ON GENERALIZED DERIVATIONS AND COMMUTATIVITY OF PRIME AND SEMIPRIME RINGS

Asma Ali^{*†}, Deepak Kumar^{*} and Phool Miyan^{*}

Received 07:01:2010 : Accepted 31:05:2010

Abstract

Let R be a prime ring and θ , ϕ endomorphisms of R. An additive mapping $F : R \longrightarrow R$ is called a generalized (θ, ϕ) -derivation on R if there exists a (θ, ϕ) -derivation $d : R \longrightarrow R$ such that $F(xy) = F(x)\theta(y) + \phi(x)d(y)$ for all $x, y \in R$. Let S be a nonempty subset of R. In the present paper for various choices of S we study the commutativity of a semiprime (prime) ring R admitting a generalized (θ, ϕ) -derivation F satisfying any one of the properties: (i) $F(x)F(y) - xy \in Z(R)$, (ii) $F(x)F(y) + xy \in Z(R)$, (iii) $F(x)F(y) - yx \in Z(R)$, (iv) $F(x)F(y) + yx \in Z(R)$, (v) $F[x,y] - [x,y] \in Z(R)$, (vi) $F[x,y] + [x,y] \in Z(R)$, (vii) $F(x \circ y) - x \circ y \in Z(R)$, and (viii) $F(x \circ y) + x \circ y \in Z(R)$, for all $x, y \in S$.

Keywords: Lie ideals, Torsion free rings, Derivations, (θ, ϕ) -derivations, Generalized derivations, Generalized (θ, ϕ) -derivations.

2000 AMS Classification: $16 \le 25, 16 \le 60, 16 \le 80$.

Introduction

Let R be an associative ring with centre Z(R). A ring R is said to be prime (resp. semiprime) if $aRb = \{0\}$ implies that either a = 0 or b = 0 (resp. $aRa = \{0\}$ implies that a = 0). For any $x, y \in R$ we shall write [x, y] = xy - yx and $x \circ y = xy + yx$. An additive subgroup U of R is said to be a Lie ideal of R if $[x, u] \in U$ for all $x \in R$ and $u \in U$. An additive mapping $d : R \longrightarrow R$ is called a derivation if d(xy) = d(x)y + xd(y) for all $x, y \in R$. Let θ, ϕ be endomorphisms of R. An additive mapping $d : R \longrightarrow R$ is called

^{*}Department of Mathematics, Aligarh Muslim University, Aligarh - 202002, India. E-mail: (A. Ali) asma_ali2@rediffmail.com (D. Kumar) deep_math1@yahoo.com

⁽P. Miyan) phoolmiyan83@gmail.com

^{*}Supported by the University Grants Commission, India Grant F. No. 33-106/2007 (SR) $^{\dagger}\mathrm{Corresponding}$ Author.

a (θ, ϕ) -derivation if $d(xy) = d(x)\theta(y) + \phi(x)d(y)$ for all $x, y \in R$. An additive mapping $F: R \longrightarrow R$ is called a generalized (θ, ϕ) -derivation on R if there exists a (θ, ϕ) -derivation $d: R \longrightarrow R$ such that $F(xy) = F(x)\theta(y) + \phi(x)d(y)$ for all $x, y \in R$.

We shall call a generalized (θ, I) -derivation a generalized θ -derivation, where I is the identity automorphism of R. Similarly a generalized (I, ϕ) -derivation will be called a generalized ϕ -derivation

1. Lie ideals and generalized derivations in prime rings

In order to prove our theorems, we will make extensive use of the following known results.

1.1. Lemma. [5, Lemma 4] If $U \not\subseteq Z(R)$ is a Lie ideal of a 2-torsion free prime ring R, and $a, b \in R$ are such that aUb = (0), then either a = 0 or b = 0.

1.2. Lemma. [3, Lemma 3.4] Let R be a 2-torsion free prime ring and $U \not\subseteq Z(R)$ a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If the elements $a \in U$ and $b \in R$ are such that axb + bxa = 0, then axb = bxa = 0 for all $x \in U$.

1.3. Lemma. [2, Theorem 7] Let R be a 2-torsion free prime ring and U a nonzero Lie ideal of R. If R admits a nonzero derivation d such that $[d(u), u] \in Z(R)$, for all $u \in U$, then $U \subseteq Z(R)$.

1.4. Theorem. Let R be a 2-torsion free prime ring and U a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If R admits a generalized derivation F with associated nonzero derivation d such that F([x,y]) - [d(x), d(y)] = 0, for all $x, y \in U$, then $U \subseteq Z(R)$.

Proof. Suppose that $U \not\subseteq Z(R)$. By assumption we have

(1.1) $F[x, y] = [d(x), d(y)], \text{ for all } x, y \in U.$

Replacing y by 2yx in (1.1) and using the fact that R is 2-torsion free, we get

(1.2) F([x,y])x+[x,y]d(x) = [d(x),d(y)]x+d(y)[d(x),x]+[d(x),y]d(x), for all $x, y \in U$.

Comparing (1.1) and (1.2), we have

(1.3) [x, y]d(x) = d(y)[d(x), x] + [d(x), y]d(x), for all $x, y \in U$.

Now substituting 2yx for y in (1.3) and using (1.3), we obtain

 $(1.4) d(x)y[d(x),x] + [d(x),x]yd(x) = 0, for all x, y \in U.$

Since $[d(x), x] \in U$, Lemma 1.2 yields that d(x)y[d(x), x] = 0, for all $x, y \in U$. That is d(x)U[d(x), x] = (0) for all $x \in U$. Application of Lemma 1.1 yields that d(x) = 0 or [d(x), x] = 0, for all $x \in U$. Since d is a nonzero derivation, [d(x), x] = 0, for all $x \in U$. Thus Lemma 1.3 implies that $U \subseteq Z(R)$, which is a contradiction. Hence the theorem is proved.

Using similar arguments to the above, we can prove the following:

1.5. Theorem. Let R be a 2-torsion free prime ring and U a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If R admits a generalized derivation F with associated nonzero derivation d such that F[x,y] + [d(x), d(y)] = 0, for all $x, y \in U$, then $U \subseteq Z(R)$.

2. One sided ideals and generalized derivations in prime and semiprime rings

Daif and Bell [7] proved that if a semiprime ring R admits a derivation d such that either d([x, y]) + [x, y] = 0 or d([x, y]) - [x, y] = 0, for all x, y, in a nonzero ideal I of R, then R is necessarily commutative. Hongan [8] generalized the above result, considering R satisfying the conditions $d([x, y]) + [x, y] \in Z(R)$ and $d([x, y]) - [x, y] \in Z(R)$, for all $x, y \in I$. Motivated by the above observations, we explore the commutativity of a prime ring admitting a generalized derivation F satisfying any one of the following conditions:

- (i) $F([x, y]) [x, y] \in Z(R),$ (ii) $F([x, y]) + [x, y] \in Z(R),$
- (iii) $F(x \circ y) (x \circ y) \in Z(R)$, and
- (iv) $F(x \circ y) + (x \circ y) \in Z(R)$,

for all x, y in some appropriate subsets of R.

2.1. Lemma. [9, Lemma 3] If a prime ring R contains a nonzero commutative right ideal I, then R is commutative. \Box

2.2. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d such that $d(Z(R)) \neq (0)$. If $F([x,y]) - [x,y] \in Z(R)$ for all $x, y \in I$, then R is commutative.

Proof. Since $d(Z(R)) \neq (0)$, there exists $c \in Z(R)$ such that $d(c) \neq 0$. Thus $d(c) \in Z(R)$. By assumption, we have

(2.1) $F([x,y]) - [x,y] \in Z(R), \text{ for all } x, y \in I.$

Replacing y by yc in (2.1), we have

(2.2) $\{F([x,y]) - [x,y]\}c + [x,y]d(c) \in Z(R), \text{ for all } x, y \in I.$

This implies that [[x, y]d(c), r] = 0, for all $x, y \in I$ and $r \in R$. That is, [[x, y], r]d(c) = 0, for all $x, y \in I$ and $r \in R$. Since R is prime and $d(c) \neq 0$, we find that [[x, y], r] = 0 for all $x, y \in I$ and $r \in R$. Replacing y by yx, we have

(2.3)
$$[x, y][x, r] + [[x, y], r]x = 0$$
, for all $x, y \in I, r \in R$

In view of the fact that [[x, y], r] = 0, relation (2.3) yields that [x, y][x, r] = 0 for all $x, y \in I$ and $r \in R$. Replace r by ry, to obtain [x, y]r[x, y] = 0 for all $x, y \in I$ and $r \in R$, that is, [x, y]R[x, y] = (0) for all $x, y \in I$. The primeness of R yields that [x, y] = 0 for all $x, y \in I$, i.e. I is a commutative right ideal. Hence application of Lemma 2.1 completes the proof of the theorem.

2.3. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d such that $d(Z(R)) \neq (0)$. If $F([x,y]) + [x,y] \in Z(R)$ for all $x, y \in I$, then R is commutative.

Proof. If R satisfies the assumption $F([x, y]) + [x, y] \in Z(R)$ for all $x, y \in I$, then the generalized derivation (-F) also satisfies $(-F)([x, y]) - [x, y] \in Z(R)$ for all $x, y \in I$, and hence the proof follows from Theorem 2.2.

2.4. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d such that $d(Z(R)) \neq (0)$. If $F(x \circ y) - (x \circ y) \in Z(R)$ for all $x, y \in I$, then R is commutative.

Proof. By assumption, we have

(2.4) $F(x \circ y) - (x \circ y) \in Z(R)$, for all $x, y \in I$.

Since $d(Z(R)) \neq (0)$, there exists $c \in Z(R)$ such that $d(c) \neq 0$ and $d(c) \in Z(R)$. Replacing y by yc in (2.4), we have

(2.5) $\{F(x \circ y) - x \circ y\}c + (x \circ y)d(c) \in Z(R), \text{ for all } x, y \in I.$

That is, $(x \circ y)d(c) \in Z(R)$, for all $x, y \in I$. Since $d(c) \neq 0$ and R is prime, it follows that $(x \circ y) \in Z(R)$ for all $x, y \in I$. Thus $[(x \circ y), r] = 0$ for all $x, y \in I$ and $r \in R$. Substituting yx for y, we obtain $(x \circ y)[x, r] = 0$ for all $x, y \in I$ and $r \in R$. Replacing r by sr, we find that $(x \circ y)R[x, r] = (0)$ for all $x, y \in I$ and $r \in R$. Now the primeness of R, for each $x \in I$, gives either $(x \circ y) = 0$ or [r, x] = 0 for all $y \in I$ and $r \in R$. Let $I_1 = \{x \in I \mid (x \circ y) = 0$ for all $y \in I\}$ and $I_2 = \{x \in I \mid [r, x] = 0$, for all $r \in R\}$. Then I_1 and I_2 are both additive subgroups of I whose union is I. Hence either $I_1 = I$ or $I_2 = I$.

If $I_1 = I$, then $(x \circ y) = 0$ for all $x, y \in I$. Now replace y by yz, to get $(x \circ yz) = (x \circ y)z - y[x, z] = 0$, which gives y[x, z] = 0 for all $x, y, z \in I$. Thus yR[x, z] = 0 for all $x, y, z \in I$. Since I is a nonzero right ideal of R, the primeness of R yields that [x, z] = 0 for all $x, z \in I$. Thus I is commutative and an application of Lemma 2.1 gives that R is commutative. On the other hand if $I_2 = I$, then [r, x] = 0 for all $r \in R$ and $x \in I$. Substituting xs for x, we get x[r, s] = 0 for all $x \in I$ and $r, s \in R$. Since I is a nonzero right ideal of R, [r, s] = 0 for all $r, s \in R$. Hence in both the cases R is commutative. \Box

Using the same techniques with the necessary variations, we get the following:

2.5. Theorem. Let R be a prime ring and I a nonzero right ideal of R. Suppose that R admits a generalized derivation F with associated nonzero derivation d such that $d(Z(R)) \neq (0)$. If $F(x \circ y) + (x \circ y) \in Z(R)$ for all $x, y \in I$, then R is commutative. \Box

The following example demonstrates that the above results do not hold for arbitrary rings.

2.6. Example. Consider S as any ring. Let $R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \middle| a, b \in S \right\}$ and let $I = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \middle| b \in S \right\}$ be an ideal of R. Define $F : R \longrightarrow R$ by $F(x) = 2e_{11}x - xe_{11}$. Then F is a generalized derivation with associated derivation d given by $d(x) = e_{11}x - xe_{11}$. It can be easily seen that R satisfies the properties (i) $F([x,y]) - [x,y] \in Z(R)$, (ii) $F([x,y]) + [x,y] \in Z(R)$, (iii) $F(x \circ y) - (x \circ y) \in Z(R)$ and (iv) $F(x \circ y) + (x \circ y) \in Z(R)$ for all $x, y \in I$. However, R is not commutative.

The following Lemmas are generalizations of a result of Mayne [9] and a result of Bresar [6, Lemma 4], respectively.

2.7. Lemma. [4, Theorem 3] Let R be a semiprime ring and I a nonzero left ideal of R. If R admits a derivation d such that $d(I) \neq (0)$ and $[d(x), x] \in Z(R)$ for all $x \in I$, then $I \subseteq Z(R)$.

2.8. Lemma. [3, Lemma 2.6] Let R be a 2-torsion free semiprime ring and I a nonzero left ideal of R. If $a, b \in R$ and axb + bxa = 0 for all $x \in I$, then axb = bxa = 0 for all $x \in I$.

2.9. Theorem. Let R be a 2-torsion free semiprime ring and I a nonzero left ideal of R such that $A_r(I) = 0$, the right annihilator of I. If R admits a generalized derivation F with associated nonzero derivation d such that F[x, y] - [d(x), d(y)] = 0 for all $x, y \in I$, then $I \subseteq Z(R)$.

Proof. By assumption, we have

(2.6) F[x,y] - [d(x), d(y)] = 0, for all $x, y \in I$.

Replacing y by yx in (2.6), we get

(2.7) F([x,y])x + [x,y]d(x) = [d(x), d(y)]x + d(y)[d(x), x] + [d(x), y]d(x), for all $x, y \in I$. Comparing (2.6) and (2.7), we have

(2.8) [x, y]d(x) = d(y)[d(x), x] + [d(x), y]d(x), for all $x, y \in I$.

Now substituting xy for y in (2.8) and using (2.8), we obtain

(2.9) d(x)y[d(x), x] + [d(x), x]yd(x) = 0, for all $x, y \in I$.

Application of Lemma 2.8 yields that d(x)y[d(x), x] = 0, for all $x, y \in I$. This implies that [d(x), x]y[d(x), x] = 0, for all $x, y \in I$. Thus, we have [d(x), x]I[d(x), x] = (0), i.e. $(I[d(x), x])^2 = (0)$. Hence I[d(x), x] is a nilpotent left ideal of R. Since R is semiprime, I[d(x), x] = (0), for all $x \in I$. By our hypothesis [d(x), x] = 0 for all $x \in I$. Hence by Lemma 2.7, we have $I \subseteq Z(R)$.

Using similar arguments to the above we can prove the following:

2.10. Theorem. Let R be a 2-torsion free semiprime ring and I a left ideal of R such that $A_r(I) = 0$, the right annihilator of I. If R admits a generalized derivation F with associated nonzero derivation d such that F[x, y] + [d(x), d(y)] = 0 for all $x, y \in I$, then $I \subseteq Z(R)$.

3. Ideals and generalized (θ, ϕ) -derivations in prime rings

3.1. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose that ϕ is an automorphism of R. If R admits a generalized ϕ -derivation F with associated ϕ -derivation d such that $F(xy) - xy \in Z(R)$ for all $x, y \in I$, then either d = 0 or R is commutative.

Proof. By assumption, we have $F(xy) - xy \in Z(R)$ for all $x, y \in I$. This can be written as $F(x)y + \phi(x)d(y) - xy \in Z(R)$. Replacing y by yz, we obtain

 $(3.1) \qquad F(x)yz + \phi(x)d(y)z + \phi(x)\phi(y)d(z) - xyz \in Z(R), \text{ for all } x, y, z \in I.$

Thus, in particular

(3.2) $[(F(x)y + \phi(x)d(y) - xy)z + \phi(x)\phi(y)d(z), z] = 0, \text{ for all } x, y, z \in I.$

Using (3.1) and (3.2), we get

(3.3) $[\phi(x)\phi(y)d(z), z] = 0, \text{ for all } x, y, z \in I.$

Replacing x by rx in the above expression we obtain $[\phi(r), z]\phi(x)\phi(y)d(z) = 0$ for all $x, y, z \in I$ and $r \in R$. Now replace y by yr, to get $[\phi(r), z]\phi(x)\phi(r)\phi(y)(d(z)) = 0$ for all $x, y, z \in I$. That is, $[\phi(r), z]\phi(x)R\phi(y)(d(z)) = (0)$ for all $x, y, z \in I$. Thus, the primeness of R yields that for each $z \in I$, either $[\phi(r), z]\phi(x) = 0$ or $\phi(y)d(z) = 0$.

Let $I_1 = \{z \in I \mid [\phi(r), z]\phi(x) = 0, \text{ for all } x \in I \text{ and } r \in R\}$ and $I_2 = \{z \in I \mid \phi(y)d(z) = 0, \text{ for all } x \in I\}$. Then I_1 and I_2 are two additive subgroups of I whose union is I. Therefore either $I_1 = I$ or $I_2 = I$.

If $I_2 = I$ then $\phi(y)d(z) = 0$ for all $y, z \in I$. Replace y by [y, r] to get $[\phi(y), \phi(r)]d(z) = 0$ for all $y, z \in I$ and $r \in R$. Now replace r by sr to get $[\phi(y), \phi(s)]\phi(r)d(z) = 0$ for all $y, z \in I$ and $r, s \in R$ i.e., $[\phi(y), \phi(s)]Rd(z) = (0)$, for all $y, z \in I$ and $s \in R$. Again the primeness of R gives that either $[\phi(y), \phi(s)] = 0$ or d(z) = 0 for all $y \in I$ and $s \in R$. If $[\phi(y), \phi(s)] = 0$, for all $y \in I$ and $s \in R$, then [y, s] = 0 i.e., I is commutative. Hence R

is commutative by Lemma 2.1. On the other hand if d(z) = 0 for all $z \in I$, this implies that d = 0 on R.

Now assume the remaining possibility, i.e. $I_1 = I$. Now we have $[\phi(r), z]\phi(x) = 0$ for all $x, z \in I$ and $r \in R$. That is, $\phi^{-1}[\phi(r), z]RI = (0)$ for all $z \in I$. The primeness of R implies that $[\phi(r), z] = 0$ for all $z \in I$ and $r \in R$, and hence we get the required result.

One can note that if R admits a generalized ϕ -derivation F satisfying $F(xy) + xy \in Z(R)$ for all $x, y \in I$, then the generalized ϕ -derivation (-F) also satisfies $(-F)(xy)-xy \in Z(R)$ for all $x, y \in I$. Hence in view of Theorem 3.1 we conclude the following:

3.2. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose ϕ is an automorphism of R. If R admits a generalized ϕ -derivation F with associated ϕ -derivation d such that $F(xy)+xy \in Z(R)$ for all $x, y \in I$, then either d = 0 or R is commutative. \Box

3.3. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose ϕ is an automorphism of R. If F is a generalized ϕ -derivation with associated ϕ -derivation d such that $F(xy) - yx \in Z(R)$ for all $x, y \in I$, then either d = 0 or R is commutative.

Proof. For any $x, y \in I$ we have $F(xy) - yx \in Z(R)$. This can be written as $F(x)y + \phi(x)d(y) - yx \in Z(R)$ for all $x, y \in I$. Substituting xy for x, we obtain

 $(3.4) F(x)yy + \phi(x)d(y)y + \phi(x)\phi(y)d(y) - yxy \in Z(R), \text{ for all } x, y \in I.$

In particular

(3.5) $[(F(x)y + \phi(x)d(y) - yx)y + \phi(x)\phi(y)d(y), y] = 0, \text{ for all } x, y \in I.$

An application of (3.4) and (3.5) gives $[\phi(x)\phi(y)d(y), y] = 0$ for all $x, y \in I$, i.e.

(3.6) $\phi(x)\phi(y)[d(y), y] + \phi(x)[\phi(y), y]d(y) + [\phi(x), y]\phi(y)d(y)$, for all $x, y \in I$.

Replacing x by zx in (3.6) and using (3.6), we find that

(3.7) $[\phi(z), y]\phi(x)\phi(y)d(y) = 0, \text{ for all } x, y, z \in I.$

Replacing x by xr in (3.7), we get $[\phi(z), y]\phi(x)\phi(r)\phi(y)d(y) = 0$ for all $x, y, z \in I$, $r \in R$, i.e. $[\phi(z), y]\phi(x)R\phi(y)d(y) = (0)$ for all $x, y, z \in I$. Thus the primeness of R gives that for each $y \in I$, either $[\phi(z), y]\phi(x) = 0$ or $\phi(y)d(y) = 0$, for all $y \in I$. The sets $y \in I$ for which these two properties hold, are additive subgroups of I whose union is I. Then either $[\phi(z), y]\phi(x) = 0$ or $\phi(y)d(y) = 0$, for all $x, y, z \in I$. If $\phi(y)d(y) = 0$, for all $y \in I$, then linearization gives

(3.8) $\phi(x)d(y) + \phi(y)d(x) = 0, \text{ for all } x, y \in I.$

Replace y by zy to get

(3.9) $\phi(x)d(z)y + \phi(x)\phi(z)d(y) + \phi(z)\phi(y)d(x) = 0, \text{ for all } x, y \in I.$

Comparing (3.8) and (3.9), we get $\phi(x)d(z)y + \phi(x)\phi(z)d(y) - \phi(z)\phi(x)d(y) = 0$ for all $x, y, z \in I$. That is,

(3.10) $\phi(x)d(z)yr + [\phi(x),\phi(z)]d(y)r + [\phi(x),\phi(z)]\phi(y)d(r) = 0$, for all $x, y, z \in I, r \in R$.

An application of (3.9) in (3.10) yields that $[\phi(x), \phi(z)]\phi(y)d(r) = 0$ for all $x, y, z \in I$ and $r \in R$. Now replace y by ys to get $[\phi(x), \phi(z)]\phi(y)\phi(s)d(r) = 0$ for all $x, y, z \in I$ and $r, s \in R$, i.e. $[\phi(x), \phi(z)]\phi(y)Rd(r) = (0)$ for all $x, y, z \in I$ and $r \in R$. Thus the primeness of R implies that either $[\phi(x), \phi(z)]\phi(y) = 0$ or d(r) = 0, for all $x, y, z \in I$ and $r \in R$. Assume [x, z]y = 0. Then [x, z] = 0 for all $x, z \in I$. Since I is a nonzero ideal of a prime ring R, then R is commutative by Lemma 2.1. On the other hand we have $[\phi(z), y]\phi(x) = 0$ for all $x, y, z \in I$. Substituting x for rx we get $[\phi(z), y]\phi(r)\phi(x) = 0$ for all $x, y, z \in I$ and $r \in R$. That is, $[\phi(z), y]R\phi(x) = (0)$ for all $x, y, z \in I$. Since I is a nonzero ideal and R is prime, $[\phi(z), y] = 0$ for all $y, z \in I$. Again I is commutative so R is commutative by Lemma 2.1. Hence the theorem is completely proved.

Arguing as above we can prove the following:

3.4. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose ϕ is an automorphism of R. If F is a generalized ϕ -derivation with associated ϕ -derivation d is such that $F(xy) + yx \in Z(R)$ for all $x, y \in I$, then either d = 0 or R is commutative. \Box

3.5. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose ϕ is an automorphism of R. If R admits a generalized ϕ -derivation F with associated nonzero ϕ -derivation d such that $F(x)F(y) - xy \in Z(R)$ for all $x, y \in I$, then either d = 0 or R is commutative.

Proof. By assumption we have $F(x)F(y) - xy \in Z(R)$ for all $x, y \in I$. Replacing y by yr, we find that

$$(3.11) \quad (F(x)F(y) - xy)r + F(x)\phi(y)d(r) \in Z(R), \text{ for all } x, y \in I, r \in R.$$

This implies that

(3.12) $[F(x)\phi(y)d(r), r] = 0$, for all $x, y \in I, r \in R$.

This can be rewritten as

$$(3.13) \quad F(x)[\phi(y)d(r), r] + [F(x), r]\phi(y)d(r) = 0, \text{ for all } x, y \in I, r \in \mathbb{R}.$$

Substituting $(\phi^{-1}(F(x)))y$ for y in (3.14) and using (3.14), we find that

(3.14) $[F(x), r]F(x)\phi(y)d(r) = 0$, for all $x, y \in I, r \in R$.

That is, $[F(x), r]F(x))R\phi(y)d(r) = (0)$. Thus for each $r \in R$ the primeness of R forces that either [F(x), r]F(x) = 0 or $\phi(y)d(r) = 0$. The sets of all $r \in R$ for which these two properties hold form additive subgroups of R whose union is I. Hence either [F(x), r]F(x) = 0 or $\phi(y)d(r) = 0$ for all $x, y \in I$ and $r \in R$. If $\phi(y)d(r) = 0$ then replace y by ys, to obtain $\phi(y)\phi(s)d(r) = 0$ for all $y \in I$ and $r, s \in R$, i.e. $\phi(y)Rd(r) = (0)$ for all $r \in R$ and $y \in I$.

Since *I* is a nonzero ideal of *R* and *R* is prime, the above relation yields that d(r) = 0 for all $r \in R$. Therefore we assume the remaining possibility that [F(x), r]F(x) = 0 for all $x \in I$ and $r \in R$. Substituting *r* by *sr* and using this we find that [F(x), r]RF(x) = (0) for all $x \in I$ and $r \in R$. The primeness of *R* implies that for each $x \in I$, either F(x) = 0 or [F(x), r] = 0. Thus in each case we have [F(x), r] = 0 for all $x \in I$ and $r \in R$. Replacing *x* by *xr* and using this we find that

(3.15) $[\phi(x), r]d(r) + \phi(x)[d(r), r] = 0$, for all $x \in I, r \in R$.

Now again replace x by sx in (3.15) to get

(3.16) $\phi(s)[\phi(x), r]d(r) + [\phi(s), r]\phi(x)d(r) + \phi(s)\phi(x)[d(r), r] = 0$, for all $x \in I, r \in R$.

Comparing (3.15) and (3.16), we get $[\phi(s), r]\phi(x)d(r) = 0$ for all $x \in I$ and $r, s \in R$. That is, $[\phi(s), r]\phi(x)Rd(r) = (0)$ for all $x \in I$ and $r, s \in R$. Thus, the primeness of R gives either $[\phi(s), r]\phi(x) = 0$ or d(r) = 0.

If $[\phi(s), r]\phi(x) = 0$ for all $r, s \in R$ and $x \in I$, we have $[\phi(s), r] = 0$ for all $r, s \in R$. Hence, using Lemma 2.1, we get the required result.

Using the same arguments we can prove the following:

3.6. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose ϕ is an automorphism of R. If R admits a generalized ϕ -derivation F with associated ϕ -derivation d such that $F(x)F(y)+xy \in Z(R)$ for all $x, y \in I$, then either d = 0 or R is commutative.

3.7. Theorem. Let R be a prime ring and I a nonzero ideal of R. Suppose ϕ is an automorphism of R. Then the following conditions are equivalent:

- (i) R admits a generalized ϕ -derivation F with associated nonzero ϕ -derivation d such that $F(xy) xy \in Z(R)$ or $F(xy) + xy \in Z(R)$, for all $x, y \in I$.
- (ii) R admits a generalized ϕ -derivation F with associated nonzero ϕ -derivation d such that $F(xy) yx \in Z(R)$ or $F(xy) + yx \in Z(R)$, for all $x, y \in I$.
- (iii) R admits a generalized ϕ -derivation F with associated nonzero ϕ -derivation d such that $F(x)F(y) xy \in Z(R)$ or $F(x)F(y) + xy \in Z(R)$, for all $x, y \in I$.

(iv) R is commutative.

Proof. Obviously, (iv) \implies (i), (ii) and (iii). Now, we show that (i) \implies (iv). For each $x \in I$ we set $I_1 = \{y \in I \mid F(xy) - xy \in Z(R)\}$ and $I_2 = \{y \in I \mid F(xy) + xy \in Z(R)\}$. Then I_1 and I_2 are additive subgroups of I whose union is I. Thus by Brauer's trick, either $I_1 = I$ or $I_2 = I$. Therefore, R is commutative by Theorem 3.1 and Theorem 3.2.

(ii) \implies (iv) For each $x \in I$, set $I_1 = \{y \in I \mid F(xy) - yx \in Z(R)\}$ and $I_2 = \{y \in I \mid F(xy) + yx \in Z(R)\}$. Arguing as above and using Theorem 3.3 and Theorem 3.4, R is commutative.

It remains to prove that (iii) \implies (iv) Now for each $x \in I$, set $I_1 = \{y \in I \mid F(x)F(y) - xy \in Z(R)\}$ and $I_2 = \{y \in I \mid F(x)F(y) + xy \in Z(R)\}$. Then using similar arguments, R is commutative by Theorem 3.5 and Theorem 3.6

References

- Ashraf, M., Ali, A. and Ali, S. On Lie ideals and generalized (θ, φ)-derivations in prime rings, Comm. Algebra 32 (8), 2977–2985, 2004.
- [2] Awtar, R. Lie structure in prime rings with derivations, Publ. Math. Debrecen 31, 209–215, 1984.
- [3] Bell, H. E. Some commutativity results involving derivations, Trends in Theory of Rings and Modules, Anam. Pub., 11–16, 2005.
- [4] Bell, H.E. and Martindale, W.S. Centralizing mappings of semiprime rings, Canad. Math. Bull. 30, 92–101, 1987.
- [5] Bergen, J., Herstein, I.N. and Kerr, J.W. Lie ideals and derivations of prime rings, J. Algebra 71, 259–267, 1981.
- [6] Brešar, M. Jordan derivations on Semiprime rings, Proc. Amer. Math. Soc. 104, 1003–1006, 1988.
- [7] Daif, M. N. and Bell, H. E. Remarks on derivations on semiprime rings, Internat. J. Math. & Math. Sci. 15, 205–206, 1992.
- [8] Hongan, M. A note on semiprime rings with derivations, Internat. J. Math. & Math. Sci. 20, 413–415, 1997.
- [9] Mayne J. H. Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122–126, 1984.