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Abstract

In this paper we introduce the notion of equiprime N-ideals where N
is a near-ring. We consider the interconnections of equiprime, 3-prime
and completely prime N-ideals of a monogenic N-group Γ. We show
that if P is an equiprime N-ideal of Γ, then (P : Γ)N is an equiprime
ideal of N , and that the converse holds when N is a right permutable
near-ring and Γ is a monogenic N-group.
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1. Introduction

There are various ways to generalize prime ideals of rings to near-rings. Prime ideals
in near-rings have been extensively studied by several authors. In 1970, Holcombe [9]
studied three different concepts of primeness, which he called 0-prime (or prime), 1-prime
and 2-prime. Ramakotaiah and Rao [13], defined the concepts of prime ideal of type 1
and prime ideal of type 2. Groenewald [8] used the phrase “3-prime ideal” for “prime
ideal of type 1”. In the literature the phrase “completely prime (or c-prime) ideal” has
been used for “prime ideal of type 2”. Booth, Groenewald and Veldsman [5] presented
another generalization of prime rings, called equiprime or e-prime. These notions of
primeness above are in general distinct for near-rings.

Prime rings and their extensions to ring modules have been studied by various authors
[7, 11, 15]. What about the extensions of prime near-rings to prime N-groups? Juglal,
Groenewald and Lee [10] generalized the various notions of primeness that were defined
in N to the N-group Γ. They also provided characterizations of prime N-groups and
showed equivalences between these characterizations.
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In this study, we define the notion of equiprime N-ideals and investigate the intercon-
nections of equiprime, 3-prime and completely prime N-ideals of monogenic N-groups.
Also, we obtain some relationships between an equiprime N-ideal P of an N-group Γ
and the ideal (P : Γ) of the near-ring N .

2. Preliminary definitions and results

N will always denote a right near-ring. It is assumed that the reader is familiar with
the basic definitions of right near-ring, zero-symmetric near-ring and ideal (cf.[12]).

2.1. Definition. We recall from Holcombe [9], Groenewald [8] and Booth [5]; an ideal
P �N is v-prime, if for A,B ⊆ N with

A,B ideals of N if v = 0

A,B left ideals of N if v = 1

A,B N-subgroups of N if v = 2,

the inclusion AB ⊆ P implies A ⊆ P or B ⊆ P .

An ideal P of a near-ring N is called a 3-prime ideal if for all a, b ∈ N , aNb ⊆ P
implies a ∈ P or b ∈ P .

If for all a, b ∈ N , ab ∈ P implies a ∈ P or b ∈ P , then P �N is called a completely

prime ideal [13].

P�N is called an equiprime ideal, if a ∈ N\P and x, y ∈ N are such that anx−any ∈ P
for all n ∈ N , then x− y ∈ P [5, Proposition 2.2.].

If the zero ideal of N is v-prime (v = 0, 1, 2, 3, c, e), then N is called a v-prime near-

ring.

It is already known that if P �N , then P is completely prime =⇒ P is 3-prime =⇒
P is 2-prime, P is 1-prime =⇒ P is 0-prime and P is 2-prime =⇒ P is 1-prime when N
is zero-symmetric. Furthermore, any equiprime ideal is 3-prime [14].

Also playing a role in this paper are the identities:

If for all a, b, c, d ∈ N , abc = acb (resp. abc = bac, abcd = acbd), then N is called a
right permutable (resp. left permutable, medial) near-ring [3].

If abc = abac (resp. abc = acbc), then N is called a left self distributive -LSD- (resp.
right self distributive -RSD-) near-ring [4].

Birkenmeier and Heatherly [4] showed that 3-prime ideals in an LSD or RSD zero-
symmetric near-ring are also completely prime. Furthermore, Atagün [1] proved that
if P is an IFP ideal (for all a, b ∈ N , ab ∈ P implies anb ∈ P for all n ∈ N) and a
3-(semi)prime ideal of N , then P is a completely (semi)prime ideal.

The following proposition will be used in Section 4.

2.2. Proposition. Let P be a 3-prime ideal of a near-ring N .

a) If N is right permutable, then P is a completely prime ideal of N [2, Proposi-
tion 2.2].

b) If N is medial, then P is a completely prime ideal of N [3, Proposition 2.7].

If Γ is an additive group, then it is called an N-group if for all x, y ∈ N , γ ∈ Γ,

a) xγ ∈ Γ,
b) (x+ y)γ = xγ + yγ,
c) (xy)γ = x(yγ).



Equiprime N-ideals of Monogenic N-groups 377

A subgroup ∆ of Γ with N∆ ⊆ ∆ is said to be an N-subgroup of Γ (∆ ≤N Γ). A
normal subgroup ∆ of Γ is called an N-ideal of Γ (∆�N Γ) if ∀ γ ∈ Γ, ∀ δ ∈ ∆, ∀n ∈ N :
n(γ + δ)− nγ ∈ ∆ [12].

Γ is called monogenic if there exists γ ∈ Γ such that Nγ = {xγ : x ∈ N} = Γ.
Let A,B be subsets of Γ. Then the Noetherian quotient (A : B)N is defined as the set
{n ∈ N : nB ⊆ A}.

2.3. Lemma. Let N be a zero-symmetric near-ring and Γ an N-group. If P �N Γ, then
NP ⊆ P .

Proof. It is clear that n0Γ = 0Γ for all n ∈ N , since N is zero-symmetric. Now, for all
n ∈ N and p ∈ P , np = n(0Γ + p)− n0Γ ∈ P since P �N Γ. Hence NP ⊆ P . �

An N-group Γ is said to be equiprime [6] if

a) NΓ 6= 0Γ,
b) If a ∈ N with a /∈ (0Γ : Γ)N = {n ∈ N : nΓ = 0Γ} and γ1, γ2 ∈ Γ, then

anγ1 = anγ2 for all n ∈ N , implies γ1 = γ2,
c) N0Γ = 0Γ.

3. Prime N-ideals

Throughout this paper, N will always denote a zero-symmetric near-ring, Γ a left
N-group and P a subset of N .

3.1. Definition. (cf. [10]) Let P �N Γ be such that NΓ 6⊆ P . Then P is called:

a) 0-prime if for an ideal A of N and an N-ideal B of Γ, AB ⊆ P implies AΓ ⊆ P
or B ⊆ P .

b) 1-prime if for a left ideal A of N and an N-ideal B of Γ, AB ⊆ P implies AΓ ⊆ P
or B ⊆ P .

c) 2-prime if for a left N-subgroup A of N and an N-subgroup B of Γ, AB ⊆ P
implies AΓ ⊆ P or B ⊆ P .

d) 3-prime if nNγ ⊆ P implies that nΓ ⊆ P or γ ∈ P for n ∈ N and γ ∈ Γ.
e) completely prime (c-prime) if nγ ∈ P implies that nΓ ⊆ P or γ ∈ P for n ∈ N

and γ ∈ Γ.

Γ is said to be a v-prime N-group (v = 0, 1, 2, 3, c) if NΓ 6= 0 and 0 is a v-prime N-ideal
of Γ.

We state the following results from [10] which will be used in this paper.

3.2. Proposition. [10, Proposition 1.7] Let P �N Γ. Then P is completely prime =⇒
P is 3-prime =⇒ P is 2-prime =⇒ P is 0-prime. �

3.3. Corollary. [10, Corollary 1.8] If Γ is an N-group, then Γ is completely prime =⇒
Γ is 3-prime =⇒ Γ is 2-prime =⇒ Γ is 0-prime. �

In general, a 3-prime N-ideal need not to be a completely prime N-ideal. However,
in [10] the authors gave the following proposition.

3.4. Proposition. [10, Proposition 1.10] Let P �N Γ. Then the following are equivalent:

a) P is 3-prime and (P : γ)�N for every γ ∈ Γ\P .

b) NΓ 6⊆ P and (P : γ) = (P : Γ) for every γ ∈ Γ\P .

c) P is a completely prime N-ideal. �
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In section 4, we investigate conditions under which a 3-prime N-ideal is completely
prime.

If P �N Γ, we recall that P̃ = (P : Γ) is an ideal of N . If P is a v-prime N-ideal

(v = 0, 1, 2, 3, c), then does this imply that P̃ is also a v-prime ideal of N? Juglal,
Groenewald and Lee investigate this in the proposition that follows:

3.5. Proposition. [10, Proposition 1.16] Let P �N Γ.

a) If P is a 2-prime N-ideal of Γ, then P̃ is a 2-prime ideal of N .

b) If P is a 3-prime N-ideal of Γ, then P̃ is a 3-prime ideal of N .

c) If P is a c-prime N-ideal of Γ, then P̃ is a c-prime ideal of N . �

4. Equiprime N-ideals

4.1. Definition. Let P �N Γ be such that NΓ 6⊆ P . If a ∈ N and γ1, γ2 ∈ Γ, then
anγ1 − anγ2 ∈ P for all n ∈ N , implies aΓ ⊆ P or γ1 − γ2 ∈ P , then P is called an
equiprime N-ideal of Γ.

It is known that if the ideal P of N is an equiprime ideal, then P is a 3-prime ideal.
We show a similar relationship holds among the N-ideals of Γ.

4.2. Proposition. Let P �N Γ. If P is an equiprime N-ideal, then P is a 3-prime

N-ideal.

Proof. Suppose that P is an equiprime N-ideal and aNγ ⊆ P for a ∈ N and γ ∈ Γ.
Since for every n ∈ N , anγ ∈ P , then anγ = anγ − an0Γ ∈ P . Since P is an equiprime
N ideal, we have aΓ ⊆ P or γ = γ − 0Γ ∈ P . So P is a 3-prime N-ideal. �

4.3. Proposition. Let N be a right permutable near-ring and P �N Γ. Then P is a

completely prime N-ideal if and only if P is a 3-prime N-ideal.

Proof. Assume P is a 3-prime N-ideal and nγ ∈ P for n ∈ N and γ ∈ Γ. By Lemma2.3,
nNnγ ⊆ NP ⊆ P . Then nNnγ = nnNγ = n2Nγ ⊆ P , since N is right permutable.
This implies that n2Γ ⊆ P or γ ∈ P , since P is 3-prime. So we have n2 ∈ (P : Γ) or
γ ∈ P . If γ ∈ P , then we are done. Otherwise, since P is a 3-prime N-ideal of Γ, (P : Γ)
is a 3-prime ideal of N by Proposition 3.5 (b), and then (P : Γ) is a completely prime
ideal of N by Proposition 2.2 (a). Hence, n2 ∈ (P : Γ) implies that n ∈ (P : Γ); whence
nΓ ⊆ P . Therefore P is a completely prime N-ideal. Conversely, if P is completely
prime, it is also 3-prime by Proposition 3.2. �

4.4. Example. Let (N,+) be the Klein four group with multiplication defined as per
Pilz [12, Scheme 1, p.408];

· 0 a b c

0 0 0 0 0
a 0 a a a
b 0 b b b
c 0 c c c

Then (N,+, · ) is a zero-symmetric right permutable near-ring. Consider the N-group
Γ = N . It can be easily seen that P = 0 is both a 3-prime and a completely prime
N-ideal of Γ.

From now on, in this section all N-groups will be monogenic N-groups.

4.5. Proposition. Let N be a left permutable near-ring and P �N Γ. Then P is a

completely prime N-ideal if and only if P is a 3-prime N-ideal.
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Proof. By Proposition 3.2, if P �N Γ is completely prime then it is 3-prime.

Assume N is left permutable and P is 3-prime. Let n ∈ N and γ ∈ Γ be such that
nγ ∈ P . Then Nnγ ⊆ NP ⊆ P by Lemma 2.3. Since Γ is monogenic, there exists
γ0 ∈ Γ such that Nγ0 = Γ. Hence γ = xγ0 for some x ∈ N . Since N is left permutable,
Nnγ = Nnxγ0 = nNxγ0 = nNγ ⊆ P . This implies that nΓ ⊆ P or γ ∈ P , because P is
3-prime. Hence, P is completely prime. �

4.6. Proposition. Let N be a medial near-ring and P �N Γ. Then P is a completely

prime N-ideal if and only if P is a 3-prime N-ideal.

Proof. Assume P is a 3-prime N-ideal and nγ ∈ P for n ∈ N and γ ∈ Γ. Then
Nnγ ⊆ NP ⊆ P by Lemma 2.3. Since Γ is monogenic, there exists γ0 ∈ Γ such that
Nγ0 = Γ. Hence, γ = xγ0 for some x ∈ N . Thus, nNnxγ0 = nNnγ ⊆ NP ⊆ P .
Then nNnxγ0 = nnNxγ0 = n2Nxγ0 = n2Nγ ⊆ P , since N is medial. Since P is 3-
prime, it follows that n2Γ ⊆ P or γ ∈ P . If γ ∈ P , then we are done. If n2Γ ⊆ P ,
then n2 ∈ (P : Γ). As P is a 3-prime N-ideal, (P : Γ) is a 3-prime ideal of N by
Proposition 3.5 (b). This implies that (P : Γ) is completely prime by Proposition 2.2 (b).
Hence, n ∈ (P : Γ). Therefore nΓ ⊆ P ; whence P is a completely prime N-ideal.

Conversely, if P is completely prime, it is 3-prime by Proposition 3.2. �

4.7. Proposition. Let N be an LSD near-ring and P �N Γ. Then P is a completely

prime N-ideal if and only if P is a 3-prime N-ideal.

Proof. Suppose that P is a 3-prime N-ideal. Let n ∈ N and γ ∈ Γ be such that nγ ∈ P .
Since Γ is monogenic, there exists γ0 ∈ Γ such that Nγ0 = Γ. Hence, γ = xγ0 for some
x ∈ N . Since N is LSD, nn′γ = nn′xγ0 = nn′nxγ0 = nn′nγ for each n′ ∈ N . Then,
nn′γ = nn′nγ ∈ NP ⊆ P , so nn′γ ∈ P for each n′ ∈ N . Hence, nNγ ⊆ P . Thus nΓ ⊆ P
or γ ∈ P because P is 3-prime. Therefore P is a completely prime N-ideal.

If P is completely prime, it is also 3-prime by Proposition 3.2. �

4.8. Corollary. Let P be an equiprime N-ideal.

a) If N is right permutable, then P is a completely prime N-ideal.

b) If N is left permutable, then P is a completely prime N-ideal.

c) If N is medial, then P is a completely prime N-ideal.

d) If N is LSD, then P is a completely prime N-ideal.

Proof. The result follows from Proposition 4.2 and Propositions 4.3, 4.5, 4.6, 4.7. �

The remaining results in this section are about relationships between equiprime N-
ideals and completely prime N-ideals.

4.9. Proposition. Let N be a right permutable near-ring and P �N Γ be such that

Nd\(P : Γ) 6= Ø. Then P is an equiprime N-ideal if and only if P is a completely prime

N-ideal.

Proof. Under the given assumptions, if P is equiprime it is completely prime by Corol-
lary 4.8 (a).

Conversely, suppose P is completely prime and a ∈ N , γ1, γ2 ∈ Γ, anγ1 − anγ2 ∈ P
for all n ∈ N . We need to show that aΓ ⊆ P or γ1− γ2 ∈ P . Since Γ is monogenic, there
exists γ0 ∈ Γ such that Nγ0 = Γ. Hence, γ1 = xγ0 and γ2 = yγ0 for some x, y ∈ N . Since
N is right permutable, anγ1−anγ2 = anxγ0−anyγ0 = axnγ0−aynγ0 = (ax−ay)nγ0 ∈ P
for all n ∈ N . Hence (ax− ay)Nγ0 ⊆ P .

By Proposition 3.2, a completely prime N-ideal is also 3-prime, so (ax− ay)Nγ0 ⊆ P
implies (ax− ay)Γ ⊆ P or γ0 ∈ P . If γ0 ∈ P , then Γ = Nγ0 ⊆ NP ⊆ P by Lemma 2.3.
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This implies that Γ = P , which contradicts NΓ 6⊆ P . Hence, we have (ax− ay)Γ ⊆ P ,
whence (ax − ay) ∈ (P : Γ). Then nd(ax − ay) ∈ (P : Γ) for an nd ∈ Nd\(P : Γ)
because (P : Γ) is an ideal of N . Since nd ∈ Nd\(P : Γ) and N is right permutable, we
get nd(ax − ay) = ndax − nday = ndxa − ndya = nd(x − y)a ∈ (P : Γ). Since P is a
completely prime N-ideal, (P : Γ) is a completely prime ideal of N by Proposition 3.5 (c).
Now since (P : Γ) is a completely prime ideal of N and nd(x − y)a ∈ (P : Γ), we have
nd ∈ (P : Γ) or (x− y)a ∈ (P : Γ).

Since nd ∈ Nd\(P : Γ) and (P : Γ) is a completely prime ideal, we get (x−y) ∈ (P : Γ)
or a ∈ (P : Γ). If a ∈ (P : Γ), then aΓ ⊆ P and we are done. If (x− y) ∈ (P : Γ), we get
(x−y)Γ ⊆ P . In particular, for γ0 ∈ Γ, it follows that (x−y)γ0 = xγ0−yγ0 = γ1−γ2 ∈ P .
Therefore, P is an equiprime N-ideal. �

The condition Nd\(P : Γ) 6= ∅ cannot be removed from Proposition 4.9. We have the
following example:

4.10. Example. Consider the near-ring (N,+, · ) in Example 4.4. Let the N-group
Γ = N and let P = 0. We know that N is a zero-symmetric right permutable near-ring
and P = 0 is a completely prime N-ideal. It is seen that Nd\(P : Γ) = ∅ and P is not
an equiprime N-ideal of Γ.

4.11. Proposition. Let N be a left permutable near-ring and P �N Γ. Then P is an

equiprime N-ideal if and only if P is a completely prime N-ideal.

Proof. By Corollary 4.8 (b), if P is equiprime, then it is completely prime.

Suppose P is completely prime. Let a ∈ N , γ1, γ2 ∈ Γ, anγ1−anγ2 ∈ P for all n ∈ N .
We need to show that aΓ ⊆ P or γ1 − γ2 ∈ P . Since Γ is monogenic, there exists γ0 ∈ Γ
such that Nγ0 = Γ. So there exist x, y ∈ N such that γ1 = xγ0 and γ2 = yγ0. Then

anγ1 − anγ2 = anxγ0 − anyγ0 = naxγ0 − nayγ0 = (nax− nay)γ0 ∈ P,

since N is left permutable. Then, (nax− nay)Γ ⊆ P or γ0 ∈ P , since P is a completely
prime N-ideal. If γ0 ∈ P , then Γ = Nγ0 ⊆ NP ⊆ P by Lemma 2.3. This implies that
Γ = P , which contradicts that NΓ 6⊆ P . Hence, we have (nax − nay)Γ ⊆ P , whence
(nax − nay) ∈ (P : Γ). Furthermore, since (P : Γ) 6= N , there exists a q ∈ N\(P : Γ).
Then, (nax− nay)q ∈ (P : Γ), since (P : Γ) is an ideal of N . Hence,

(nax− nay)q = naxq − nayq = nxaq − nyaq = (nx− ny)aq ∈ (P : Γ)

because N is left permutable. By Proposition 3.5 (c), (P : Γ) is a completely prime ideal
of N since P is a completely prime N-ideal of Γ, which means that either (nx− ny)a ∈
(P : Γ) or q ∈ (P : Γ). Since q ∈ N\(P : Γ) and (P : Γ) is a completely prime ideal, we
get (nx−ny)a ∈ (P : Γ) and therefore (nx−ny) ∈ (P : Γ) or a ∈ (P : Γ). If a ∈ (P : Γ),
then aΓ ⊆ P and we are done.

If (nx − ny) ∈ (P : Γ), then (nx − ny)q ∈ (P : Γ) because (P : Γ) is an ideal of
N . Since N is left permutable, (nx − ny)q = nxq − nyq = xnq − ynq = (x − y)nq.
Since (P : Γ) is completely prime and q /∈ (P : Γ), (x − y)n ∈ (P : Γ), it follows that
(x − y) ∈ (P : Γ) or n ∈ (P : Γ) for all n ∈ N . If n ∈ (P : Γ) for all n ∈ N , this
contradicts that NΓ 6⊆ P . Hence, (x−y) ∈ (P : Γ). In particular, since γ0 ∈ Γ, it follows
that (x− y)γ0 = xγ0 − yγ0 = γ1 − γ2 ∈ P . Thus, P is an equiprime N-ideal. �

4.12. Proposition. Let N be a medial near-ring and P an N-ideal of Γ such that

Nd\(P : Γ) 6= Ø. Then P is an equiprime N-ideal if and only if P is a completely prime

N-ideal.
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Proof. Suppose P is a completely prime N-ideal. Let a ∈ N\(P : Γ), γ1, γ2 ∈ Γ,
anγ1−anγ2 ∈ P for all n ∈ N . We need to show that γ1−γ2 ∈ P . Since Γ is monogenic,
there exists γ0 ∈ Γ such that Nγ0 = Γ. Hence, γ1 = xγ0 and γ2 = yγ0 for some x, y ∈ N .
Since anγ1 − anγ2 = anxγ0 − anyγ0 = (anx− any)γ0 ∈ P and P is a completely prime
N-ideal, (anx− any)Γ ⊆ P or γ0 ∈ P .

If γ0 ∈ P , then Γ = Nγ0 ⊆ NP ⊆ P . Since P �N Γ, this contradicts that NΓ 6⊆ P .
Hence we have (anx− any)Γ ⊆ P , whence anx − any ∈ (P : Γ). Let nd ∈ Nd\(P : Γ).
Then,

nd(anx− any)nd = ndanxnd − ndanynd = ndnaxnd − ndnaynd ∈ (P : Γ)

since N is medial and (P : Γ)�N , and again since N is medial, we get

ndnaxnd − ndnaynd = nda(nx)nd − nda(ny)nd = nd(nx)and − nd(ny)and

= nd(nx− ny)and ∈ (P : Γ).

In view of Proposition 3.5 (c) and the fact that a, nd /∈ (P : Γ), (nx − ny) ∈ (P : Γ).
Now for nd ∈ Nd\(P : Γ), we have nd(nx − ny)nd ∈ (P : Γ). Since N is medial,
nd(nx − ny)nd = ndnxnd − ndnynd = ndxnnd − ndynnd = nd(x − y)nnd. Hence,
nd(x − y)nnd ∈ (P : Γ) for all n ∈ N . Since (P : Γ) is a completely prime ideal and
nd ∈ Nd\(P : Γ) we have (x − y)n ∈ (P : Γ) which implies that (x − y) ∈ (P : Γ) or
n ∈ (P : Γ) for all n ∈ N .

If n ∈ (P : Γ) for all n ∈ N , this contradicts that NΓ 6⊆ P . Hence, (x− y) ∈ (P : Γ).
Therefore, for γ0 ∈ Γ, (x− y)γ0 = xγ0 − yγ0 = γ1 − γ2 ∈ P , which implies that P is an
equiprime N-ideal. The converse comes from Corollary 4.8 (c). �

5. Equiprime N-ideals and equiprime ideals

5.1. Proposition. If P is an equiprime N-ideal of Γ, then (P : Γ) is an equiprime ideal

of N .

Proof. Assume P is equiprime and a, x, y ∈ N are such that anx− any ∈ (P : Γ) for all
n ∈ N . Then for every γ ∈ Γ, we have (anx− any)γ ∈ P . Since Γ is an N-group, we get

(anx− any)γ = anxγ − anyγ = anγ1 − anγ2 ∈ P,

where γ1 = xγ and γ2 = yγ. Then aΓ ⊆ P or γ1 − γ2 ∈ P , since P is an equiprime
N-ideal. If aΓ ⊆ P , then a ∈ (P : Γ) and we are done. If γ1 − γ2 ∈ P , then γ1 − γ2 =
xγ − yγ = (x− y)γ ∈ P for all γ ∈ Γ. Hence, (x− y) ∈ (P : γ) for all γ ∈ Γ. Therefore
(x− y) ∈ (P : Γ), which implies that (P : Γ) is an equiprime ideal of N . �

5.2. Proposition. Let N be a right permutable near-ring, Γ a monogenic N-group and

P �N Γ be such that NΓ 6⊆ P . If (P : Γ) is an equiprime ideal of N , then P is an

equiprime N-ideal of Γ.

Proof. Suppose that (P : Γ) is an equiprime ideal of N and a ∈ N , γ1, γ2 ∈ Γ, anγ1 −
anγ2 ∈ P for all n ∈ N . We need to show that aΓ ⊆ P or γ1 − γ2 ∈ P .

Suppose aΓ 6⊆ P and γ1 − γ2 /∈ P . If aΓ 6⊆ P , then a /∈ (P : Γ). On the other hand,
since Γ is monogenic, there exists γ0 ∈ Γ such that Nγ0 = Γ. Hence, γ1 = xγ0 and
γ2 = yγ0 for some x, y ∈ N .

If γ1 − γ2 /∈ P , then γ1 − γ2 = xγ0 − yγ0 = (x − y)γ0 /∈ P , which implies (x − y) /∈
(P : γ0) ⊇ (P : Γ). Since (P : Γ) is equiprime and a, (x − y) /∈ (P : Γ), there exists an
m ∈ N such that amx− amy /∈ (P : Γ). Hence, amx− amy /∈ (P : Nγ0). Then, there
exists n′ ∈ N such that (amx− amy)n′γ0 /∈ P . So,

(amx−amy)n′γ0 = amxn′γ0−amyn′γ0 = amn′xγ0−amn′yγ0 = amn′γ1−amn′γ2,
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sinceN is right permutable. Hence, there exists anmn′ ∈ N such that amn′γ1−amn′γ2 /∈
P . But this is a contradiction with the assumption. Hence, aΓ ⊆ P or γ1 − γ2 ∈ P , and
therefore it follows that P is an equiprime N-ideal. �
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