

RESEARCH ARTICLE

Interpolation between weighted Lorentz spaces with respect to a vector measure

Maryam Mohsenipour^(D), Ghadir Sadeghi^{*}^(D)

Department of Mathematics and Computer Sciences, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran

Abstract

In this paper, we consider weighted Lorentz spaces with respect to a vector measure and derive some of their properties. We describe the interpolation with a parameter function of these spaces. As an application, we get a type of the generalization of Steffensen's inequality for $L^p(||m||)$ and interpolation spaces for couples of Lorentz-Zygmund spaces.

Mathematics Subject Classification (2010). 46G10, 46E30, 46B70, 28B05

Keywords. Lorentz spaces, interpolation, vector measures, Steffensen's inequality

1. Introduction

We begin our work by recalling the classical Lorentz spaces. Let (Ω, Σ, μ) be a measure space. For $0 and <math>0 < q \le \infty$ the Lorentz space $L^{p,q}(\mu)$ is the collection of all measurable functions f on Ω such that the quantity

$$||f||_{L^{p,q}(\mu)} := \begin{cases} \left(\int_0^\infty (t^{\frac{1}{p}} f_*(t))^q \frac{dt}{t} \right)^{\frac{1}{q}} & (0 < q < \infty), \\ \sup_{t>0} t^{\frac{1}{p}} f_*(t) & (q = \infty) \end{cases}$$

is finite, where f_* denotes the decreasing rearrangement of |f|. Note that $L^{p,p}(\mu)$ is just the Lebesgue space $L^p(\mu)$ and $L^{p,\infty}(\mu)$ is the weak- L^p space. The $L^{p,q}(\mu)$ spaces arise in the Lions-Peetre K-method of interpolation: in particular,

$$L^{p,q}(\mu) = (L^{p_0}(\mu), L^{p_1}(\mu))_{\theta,q},$$

where, $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$. For standard facts concerning Lorentz spaces and K-method, we refer the reader to [2,4].

Integration of scalar functions with respect to a countably additive vector measure $m: \Sigma \to X$ with values in a Banach space X was introduced by Bartle-Dunford-schwartz [1] and studied by Klvanek-Knowles [18], and Lewis [19,20]. Recently, several papers have analysed the properties of the spaces of (weakly) *p*-integrable functions $(L_w^p(m)) L^P(m)$, these may be found in, for example, [8, 14–17, 26].

^{*}Corresponding Author.

Email addresses: mi-mohseny89@yahoo.com (M. Mohsenipour), ghadir54@gmail.com;

g.sadeghi@hsu.ac.ir (Gh. Sadeghi)

Received: 14.05.2015; Accepted: 08.10.2015

The Calderón complex interpolation $[X_0, X_1]_{\theta}$ and $[X_0, X_1]^{\theta}$, with $0 < \theta < 1$ of the couples (X_0, X_1) where X_0 and X_1 are spaces $L^p(m)$ or $L^p_w(m)$, with $1 \leq p < \infty$, were obtained in [16] and in [12] the Complex interpolation of Orlicz spaces with respect to a vector measure was identified. Moreover, the real interpolation spaces $(X_0, X_1)_{\theta,q}$, where $0 < \theta < 1 \leq q \leq \infty$, and X_0 and X_1 are, as above, $L^p(m)$ or $L^p_w(m)$, with $1 \leq p \leq \infty$, for vector measures on σ -algebras were studied in [14]. More precisely, Let $0 < \theta < 1 \leq q \leq \infty$, $1 \leq p_0 < p_1 \leq \infty$, and $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$ we have

$$(L^{p_0}(m), L^{p_1}(m))_{\theta,q} = (L^{p_0}_w(m), L^{p_1}(m))_{\theta,q}$$

$$= (L^{p_0}_w(m), L^{p_1}_w(m))_{\theta,q}$$

$$= L^{p,q}(||m||).$$
(1.1)

The real interpolation spaces of these spaces for vector measures on δ -ring described in [11]. We recall that L^p spaces of vector measure on σ -algebras are as the finite measure scalar case, we always have that $L^p(m) \cap L^{\infty}(m) = L^{\infty}(m)$ and $L^p(m) \cap L^1(m) = L^p(m)$ and the same happens with the corresponding spaces of the semivariation ||m||, and the case of δ -ring corresponds to the case of infinite scalar measures.

The aim of the present paper is to study several structure properties of the weighted Lorentz spaces $\Lambda^p_{||m||}(\varphi)$ and we describe interpolation with a parameter function between these spaces. Indeed, in this paper, by replacing t^{θ} by a more general (parameter) function $\varrho = \varrho(t)$ in (1.1), as $p_0 = 1, p_1 = \infty$, we prove that $(L^1(m), L^\infty(m))_{\varrho,q} = \Lambda^q_{||m||}(\frac{t}{\varrho(t)})$.

2. Weakly *p*-integrable and *p*-integrable functions

Let us recall that some basic facts and introduce some notations to a vector measure. Let $m: \Sigma \to X$ be a vector measure defined on a σ -algebra of subsets of a nonempty set Ω , this will means that m is countably additive on Σ with range in Banach space X. We denote by X^* its dual space and by X^{**} its bidual. Also B(X) denotes the unit ball of X. The semivariation of m is the set function $||m||(A) = \sup\{|\langle m, x^* \rangle|(A) : x^* \in B(X^*)\}$, for each $A \in \Sigma$, where $|\langle m, x^* \rangle|$ is the total variation of the scalar measure $\langle m, x^* \rangle$ given by $\langle m, x^* \rangle(A) = \langle m(A), x^* \rangle$.

A measurable function $f: \Omega \to \mathbb{R}$ is called weakly integrable (with respect to m) if $f \in L^1(|\langle m, x^* \rangle|)$ for any $x^* \in X^*$ and for each $A \in \Sigma$ there exists an element $\int_A f dm \in X^{**}$ such that $\langle \int_A f dm, x^* \rangle = \int_A f d\langle m, x^* \rangle$ for $x^* \in X^*$. The space $L^1_w(m)$ of all (equivalence classes of) weakly integrable functions becomes a Banach lattice when it is endowed with the norm

$$||f||_1 := \sup\left\{\int_{\Omega} |f|d|\langle m, x^*\rangle| : x^* \in B(X^*)\right\}.$$

We say that a weakly integrable function f is integrable (with respect to m) if the vector $\int_A f dm \in X$ for all $A \in \Sigma$. It is clear from the definition that $L^1(m) \subseteq L^1_w(m)$ and in general, this inclusion is strict. In [27] Stefansson obtains conditions under which the equality $L^1(m) = L^1_w(m)$ holds. Properties of the space of integrable functions $L^1(m)$ have already been studied in [6–8, 17, 24, 27].

Let 1 . The spaces of*p*-integrable functions was introduced by Sánchez-Pérez $and the corresponding spaces <math>L^p(m)$ and $L^p_w(m)$ have been studied in depth by many authors being their behavior well understood, (see [9,15,26]). We say that a measurable function *f* is weakly *p*-integrable with respect to *m*, if $|f|^p \in L^1_w(m)$ and *p*-integrable with respect to *m*, if $|f|^p \in L^1(m)$. We denote by $(L^p_w(m)) L^p(m)$ the corresponding spaces of (weakly) *p*-integrable functions with respect to *m*, which is a Banach space when equipped with the norm

$$||f||_p := \sup\left\{ \left(\int_{\Omega} |f|^p d|\langle m, x^* \rangle| \right)^{\frac{1}{p}} : x^* \in B(X^*) \right\}.$$

Clearly $L^p(m) \subseteq L^p_w(m)$. In particular in [15] the authors studied the case equality $L^p(m) = L^p_w(m)$ holds. For the general theory of vector measures we refer the reader to [10].

3. Weighted Lorentz spaces with respect to a vector measure

For the measurable function f on a measure space (Ω, m) where m is a vector measure, we define its distribution function by $||m||_f(t) := ||m||(\{w \in \Omega : |f(w)| > t\})$, where ||m|| is the semivariation of the measure m. This distribution function $||m||_f$ has similar properties that in the scalar case [2,14]. Also, the decreasing rearrangement of f, defined by

$$f_*(s) := \inf\{t > 0 : \|m\|_f(t) \le s\}$$

for all s > 0. Note that

$$\begin{split} \inf\{t>0: \|m\|_f(t) \leq s\} &= \sup\{t>0: \|m\|_f(t)>s\} \\ &= \lambda\{t>0: \|m\|_f(t)>s\} = \lambda_{\|m\|_f}(s), \end{split}$$

where $\lambda_{\|m\|_f}$ is the distribution function of $\|m\|_f$, with respect to the Lebesgue measure λ on the interval $[0, \infty)$.

In [14] Fernandez et al. introduced Lorentz spaces with respect to a vector measure and given some of their fundamental properties. For $1 \le p, q \le \infty$ the Lorentz space $L^{p,q}(||m||)$, is the space of all measurable functions f such that the quantity

$$\|f\|_{L^{p,q}(\|m\|)} := \begin{cases} \left(\int_0^\infty (t^{\frac{1}{p}} f_*(t))^q \frac{dt}{t} \right)^{\frac{1}{q}} & (1 \le q < \infty) \\ \sup_{t>0} t^{\frac{1}{p}} f_*(t) & (q = \infty) \end{cases}$$

is finite. In the special case in which $1 \leq p = q \leq \infty$, we denote the space $L^{p,p}(||m||)$ simply by $L^p(||m||)$. The next result gives alternative descriptions of the $||.||_{L^p(||m||)}$ in term of distribution function and the decreasing rearrangement.

Remark 3.1. Let f be a measurable function. If $1 \le p < \infty$, then by definition of norm in $L^p(||m||)$ and [14, Proposition 2], we have

$$\|f\|_{L^{p}(\|m\|)}^{p} = \int_{0}^{\infty} f_{*}(s)^{p} ds = p \int_{0}^{\infty} t^{p-1} \|m\|_{f}(t) dt,$$
(3.1)

Furthermore, in the case $p = \infty$, $||f||_{L^{\infty}(||m||)} = \sup_{s>0} f_*(s) = f_*(0)$. It follows from (3.1) that $L^p(||m||)$ are rearrangement-invariant function spaces as 1 . Aspects related to rearrangement-invariant spaces can be seen in [2].

Now we define the weighted Lorentz spaces with respect to a vector measure m which are generalization of the Lorentz spaces $L^{p,q}(||m||)$ and derive some of their elementary properties. Let $1 \leq p < \infty$ and $\varphi(t)$ be a given weight, nonnegative measurable function on $(0,\infty)$. The weighted Lorentz space $\Lambda^p_{||m||}(\varphi)$ with respect to a vector measure m, is defined to be the collection of all functions f for which the quantity

$$\|f\|_{\Lambda^p_{\|m\|}(\varphi)} := \left(\int_0^\infty \left(f_*(t)\varphi(t)\right)^p \frac{dt}{t}\right)^{\frac{1}{p}} \qquad 1 \le p < \infty,$$

is finite.

Moreover, integration by parts yields

$$\int_0^\infty \left(f_*(t)\varphi(t)\right)^p \frac{dt}{t} = p \int_0^\infty y^{p-1} \left\{ \int_0^{\|m\|_f(y)} \varphi^p(t) \frac{dt}{t} \right\} dy \qquad 1 \le p < \infty,$$

and hence

$$\int_0^\infty \left(f_*(t)\varphi(t)\right)^p \frac{dt}{t} = p \int_0^\infty y^{p-1} w^p \left(\|m\|_f(y)\right) dy,$$

where $w(t) = \{\int_0^t \varphi^p(s) \frac{ds}{s}\}^{\frac{1}{p}}$ is a positive, nondecreasing weight (see [5]). From now on, we delete the subscript ||m||. For $p = \infty$ we define

$$||f||_{\Lambda^{\infty}(\varphi)} = ||f||_{\Lambda^{\infty}(w)} := \sup_{s} f_{*}(s)w(s) = \sup_{y} yw(||m||_{f}(y)) < \infty.$$

Note that, if $\varphi(t) = t^{\frac{1}{q}}$, then $\Lambda^p(\varphi) = L^{q,p}(||m||)$ and $\Lambda^{\infty}(\varphi)$ coincides with $L^{q,\infty}(||m||)$. Recall that for $1 \leq p \leq \infty$, $||.||_{\Lambda^p(\varphi)}$ is a quasi-norm if its "fundamental function" $w(t) = \{\int_0^t \varphi^p(s) \frac{ds}{s}\}^{1/p}$ satisfies the Δ_2 -condition, $w(2t) \leq cw(t)$, for some c > 0, in fact, since w is a nondecreasing function one has that $w(x+y) \leq c(w(x)+w(y))$ and hence,

$$\begin{split} \|f+g\|_{\Lambda^{p}(\varphi)}^{p} &= p \int_{0}^{\infty} y^{p-1} w^{p} \left(\|m\|_{f+g}(y)\right) dy \\ &\leq p \int_{0}^{\infty} y^{p-1} w^{p} \left(\|m\|_{f}(\frac{y}{2}) + \|m\|_{g}(\frac{y}{2})\right) dy \\ &\leq c \int_{0}^{\infty} y^{p-1} \left(w^{p}(\|m\|_{f}(\frac{y}{2})) + w^{p}(\|m\|_{g}(\frac{y}{2})\right) dy \\ &\leq c \left(\|f\|_{\Lambda^{p}(\varphi)}^{p} + \|g\|_{\Lambda^{p}(\varphi)}^{p}\right). \end{split}$$

Example 3.2. For $\varphi(t) = t^{\frac{1}{q}}(1 + |\log t|)^{\alpha}$ with $1 \leq p, q \leq +\infty$ and $-\infty < \alpha < +\infty$, $\Lambda^{p}(\varphi)$ is the Lorentz–Zygmund space $L^{q,p}_{\|m\|}(\log L)^{\alpha}$. This is the Lorentz space $L^{q,p}(\|m\|)$ if $\alpha = 0$.

The next proposition contains elementary property of weighted Lorentz spaces.

Proposition 3.3. If $w_1(t) < cw_0(t)$, for all t > 0, then

- (1) $\Lambda^p(\varphi_0) \subset \Lambda^p(\varphi_1)$ for $1 \le p \le \infty$,
- (2) $\Lambda^p(\varphi_0) \subset \Lambda^\infty(\varphi_1)$ for $1 \le p < \infty$.

Proof. Let us start with the first one. For every measurable function f we have $w_1(||m||_f(t)) < cw_0(||m||_f(t))$, if $w_1(t) < cw_0(t)$, for all t > 0, and it follows that

$$\int_0^\infty y^{p-1} w_1^p\left(\|m\|_f(y)\right) dy < c \int_0^\infty y^{p-1} w_0^p\left(\|m\|_f(y)\right) dy$$

therefore $\Lambda^p(\varphi_0) \subset \Lambda^p(\varphi_1)$. Next we are going to prove the second one. Consider a function $f \in \Lambda^p(\varphi_0)$. Since f_* is a decreasing function, so for each t > 0 we have

$$\begin{aligned} f_*(t)w_1(t) < cf_*(t)w_0(t) &= cf_*(t) \left(\int_0^t \varphi_0(s)^p \frac{ds}{s}\right)^{\frac{1}{p}} \\ &\leq c \left(\int_0^t (\varphi_0(s)f_*(s))^p \frac{ds}{s}\right)^{\frac{1}{p}} \\ &\leq c \left(\int_0^\infty (\varphi_0(s)f_*(s))^p \frac{ds}{s}\right)^{\frac{1}{p}} = c \|f\|_{\Lambda^p(\varphi_0)}. \end{aligned}$$

Now, taking supremum over all t > 0, it follows that $f \in \Lambda^{\infty}(\varphi_1)$, that is, $\Lambda^p(\varphi_0) \subset \Lambda^{\infty}(\varphi_1)$.

4. Estimates of K-functional with respect to a vector measure

We let (A_0, A_1) denote a compatible couple of quasi-Banach pair (i.e. A_0 and A_1 are quasi-Banach spaces, which both are continuously embedded in some Hausdorff topological vector space). For every $f \in A_0 + A_1$ and any $0 < t < \infty$, the so-called Peetre K-functional is defined by

$$K(t, f, A_0, A_1) = K(t, f) := \inf_{f_0 + f_1 = f} (\|f_0\|_{A_0} + t\|f_1\|_{A_1}),$$

where $f_i \in A_i, i = 0, 1$.

For $1 \leq q \leq \infty$ and each measurable function ρ , the real interpolation space $(A_0, A_1)_{\rho,q}$ consists of all elements of $f \in A_0 + A_1$ such that the quantity

$$\|f\|_{(A_0,A_1)_{\varrho,q}} := \begin{cases} \left(\int_0^\infty \left(\frac{K(t,f)}{\varrho(t)}\right)^q \frac{dt}{t} \right)^{\frac{1}{q}} & (1 \le q < \infty), \\ \sup_{t>0} \frac{K(t,f)}{\varrho(t)} & (q = \infty) \end{cases}$$

is finite. By replacing measurable function $\rho = \rho(t)$ by t^{θ} we obtain $(A_0, A_1)_{\theta,q}$.

We shall write $A \leq B$ if $A \leq cB$, where c is some positive constant independent of appropriate quantities involved in A, B. If both $A \leq B$ and $B \leq A$ are satisfied (with possibly different constants), we write $A \approx B$. In order to estimate the K-functional we can see that $K(t, f) \approx K(t, |f|)$ for a general function f and for every t > 0. So in the sequel, we will suppose that $f \geq 0$ when we want to estimate the K-functional K(t, f).

Theorem 4.1. Let f be a function in $L^p(m), 1 \le p < \infty$. Then

$$K(t, f, L^{p}(m), L^{\infty}(m)) \preceq \left(\int_{0}^{t^{p}} f_{*}(s)^{p} ds\right)^{\frac{1}{p}}, \qquad t > 0$$

Proof. Take $s_* = f_*(t^p)$ and consider the nonnegative function

$$f_0(w) = \begin{cases} 0, & f(w) \le s_* \\ f(w) - s_*, & f(w) > s_* \end{cases}$$
(4.1)

and $f_1 = f - f_0$. Since $f_1(w) \leq s_*$, so $f_1 \in L^{\infty}(m)$ and $||f_1||_{L^{\infty}(m)} \leq s_*$. On the other hand $f_0 \in L^p(m)$ since $0 \leq f_0 \leq f - s_*$ and $f \in L^p(m)$. Moreover, for all s > 0 we have

$$\begin{split} \|m\|_{f_0}(s) &= \|m\|\{w: f_0(w) > s\} \\ &= \|m\|\{w: f(w) - s_* > s\} \\ &= \|m\|\{w: f(w) > s + s_*\} \\ &= \|m\|_f(s + s_*). \end{split}$$

Now from definition of norm in $L^p(m)$, we obtain

$$\begin{split} \|f_{0}\|_{L^{p}(m)}^{p} &= \sup\left\{\int_{\Omega} f_{0}^{p} d|\langle m, x^{*}\rangle| : x^{*} \in B(X^{*})\right\} \\ &= \sup\left\{\int_{0}^{\infty} |\langle m, x^{*}\rangle|_{f_{0}^{p}}(s)ds : x^{*} \in B(X^{*})\right\} \\ &\leq \int_{0}^{\infty} \|m\|_{f_{0}^{p}}(s)ds = \int_{0}^{\infty} \|m\|_{f_{0}}(s^{\frac{1}{p}})ds = \int_{0}^{\infty} \|m\|_{f}(s^{\frac{1}{p}} + s_{*})ds \\ &= \int_{0}^{f_{*}^{p}(t^{p})} \|m\|_{f}(s^{\frac{1}{p}} + s_{*})ds + \int_{f_{*}^{p}(t^{p})}^{\infty} \|m\|_{f}(s^{\frac{1}{p}} + s_{*})ds \\ &\leq \int_{0}^{f_{*}^{p}(t^{p})} \|m\|_{f}(s_{*})ds + \int_{f_{*}^{p}(t^{p})}^{\infty} \|m\|_{f}(s^{\frac{1}{p}})ds \\ &\leq \int_{0}^{f_{*}^{p}(t^{p})} t^{p}ds + \int_{f_{*}^{p}(t^{p})}^{\infty} \|m\|_{f^{p}}(s)ds \\ &= \int_{0}^{f_{*}^{p}(t^{p})} t^{p}ds + \int_{f_{*}^{p}(t^{p})}^{\infty} \lambda_{f_{*}^{p}}(s)ds. \end{split}$$

Applying the equality $\lambda_{\chi_{[0,t^p)}f^p_*} = t^p \chi_{[0,f^p_*(t^p))} + \lambda_{f^p_*} \chi_{[f^p_*(t^p),\infty)}$ we can conclude

$$\| f_0 \|_{L^p(m)}^p \leq \int_0^{f_*^p(t^p)} t^p ds + \int_{f_*^p(t^p)}^{\infty} \lambda_{f_*^p}(s) ds = \int_0^{\infty} \lambda_{\chi_{[0,t^p)} f_*^p}(s) ds = \int_0^{\infty} \lambda_{\chi_{[0,t^p)} f_*}(s^{\frac{1}{p}}) ds = p \int_0^{\infty} s^{p-1} \lambda_{\chi_{[0,t^p)} f_*}(s) ds, \quad \text{(by Proposition 2.1.8 in [2])} = \int_0^{t^p} f_*(s)^p ds.$$

For for a fixed t > 0 we get

$$\begin{split} K(t, f, L^{p}(m), L^{\infty}(m)) &\leq \|f_{0}\|_{L^{p}(m)} + t\|f_{1}\|_{L^{\infty}(m)} \\ &\leq \left(\int_{0}^{t^{p}} f_{*}(s)^{p} ds\right)^{\frac{1}{p}} + tf_{*}(t^{p}) \\ &= \left(\int_{0}^{t^{p}} f_{*}(s)^{p} ds\right)^{\frac{1}{p}} + \left(\int_{0}^{t^{p}} f_{*}(t^{p})^{p} ds\right)^{\frac{1}{p}} \\ &\preceq \left(\int_{0}^{t^{p}} f_{*}(s)^{p} ds\right)^{\frac{1}{p}}. \end{split}$$

The proof is complete.

Proposition 4.2. Let f be a function in $L^1(m)$. Then

$$tf_*(t) \leq k(t, f, L^1(m), L^\infty(m)), \quad t > 0.$$

For the proof of above proposition you can see [14].

In the sequel, we prove the generalization of Steffensen's inequality for $L^p(||m||)$ spaces. To this end, we need the next theorem.

Theorem 4.3. Let f be a function in $L^p(||m||), 1 \le p < \infty$. Then

$$K(t, f, L^{p}(||m||), L^{\infty}(||m||)) \approx \left(\int_{0}^{t^{p}} f_{*}^{p}(s)ds\right)^{\frac{1}{p}}, \qquad t > 0.$$
(4.2)

Proof. First we prove " \leq " of (4.2). Choose the nonnegative functions f_0 as it is considered in Theorem 4.1 and $f_1 = f - f_0$. Let $A = \{w : f_0(w) > 0\}$. Then

$$\begin{split} \|m\|(A) &= \|m\|\{w: f_0(w) > 0\} = \|m\|\{w: f(w) - s_* > 0\} \\ &= \|m\|\{w: f(w) > s_*\} = \|m\|_f(s_*) = \|m\|_f(f_*(t^p)) \le t^p. \end{split}$$

Since $f_*(s)$ is decreasing and constant on $[||m||(A), t^p]$, so we have

$$\begin{aligned} K(t, f, L^{p}(||m||), L^{\infty}(||m||)) &\leq ||f_{0}||_{L^{p}(||m||)} + t||f_{1}||_{L^{\infty}(||m||)} \\ &\leq \left(\int_{0}^{\infty} f_{0*}(s)^{p} ds\right)^{\frac{1}{p}} + tf_{*}(t^{p}) \\ &= \left(\int_{0}^{t^{p}} f_{0*}(s)^{p} ds\right)^{\frac{1}{p}} + \left(\int_{0}^{t^{p}} f_{*}(t^{p})^{p} ds\right)^{\frac{1}{p}} \\ &\leq 2\left(\int_{0}^{t^{p}} f_{*}(s)^{p} ds\right)^{\frac{1}{p}}. \end{aligned}$$
(4.3)

To obtain the converse inequality, assume that $f = f_0 + f_1, f_0 \in L^p(||m||)$ and $f_1 \in L^{\infty}(||m||)$. Taking into account the inequality

$$f_*(s) \le f_{0_*}(s/2) + f_{1_*}(s/2) \le f_{0_*}(s/2) + ||f_1||_{L^{\infty}(||m||)}$$

we observe that

$$\left(\int_0^{t^p} f_*(s)^p ds \right)^{\frac{1}{p}} \leq \left(\int_0^{t^p} \left(f_{0_*}(s/2) + \|f_1\|_{L^{\infty}(\|m\|)} \right)^p ds \right)^{\frac{1}{p}}$$

$$\leq c \left\{ \left(\int_0^{\infty} \left(f_{0_*}(s) \right)^p ds \right)^{\frac{1}{p}} + t \|f_1\|_{L^{\infty}(\|m\|)} \right\}$$

$$= c \left\{ \|f_0\|_{L^p(\|m\|)} + t \|f_1\|_{L^{\infty}(\|m\|)} \right\}.$$

Taking the infimum over all decompositions $f = f_0 + f_1 \in L^p(||m||) + L^{\infty}(||m||)$, we reach desire inequality.

We then deduce immediately the following that is a type of the generalization of Steffensen's inequality, see [3]. Recall that if Y be a Banach function space, we will denote by Y' the Banach function space consisting of all measurable functions g on $(0, \infty)$ such that

$$||g||_{Y'} = \sup_{||f||_Y \le 1} \left| \int_0^\infty f(s)g(s)ds \right|$$

is finite. We will need the following representation of the norm of Y given by Lorentz and Luxemburg [21]

$$||f||_{Y} = \sup_{||g||_{Y'} \le 1} \left| \int_{0}^{\infty} f(s)g(s)ds \right|.$$

This gives that Y'' = Y. Moreover if Y is a rearrangement-invariant space then we have $||f_*||_Y = ||f||_Y$; in fact,

$$||f||_Y = \sup_{||g||_{Y'} \le 1} \int_0^\infty f_*(s)g_*(s)ds.$$

Corollary 4.4. Let f and g be positive functions on $(0, \infty)$, f decreasing and g measurable. Assume that, for some p > 1, $f \in L^p(||m||) + L^{\infty}(||m||)$ and $g \in (L^p(||m||))' \cap L^1(||m||)$, with

$$||g||_{(L^p(||m||))'} = 1, \quad ||g||_{L^1(||m||)} = t$$

Then

$$\int_0^\infty f(x)g(x)dx \le 2\left(\int_0^{t^p} (f_*(x))^p dx\right)^{\frac{1}{p}}$$

Proof. Let $f = f_0 + f_1, f_0 \in L^p(||m||), f_1 \in L^{\infty}(||m||)$. Then from above descriptions we obtain

$$\begin{aligned} \int_0^\infty f(x)g(x)dx &= \int_0^\infty f_0(x)g(x)dx + \int_0^\infty f_1(x)g(x)dx \\ &\leq \|f_0\|_{L^p(\|m\|)} + \|f_1\|_{L^p(\|m\|)} \\ &= \|f_0\|_{L^p(\|m\|)} + \sup_{\|g\|_{(L^p(\|m\|))'} \leq 1} \int_0^\infty f_{1*}(s)g_*(s)ds \\ &\leq \|f_0\|_{L^p(\|m\|)} + t\|f_1\|_{L^\infty(\|m\|)}. \end{aligned}$$

Finally from (4.3) in Theorem 4.3 follows that

$$\int_0^\infty f(x)g(x)dx \le K(t, f, L^p(||m||), L^\infty(||m||)) \le 2\left(\int_0^{t^p} (f_*(x))^p dx\right)^{\frac{1}{p}}.$$

5. Interpolation of weighted Lorentz spaces

Let a and b be two real numbers such that a < b. The notation $\varphi(t) \in Q[a, b]$ means that $\varphi(t)t^{-a}$ is nondecreasing and $\varphi(t)t^{-b}$ is nonincreasing for all t > 0. Moreover, we say that $\varphi(t) \in Q(a, b)$, wherever $\varphi(t) \in Q[a + \epsilon, b - \epsilon]$ for some $\epsilon > 0$. The notation $\varphi(t) \in Q(a, -)$ means that $\varphi(t) \in Q(a, b)$ for some real number b. In this paper we shall consider the interpolation spaces $(A_0, A_1)_{\varrho,q}$ with a parameter function $\varrho = \varrho(t) \in Q(0, 1)$, which means that, for some $\epsilon > 0$, $\varrho(t)t^{-\epsilon}$ is increasing and $\varrho(t)t^{-1+\epsilon}$ is decreasing. To prove the main result of this section, we need the following lemma which is proved by Persson [25].

Lemma 5.1. Let $0 < q \leq \infty, 0 < p < \infty$ and $\psi(t) \in Q(-, -)$. Let h(t) be a positive and nonincreasing function. If $\varphi(t) \in Q(-, 0)$, then

$$\left(\int_0^\infty (\varphi(t))^q \left(\int_0^t (h(u)\psi(u))^p \frac{du}{u}\right)^{\frac{q}{p}} \frac{dt}{t}\right)^{\frac{1}{q}} \le C \left(\int_0^\infty (\varphi(t)h(t)\psi(t))^q \frac{dt}{t}\right)^{\frac{1}{q}}.$$

Now we have the following fundamental interpolation theorem for couples of weighted Lorentz spaces with respect to a vector measure.

Theorem 5.2. Let $\varphi_i(t) \in Q(0, -), i = 0, 1$ be two weights, $\varphi_0(t)/\varphi_1(t) \in Q(0, 1)$ or $\varphi_0(t)/\varphi_1(t) \in Q(1, 0)$, and $\varrho \in Q(0, 1)$ be a parameter function. If $1 \leq p_0, p_1, q \leq \infty$, then

$$(\Lambda^{p_0}(\varphi_0), \Lambda^{p_1}(\varphi_1))_{\varrho, q} = \Lambda^q(\varphi), \tag{5.1}$$

where $\varphi(t) = \varphi_0(t)/\varrho(\varphi_0(t)/\varphi_1(t)).$

Proof. First we show that if $1 \le q \le \infty$ and $\varrho \in Q(0,1)$, then

$$(L^{1}(m), L^{\infty}(m))_{\varrho,q} = \Lambda^{q} \left(\frac{t}{\varrho(t)}\right).$$
(5.2)

Let f be a function in $L^1(m)$, t > 0 and $1 \le q < \infty$. From Proposition 4.2 we have

$$\int_0^\infty \left(\frac{tf_*(t)}{\varrho(t)}\right)^q \frac{dt}{t} \le \int_0^\infty \left(\frac{k(t,f)}{\varrho(t)}\right)^q \frac{dt}{t}.$$
(5.3)

Now, if $f \in (L^1(m), L^{\infty}(m))_{\varrho,q}$, then the right-hand side in (5.3) is finite and so $f \in \Lambda^q(\frac{t}{\rho(t)})$. Thus we have proved that

$$(L^1(m), L^{\infty}(m))_{\varrho,q} \subseteq \Lambda^q(\frac{t}{\varrho(t)}).$$

To obtain the opposite inclusion in (5.2), since $\frac{1}{\varrho(t)} \in Q(-1,0)$ by Lemma 1.1 in [25], so we apply Proposition 4.1 and Lemma 5.1 for p = 1, to the nonnegative decreasing function $f_*(s)$, therefor

$$\int_0^\infty \left(\frac{k(t,f,L^1(m),L^\infty(m)}{\varrho(t)}\right)^q \frac{dt}{t} \le \int_0^\infty (\frac{1}{\varrho(t)})^q \left(\int_0^t f_*(s)ds\right)^q \frac{dt}{t}$$
$$\le \int_0^\infty \left(\frac{tf_*(t)}{\varrho(t)}\right)^q \frac{dt}{t}.$$

Now, from the definition of weighted Lorentz spaces, we deduce that

$$\Lambda^q\left(\frac{t}{\varrho(t)}\right) \subseteq \left(L^1(m), L^\infty(m)\right)_{\varrho, q}.$$

When $q = \infty$, by Proposition 4.2, we get

$$\begin{split} \|f\|_{\Lambda^{\infty}(\frac{t}{\varrho(t)})} &= \sup_{t>0} \frac{tf_{*}(t)}{\varrho(t)} \\ &\leq C \sup_{t>0} \frac{k(t, f, L^{1}(m), L^{\infty}(m))}{\varrho(t)} \\ &= C \|f\|_{(L^{1}(m), L^{\infty}(m))_{\varrho,\infty}}. \end{split}$$

Hence, $(L^1(m), L^{\infty}(m))_{\varrho,\infty} \subseteq \Lambda^{\infty}(\frac{t}{\varrho(t)})$. For the converse, since $\varrho(t) \in Q(0, 1)$, then there exist a constant $\epsilon > 0$ such that $\varrho(t)t^{-\epsilon}$ is nondecreasing on $(0, \infty)$. So we have

$$\begin{split} \|f\|_{(L^{1}(m),L^{\infty}(m))_{\varrho,\infty}} &= C \sup_{t>0} \frac{k(t,f,L^{1}(m),L^{\infty}(m))}{\varrho(t)} \\ &\leq C \sup_{t>0} \frac{\int_{0}^{t} f_{*}(s)ds}{\varrho(t)} \\ &\leq C \sup_{s>0} \frac{sf_{*}(s)}{\varrho(s)} \cdot \sup_{t>0} \frac{\varrho(t)t^{-\epsilon} \int_{0}^{t} s^{\epsilon-1}ds}{\varrho(t)} \\ &\leq C \|f\|_{\Lambda^{\infty}(\frac{t}{\varrho(t)})}. \end{split}$$

Hence, $\Lambda^{\infty}(\frac{t}{\varrho(t)}) \subseteq (L^1(m), L^{\infty}(m))_{\varrho,\infty}$. Then the proof of the assertion is completed. Put $\varrho_i(t) = \frac{t}{\varphi_i(t)}$ so by Lemma 1.1(c) in [25] we see that $\varrho_i(t) \in Q(0, 1)$. According to (5.2), we obtain

$$\Lambda^{p_i}(\varphi_i) = (L^1(m), L^\infty(m))_{\varrho_i, p_i}, i = 0, 1$$

It follows from [25, Corollary 4.4] that

$$\begin{aligned} (\Lambda^{p_0}(\varphi_0), \Lambda^{p_1}(\varphi_1))_{\varrho,q} &= \left((L^1(m), L^{\infty}(m))_{\varrho_0, p_0}, (L^1(m), L^{\infty}(m))_{\varrho_1, p_1} \right)_{\varrho, q} \\ &= \left(L^1(m), L^{\infty}(m) \right)_{\kappa, q} = \Lambda^q(\frac{t}{\kappa(t)}) = \Lambda^q(\varphi), \end{aligned}$$

where $\kappa(t) = \rho_0(t)\rho(\rho_1(t)/\rho_0(t)) = \frac{t}{\varphi(t)}$. Note that $\kappa(t) \in Q(0,1)$ by [25, Lemma 3.3]. Thus (5.1) holds and the proof is complete.

According to Theorem 5.2 we have the following corollary.

Corollary 5.3. Let $1 \le q \le \infty$ and $1 \le p_0 < p_1 \le \infty$ and $\varrho \in Q(0,1)$. If $p_0 \ne p_1$, then $(L^{p_0,q_0}(||m||), L^{p_1,q_1}(||m||))_{\varrho,q} = \Lambda^q(t^{\frac{1}{p_0}} - \varrho(t^{\frac{1}{p_0}} - \frac{1}{p_1})).$

Remark 5.4. Let $0 < \theta < 1$ and $1 \le q \le \infty$. Putting $\rho(t) = t^{\theta}$ in (5.2) we obtain

$$\left(L^1(m), L^{\infty}(m)\right)_{\theta, q} = \Lambda^q(t^{1-\theta}) = L^{p, q}(\|m\|)$$

where $1 and <math>\theta = 1 - \frac{1}{p}$.

The following result is a simple application of Theorem 5.2 by replacing parameter function $\rho = \rho(t)$ by t^{θ} .

Corollary 5.5. Under the same hypothesis of Theorem 5.2, we have

$$(\Lambda^{p_0}(\varphi_0), \Lambda^{p_1}(\varphi_1))_{\theta, q} = \Lambda^q(\varphi_0^{1-\theta}\varphi_1^\theta).$$

Remark 5.6. For $\varphi(t) = t^{\frac{1}{q}}(1 + |\log t|)^{\alpha}$ with $1 \leq p, q \leq +\infty$ and $-\infty < \alpha < +\infty$, $\Lambda^{p}(\varphi)$ is the Lorentz-Zygmund space $L^{q,p}_{\parallel m \parallel}(\log L)^{\alpha}$ (this is the Lorentz space $L^{q,p}(\parallel m \parallel)$ if $\alpha = 0$). So, interpolation with a suitable parameter function ρ can be used to describe the interpolation spaces for couples of these Lorentz-Zygmund with respect to a vector

measure. For example if $\varrho(t) = t^{\theta}(1 + |\log t|)^{\gamma}$, $\varphi_0(t) = t^{\frac{1}{p}}(1 + |\log t|)^{\alpha_0}$ and $\varphi_1(t) = t^{\frac{1}{p}}(1 + |\log t|)^{\alpha_1}$, then

$$(L^{p,q}_{||m||}(\log L)^{\alpha_0}, L^{p,q}_{||m||}(\log L)^{\alpha_1})_{\varrho,q} = \Lambda^q (t^{\frac{1}{p}}(1+|\log t|)^{\alpha_0(1-\theta)+\alpha_1\theta}(1+|\log(1+|\log t|)|)^{\gamma})$$

= $L^{p,q}_{||m||}(\log L)^{\alpha_0(1-\theta)+\alpha_1\theta}(\log\log L)^{\gamma}.$

The above results are like those for the Lorentz-Zygmund space of a positive measure, described for example in [13, 22, 23]

Corollary 5.7. Let
$$0 < \theta < 1 \le q \le \infty$$
 and $1 \le p_0 < p_1 \le \infty$, then
 $(L^{p_0,q_0}(||m||), L^{p_1,q_1}(||m||))_{\theta,q} = L^{p,q}(||m||)$
 $= (L^{p_0}(m), L^{p_1}(m))_{\theta,q}$
 $= (L^{p_0}_w(m), L^{p_1}(m))_{\theta,q}$.

where $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$.

Proof. By [14, Corollary 17] it is enough to show that $(L^{p_0,q_0}(||m||), L^{p_1,q_1}(||m||))_{\theta,q} = L^{p,q}(||m||)$. To this end, we consider $\varphi_i(t) = t^{\frac{1}{p_i}}$ and $\varrho(t) = t^{\theta}$, then the equality follows from Theorem 5.2.

References

- R.G. Bartel, N. Dunford and J. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7, 289-305, 1955.
- [2] C. Bennett and R. Sharply, Interpolation of Operators, Pure Appl. Math. 129, 469 pages, Academic Press, 1988.
- [3] J. Bergh, A generalization of Steffensen's inequality, J. Math. Anal. Appl. 41, 187-191, 1973.
- [4] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren Math. Wiss. 223, Springer-Verlag Berlin Heidelberg, 1976.
- [5] M.J. Carro and J. Soria, Weighted Lorentz spaces and the Hardy operator, J. Funct. Anal. 112, 480-494, 1993.
- [6] G.P. Curbera, Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293, 317-330, 1992.
- [7] G.P. Curbera, When L¹ of a vector measure is an AL-spaces, Pacific. J. Math. 162, 287-303, 1994.
- [8] G.P. Curbera, Banach space properties of L^1 of a vector measure, Proc. Amer. Math. Soc. **123**, 3797-3806, 1995.
- [9] G.P. Curbera and W.J. Ricker, *Vector measures, integration and application*, in: Positivity, 127-160, Birkhäuser Basel, 2007.
- [10] J. Diestel and J.J.Jr. Uhl, Vector Measures, Math. Surveys Monogr. 15, 1977.
- [11] R. del Campo, A. Fernandez and F. Mayoral, A note on real interpolation of L^p-spaces of vector measures on δ-rings, J. Math. Anal. Appl. 405, 518-529, 2013.
- [12] R. del Campo, A. Fernandez, A. Manzano, F. Mayoral and F. Naranjo, Complex interpolation of Orlicz spaces with respect to a vector measure, Math. Nachr. 287, 23-31, 2014.
- [13] D.E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Bessel-Potential spaces, Proc. Roy. Soc. Edinburgh Sect. A. 126A, 995-1009, 1996.
- [14] A. Fernandez, F. Mayoral and F. Naranjo, Real interpolation method on spaces of scalar integrable functions with respect to vector measures, J. Math. Anal. Appl. 376, 203-211, 2011.

- [15] A. Fernandez, F. Mayoral, F. Naranjo, C. Sáez and E.A. Sánchez-Pérez, Spaces of p-integrable functions with respect to a vector measure, Positivity 10, 1-16, 2006.
- [16] A. Fernandez, F. Mayoral, F. Naranjo and E.A. Sánchez-Pérez, Complex interpolation of spaces of integrable functions with respect to a vector measure, Collect. Math. 61, 241-252, 2010.
- [17] A. Fernandez and F. Naranjo, Rybakov's theorem for vector measures in Fréchet spaces, Indag. Math. (N.S.) 8 (1), 33-42, 1997.
- [18] I. Kluvanek and G. Knowles, Vector Measures and Control Systems, Note Mat. 58, 1975.
- [19] D.R. Lewis, Integration with respect to vector measures, Pacific. J. Math. 33, 157-165, 1970.
- [20] D.R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16, 583-599, 1973.
- [21] W.A.J. Luxemburg, Banach function spaces, Ph.D. Thesis, Delft Institute of Technology. Assen, Netherlands, 1955.
- [22] L. Maligranda and L.E. Persson, Real interpolation between weighted L^p and Lorentz spaces, Bull. Polish Acad. Sci. Math. 35, 765-778, 1987.
- [23] C. Merucci, Applications of interpolation with a function parameter to Lorentz Soblev and Besov spaces, in: Interpolation Spaces and Allied Topics in Analysis, Lecture Notes in Math. 1070, 183-201, Springer, Berlin, Heidelberg, 1984.
- [24] S. Okada, The dual space of $L^1(\mu)$ for a vector measure μ , J. Math. Anal. Appl. 177, 583-599, 1993.
- [25] L.E. Persson, Interpolation with a parameter function, Math. Scand. 59, 199-222, 1986.
- [26] E.A. Sánches Pérez, Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces, Illinois J. Math. 45, 907-923, 2001.
- [27] G.F. Stefansson, L^1 of a vector measure μ , Le Matematiche. 48, 219-234, 1993.