+xy ∈ Z(R) for all x, y ∈ I, then either d = 0 or R is commutative.

�

3.7. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose φ is an

automorphism of R. Then the following conditions are equivalent:

(i) R admits a generalized φ-derivation F with associated nonzero φ-derivation d

such that F (xy)− xy ∈ Z(R) or F (xy) + xy ∈ Z(R), for all x, y ∈ I.

(ii) R admits a generalized φ-derivation F with associated nonzero φ-derivation d

such that F (xy)− yx ∈ Z(R) or F (xy) + yx ∈ Z(R), for all x, y ∈ I.

(iii) R admits a generalized φ-derivation F with associated nonzero φ-derivation d

such that F (x)F (y)− xy ∈ Z(R) or F (x)F (y) + xy ∈ Z(R), for all x, y ∈ I.

(iv) R is commutative.

Proof. Obviously, (iv) =⇒ (i), (ii) and (iii). Now, we show that (i) =⇒ (iv). For each
x ∈ I we set I1 = {y ∈ I | F (xy)− xy ∈ Z(R)} and I2 = {y ∈ I | F (xy) + xy ∈ Z(R)}.
Then I1 and I2 are additive subgroups of I whose union is I . Thus by Brauer’s trick,
either I1 = I or I2 = I . Therefore, R is commutative by Theorem 3.1 and Theorem 3.2.

(ii) =⇒ (iv) For each x ∈ I , set I1 = {y ∈ I | F (xy)− yx ∈ Z(R)} and I2 = {y ∈ I |
F (xy) + yx ∈ Z(R)}. Arguing as above and using Theorem 3.3 and Theorem 3.4, R is
commutative.

It remains to prove that (iii) =⇒ (iv) Now for each x ∈ I , set I1 = {y ∈ I | F (x)F (y)−
xy ∈ Z(R)} and I2 = {y ∈ I | F (x)F (y) + xy ∈ Z(R)}. Then using similar arguments,
R is commutative by Theorem 3.5 and Theorem 3.6 �
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