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Abstract

In this work we give the notion of quadratic module for Lie algebras
and explore the connections between this structure, 2-crossed modules
and simplicial Lie algebras in terms of hypercrossed complex pairings.
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Introduction

Crossed modules of groups defined by Whitehead in [11] are algebraic models of (con-
nected) homotopy 2-types. The Lie algebra analogue of crossed modules was introduced
by Kassel and Loday in [9]. Simplicial groups first studied by Kan, [8], have a well
structured homotopy theory and they model all homotopy types of connected spaces.
Conduché in [4] defined an algebraic model for connected 3-types. His models, called
2-crossed modules, have very pleasant properties and these 2-crossed modules form a
category equivalent to that of simplicial groups with Moore complex of length 2 (cf. [4]).
Ellis in [7] captured the algebraic structure of a Moore complex of length 2 in his defini-
tion of a 2-crossed module of Lie algebras. This is the Lie algebraic version of a group
theoretic notion defined by Conduché.

Within the homotopy theory of simplicial Lie algebras, analogues of Samelson and
Whitehead products are given by sums over shuffles (a; b) of Lie products. Akça and
Arvasi in [1] explained the relationship of these shuffles to crossed modules and 2-crossed
modules of Lie algebras, more precisely, by using the image of the higher order Peiffer
elements in the Moore complex of a simplicial Lie algebra, they have constructed a functor
from the category of simplicial Lie algebras to that of 2-crossed modules of Lie algebras.

Quadratic modules introduced by Baues [3] are algebraic models for homotopy con-
nected 3-types. Baues in [3] constructed a quadratic module from a simplicial group. In
this paper we will give the notion of quadratic module for Lie algebras and we give the
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connections between quadratic modules, 2-crossed modules and simplicial Lie algebras.
In the connection between simplicial Lie algebras and quadratic modules, we use the
image of the Mα,β functions given in [1].

Acknowledgements. The authors wishes to thank the referee for helpful comments
and improvements to the paper.

1. Preliminaries

All Lie algebras will be over a fixed commutative ring k. The category of Lie algebras
will be denoted by LieAlg.

Simplicial Lie Algebras

A simplicial Lie algebra L, (cf. [1], [5] and [7]) consists of a family of Lie algebras
Ln together with Lie algebra homomorphisms dni : Ln → Ln−1, 0 6 i 6 n, (n 6= 0)
and sni : Ln → Ln+1, 0 6 i 6 n, called face and degeneracy maps, satisfying the usual
simplicial identities. In fact, a simplicial Lie algebra can be completely described as
a functor L : ∆op → LieAlg, where ∆ is the category of finite ordinals. We denote the
category of simplicial Lie algebras bySimpLieAlg. We obtain for each k > 0 a subcategory
∆6k determined by the objects [j] of ∆ with j 6 k. A k-truncated simplicial Lie algebra
is a functor from ∆op

6k to LieAlg. We denote the category of k-truncated simplicial Lie
algebras by TrkSimpLieAlg.

Given a simplicial Lie algebra L, the Moore complex (NL, ∂) of L, is the chain complex
defined by:

NLn =

n−1
⋂

i=0

ker dni ,

with ∂n : NLn → NLn−1 induced from dnn by restriction. We say that the Moore complex
NL of a simplicial Lie algebra is of length k if NEn = 0 for all n > k+1, so that a Moore
complex of length k is also of length l for l > k. The category of simplicial Lie algebras
with Moore complex of length k will be denoted by SimpLieAlg6k.

1.1. Simplicial Lie Algebras and 2-Crossed Modules. Let M and N be two Lie
algebras. By an action of N on M we mean a k-bilinear map N×M → M , (n,m) 7→ n·m,
satisfying

[n, n′] ·m = n · (n′ ·m)− n′(n ·m)

n · [m,m′] = [n ·m,m′] + [m,n ·m′]

for all m,m′ ∈ M and n, n′ ∈ N .

Recall that a crossed module of Lie algebras is a Lie homomorphism ∂ : M → N
together with an action of N on M , denoted by n ·m for n ∈ N and m ∈ M , such that
the following conditions are satisfied:

CM1) ∂(n ·m) = [n, ∂m] CM2) ∂m ·m′ = [m,m′]

for all m,m′ ∈ M , n ∈ N .

The following definition is due to Ellis (cf. [7]).

A 2-crossed module of Lie algebras is a complex

M2
∂2 // M1

∂1 // M0

of Lie algebras together with an action of M0 on M1, and a function

{−,−} : M1 ×M1 −→ M2,
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called a Peiffer lifting, which satisfies the following axioms:

1. ∂2{y0, y1} = ∂1y0 · y1 − [y0, y1],

2. {∂2(x1), ∂2(x2)} = [x1, x2],

3. {∂2x, y} = ∂1y · x− y · x,

4. {y, ∂2x} = y · x,

5. z · {y0, y1} = {z · y0, y1}+ {y0, z · y1},

6. {y0, [y1, y2]} = ∂1(y1) · {y0, y2} − ∂1(y2) · {y0, y1}

− {y1, ∂1(y0) · y2 − [y0, y2]}+ {y2, ∂1(y0) · y1 − [y0, y1]}

7. {[y0, y1], y2} = ∂1(y0) · {y1, y2}+ {y0, [y1, y2]}

− ∂1(y1) · {y0, y2} − {y1, [y0, y2]},

for all x, x1, x2 ∈ M2, y, y0, y1, y2 ∈ M1 and z ∈ M0.

The category of 2-crossed modules of Lie algebras will be denoted by X2LMod. The
following theorem was proved by Ellis in [7].

1.1. Theorem. The category of 2-crossed modules of Lie algebras is equivalent to that
of simplicial Lie algebras with Moore complex of length 2. �

Akça and Arvasi, [1], studied simplicial Lie algebras and their properties. They con-
sidered a simplicial Lie algebra L which is 2-truncated, i.e., its Moore complex looks
like:

NL2
∂2 // NL1

∂1 // NL0 ,

and they showed that this complex has a 2-crossed module structure of Lie algebras in
terms of hypercrossed complex pairings. This result is an analogue, for Lie algebras, of
Arvasi and Porter’s result in the case of commutative algebras (cf. [2]).

2. Quadratic and 2-crossed modules of Lie algebras

Baues, in [3], defined the notion of quadratic module of groups as an algebraic model
for connected homotopy 3-types. In this section, we define a Lie algebra version of this
structure, and we define a functor from the category of 2-crossed modules to that of
quadratic modules of Lie algebras.

Let ∂ : C → R be a pre-crossed module, and P1(∂) = C and P2(∂) be the Peiffer Lie
ideal of C generated by elements of the form

〈x, y〉 = (∂x) · y − [x, y],

which is called the Peiffer element for x, y ∈ C.

A nil(2)-module is a pre-crossed module ∂ : C → R with an additional “nilpotency”
condition. This condition is P3(∂) = 0, where P3(∂) is the ideal of the Lie algebra C
generated by the Peiffer elements 〈x1, x2, x3〉 of length 3.

If ∂ : C → R is a pre-crossed module, then the homomorphism

∂cr : Ccr = C/P2(∂) −→ R
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is a crossed module since

〈[x], [y]〉 = ∂cr(x+ P2(∂)) · (y + P2(∂))− [(x+ P2(∂)), (y + P2(∂))]

= ∂cr(x+ P2(∂)) · (y + P2(∂))− ([x, y] + P2(∂))

= (∂(x) · y − [x, y]) + P2(∂)

= P2(∂) ( ∵ 〈x, y〉 ∈ P2(∂) )

= [0]

for [x] = x+ P2(∂), [y] = y + P2(∂) ∈ Ccr. The homomorphism ∂cr is called the crossed
module associated with the pre-crossed module ∂. Similarly, if ∂ : C → R is a pre-crossed
module, then the homomorphism

∂nil : Cnil = C/P3(∂) −→ R

is a nil(2)-module associated with the pre-crossed module ∂. Clearly, a nil(1)-module is
a crossed module.

2.1. Definition. A quadratic module (ω, δ, ∂) of Lie algebras is a diagram

C ⊗ C

ω

||zz
zz
zz
zz
zz
zz

w

��
L

δ
// M

∂
// N

of homomorphisms of Lie algebras such that the following axioms are satisfied.

QM1) The homomorphism ∂ : M → N is a nil(2)-module and the quotient map M ։

C = Mcr/[(Mcr), (Mcr)] is given by x 7→ [x], where [x] ∈ C denotes the class represented
by x ∈ M . The map w is defined by Peiffer multiplication, i.e., w([x]⊗[y]) = ∂(x)·y−[x, y]
for x, y ∈ M .

QM2) The homomorphisms δ and ∂ satisfy δ∂ = 0 and the quadratic map ω is a lift of
the map w, that is δω = w or equivalently

δω([x]⊗ [y]) = w([x]⊗ [y]) = ∂(x) · y − [x, y]

for x, y ∈ M .

QM3) L is a Lie N-algebra and all homomorphisms of the diagram are equivariant with
respect to the action of N . Moreover, the action of N on L satisfies the following equality

∂(x) · a = ω([δa]⊗ [x] + [x]⊗ [δa])

for a ∈ L, x ∈ N .

QM4) For a, b ∈ L,

ω([δa]⊗ [δb]) = [a, b].

A map ϕ : (ω, δ, ∂) → (ω′, δ′, ∂′) between quadratic modules is given by a commutative
diagram, ϕ = (l,m, n)

C ⊗ C

ϕ∗⊗ϕ∗

��

ω // L

l

��

δ // M

m

��

∂ // N

n

��
C′ ⊗ C′

ω′
// L′

δ′
// M ′

∂′
// N ′
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where (m,n) is a map between pre-crossed modules which induces ϕ∗ : C → C′ and where
l is an n-equivariant homomorphism. Let QM be the category of quadratic modules and
of maps as in the above diagram.

Now, we construct a functor from the category of 2-crossed modules to the category
of quadratic modules of Lie algebras.

Let

C2
∂2 // C1

∂1 // C0

be a 2-crossed module of Lie algebras. Let P3 be the ideal of C1 generated by elements of
the form 〈〈x, y〉, z〉 and 〈x, 〈y, z〉〉 for x, y, z ∈ C1. Let q1 : C1 → C1/P3 be the quotient
map and M = C1/P3. Since ∂1 is a pre-crossed module, we obtain ∂1(〈〈x, y〉 , z〉) = 0
and ∂1(〈x, 〈y, z〉〉) = 0. That is, we have ∂1(P3) = 0. Thus, the map ∂ : M → C0 given
by ∂(x + P3) = ∂1(x), for all x ∈ C1, is a well defined homomorphism. Therefore, we
have a commutative diagram

C1
∂1 //

q1

  A
AA

AA
AA

AA
AA

C0

M

∂

>>}}}}}}}}}}}

Let P ′
3 be the ideal of C2 generated by elements of the form

{x, 〈y, z〉} and {〈x, y〉 , z},

where {−,−} is the Peiffer lifting map. We have

L = C2/P
′

3.

We can write from the first axiom of 2-crossed modules

∂2{x, 〈y, z〉} = (∂1x · 〈y, z〉)− [x, 〈y, z〉]

= 〈x, 〈y, z〉〉,

∂2{〈x, y〉 z} = ∂1(〈x, y〉) · z − [〈x, y〉, z]

= 〈〈x, y〉, z〉,

and thus we obtain ∂2(P
′
3) = P3. Then, δ : L −→ M given by δ(l + P ′

3) = ∂2l + P3 is a
well defined homomorphism. Let

C =
Mcr

[Mcr,Mcr]
.

Thus we get the following commutative diagram;

C ⊗C

ω

{{ww
ww
ww
ww
ww
ww
w

w

��
L

δ // M ∂ // N

C2

q2

OO

∂2

// C1

q1

OO

∂1

// C0
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where q1 and q2 are the quotient maps. The quadratic map

ω : C ⊗ C −→ L

is given by the Peiffer lifting map, namely

ω ([q1x]⊗ [q1y]) = q2{x, y}

for all x, y ∈ C1, q1x, q1y ∈ M and [q1x]⊗ [q1y] ∈ C ⊗ C.

2.2. Proposition. The diagram

C ⊗ C

ω

||zz
zz
zz
zz
zz
zz

w

��
L

δ
// M

∂
// N

is a quadratic module of Lie algebras.

Proof. We leave the verification of the axioms of quadratic module to the reader. �

Thus we have defined a functor from the category of 2-crossed modules to that of
quadratic modules of Lie algebras

X2Mod −→ QM.

3. Quadratic modules and simplicial Lie algebras

In this section we will construct a functor from the simplicial Lie algebras to the
quadratic modules of Lie algebras by using the Mα,β functions defined by Akça and
Arvasi in [1] in order to see the role of the hypercrossed complex pairings in the structure.
We will use the images of the Mα,β functions in verifying the axioms of quadratic module.

Now we recall a brief description of the Mα,β functions from [1].

For the ordered set [n] = {0 < 1 < · · · < n}, let σn
i : [n + 1] → [n] be the increasing

surjective map given by

σn
i (j) =

{

j if j 6 i,

j − 1 if j > i,

as used in Appendix B of Loday’s book [10].

Let S(n, n−r) be the set of all monotone increasing surjective maps from [n] to [n−r].
This can be generated from the various σn

i by composition. The composition of these
generating maps is subject to the following rule: σjσi = σi−1σj , j < i. This implies
that every element σ ∈ S(n, n − r) has a unique expression as σ = σi1 ◦ σi2 ◦ · · · ◦ σir

with 0 6 i1 < i2 < · · · < ir 6 n − 1, where the indices ik are elements of [n] such
that {i1, . . . , ir} = {i : σ(i) = σ(i + 1)}. We thus can identify S(n, n − r) with the set
{(ir, . . . , i1) : 0 6 i1 < i2 < · · · < ir 6 n − 1}. In particular, the single element of
S(n, n), defined by the identity map on [n], corresponds to the empty 0-tuple (), denoted
by ∅n. Similarly the only element of S(n, 0) is (n− 1, n− 2, . . . , 0).

For all n > 0, let

S(n) =
⋃

06r6n

S(n, n− r).

We say that α = (ir, . . . , i1) < β = (js, . . . , j1) in S(n) if i1 = j1, . . . , ik = jk but
ik+1 > jk+1, (k > 0) or if i1 = j1, . . . , ir = jr and r < s. This makes S(n) an ordered set.
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We recall briefly from Akça and Arvasi (cf. [1]) the construction of a family of k-
bilinear morphisms. We define a set P (n) consisting of pairs of elements (α, β) from
S(n) with α ∩ β = ∅ and β < α, where α = (ir, . . . , i1), β = (js, . . . , j1) ∈ S(n). The
k-linear morphisms that we will need,

{Mα,β : NLn−#α ×NLn−#β → NLn : (α, β) ∈ P (n), n > 0},

are given as composites:

Mα,β(xα, yβ) = p[−,−](sα × sβ)(xα, yβ)

= p([sα(xα), sβ(yβ)])

= (1− sn−1dn−1) · · · (1− s0d0)([sα(xα), sβ(yβ)]),

where

sα = sir . . . si1 : NLn−#α → Ln, sβ = sjs . . . sj1 : NLn−#β → Ln,

p : Ln → NLn is defined by composite projections p = pn−1 . . . p0 with pj = 1− sjdj for
j = 0, 1, . . . , n− 1 and [−,−] : Ln × Ln → Ln denotes the Lie bracket.

From [1], we will now consider the ideal In in Ln which is generated by all elements
of the form;

Mα,β(xα, yβ),

where xα ∈ NLn−#α and yβ ∈ NLn−#β and for all (α, β) ∈ P (n).

Consider Mα,β(xα, yβ) and Mβ,α(yβ, xα), here one uses [sα(xα), sβ(yβ)], the other
giving

[sα(xα), sβ(yβ)] = −[sβ(yβ), sα(xα)],

so changing α and β only gives a minus sign.

3.1. Proposition. [1] Let L be a simplicial Lie algebra, n > 0 and Dn the ideal in Ln

generated by degenerate elements. We suppose Ln = Dn, and let In be the ideal generated
by elements of the form Mα,β(xα, yβ) with (α, β) ∈ P (n), where xα ∈ NLn−#α, yβ ∈
NLn−#β with 1 6 r, s 6 n. Then NLn = In, and as a corollary ∂n(NLn) = ∂n(In). �

Using the above proposition for n = 2 and 3, Akça and Arvasi have show what the
image of In looks like by using ∂n. The image of I2 using ∂2 is [ker d0, ker d1]. For n = 3,
the ideal I3 in NL3 is generated by the elements; for x ∈ NL1 and y ∈ NL2,

M(1,0),(2)(x, y) = [s1s0x− s2s0x, s2y],

M(2,0),(1)(x, y) = [s2s0x− s2s1x, s1y − s2y],

M(1),(0)(x, y) = [s1x, s0y − s1y] + [s2x, s2y],

M(2),(0)(x, y) = [s2x, s0y],

M(1),(0)(x, y) = [s2x, s1y − s2y].

For the images of these elements, see [1].

Now, we construct a functor from the simplicial Lie algebras to the quadratic modules
of Lie algebras by using the functions Mα,β . Suppose that En = Dn for all n > 0.



416 E. Ulualan, E. Ö. Uslu

Let L be a simplicial Lie algebra with Moore complex NL. We will obtain a quadratic
module of Lie algebras by using the following diagram:

NL1 ×NL1

ω′

wwppp
pp
pp
pp
pp
pp
pp
p

w

��
NL2/∂3(NL3)

∂2

// NL1
∂1

// NL0

where the map w is given by

w(x, y) = [s0d1x, y]− [x, y]

for x, y ∈ NL1, and the map ω′ by

ω′(x, y) = ([s0x, s1y]− [s1x, s1y]) + ∂3(NL3)

for x, y ∈ NL1. We see that

d2([s0x, s1y]− [s1x, s1y]) = [s0d1x, y]− [x, y] = w(x, y).

Let P3(∂1) be the ideal of NL1 generated by elements of the form

w(x,w(y, z)) and w(w(x, y), z)

for x, y, z ∈ NL1. Since

d1(w(x,w(y, z))) = d1([s0d1x,w(y, z)]− [x,w(y, z)])

= [d1x, d1w(y, z)]− [d1x, d1w(y, z)]

= 0

and

d1(w(w(x, y), z)) = d1([s0d1w(x, y), z]− [w(x, y), z])

= [d1w(x, y), d1z]− [d1w(x, y), d1z]

= 0

we can write d1(P3(∂1)) = 0. Then, ∂ : NL1/P3(∂1) −→ NL0 given by ∂(x+ P3(∂1)) =
d1x for x ∈ NL1 is a well defined homomorphism. Thus, we obtain the following com-
mutative diagram

NL1
d1 //

q1

%%JJ
JJ

JJ
JJ

JJ
JJ

JJ
NL0

NL1/P3(∂1)

∂

99tttttttttttttt

where q1 is the quotient map and ∂ : NL1/P3(∂1) −→ NL0 becomes a nil(2)-module.

Let P ′
3(∂1) be an ideal of NL2/∂3(NL3) generated by the formal Peiffer elements of

x, y, z, i.e., generated by elements of the form

ω′(w(x, y), z) and ω′(x,w(y, z))

for x, y, z ∈ NL1. Since

∂2ω
′(x,w(y, z)) = d2([s0x, s1w(y, z)]− [s1x, s1w(y, z)])

= [s0d1x,w(y, z)]− [x,w(y, z)]

= w(x,w(y, z)) ∈ P3(∂1)
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∂2ω
′(w(x, y), z) = d2([s0w(x, y), s1z]− [s1w(x, y), s1z])

= [s0d1w(x, y), z]− [w(x, y), z]

= w(w(x, y), z) ∈ P3(∂1),

we obtain ∂2(P
′
3(∂1)) ⊆ P3(∂1). Let

M = NL1/P3(∂1)

and

L = (NL2/∂3(NL3))/P
′

3(∂1).

We thus see that the map

δ : (NL2/∂3NL3))/P
′

3(∂1) −→ NL1/P3(∂1)

given by δ(a+P ′
3(∂1)) = ∂2(a)+P3(∂1) is a well defined homomorphism since ∂2(P

′
3(∂1)) ⊆

P3(∂1). Therefore, we obtain the following commutative diagram,

C ⊗ C

ω

xxppp
pp
pp
pp
pp
pp
pp
pp

w

��
L

δ
// M

∂
// N

NL2/∂3(NL3)

q2

OO

∂2

// NL1

q1

OO

∂1

// NL0

where C = Mcr/[Mcr,Mcr] and q1, q2 are the quotient maps, and the quadratic map ω
can be given by

ω([q1x]⊗ [q1y]) = q2ω
′(x, y)

and

w([q1x]⊗ [q1y]) = ∂(q1(x)) · q1(y)− [q1(x), q1(y)]

for q1x, q1y ∈ M and [q1x]⊗ [q1y] ∈ C ⊗ C. Thus we have:

3.2. Proposition. The diagram

C ⊗ C

ω

{{ww
ww
ww
ww
ww
ww
w

w

��
L

δ
// M

∂
// N

is a quadratic module of Lie algebras.

Proof. We show that all the axioms of a quadratic module are verified by using the
images of the Mα,β functions from [1].
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QM1)- Clearly, ∂ : M → N is a nil(2)-module. Because, for x + P3(∂1), y + P3(∂1),
z + P3(∂1) ∈ M = NL1/P3(∂1),

〈x+ P3(∂1), 〈y + P3(∂1), z + P3(∂1)〉〉 = 〈x, 〈y, z〉〉+ P3(∂1)

= 0 + P3(∂1) (by 〈x, 〈y, z〉〉 ∈ P3(∂1))

= P3(∂1).

QM2)- For x, y ∈ NL1, q1x, q1y ∈ M and [q1x]⊗ [q1y] ∈ C ⊗ C, we have

δω([q1x]⊗ [q1y]) = δq2ω
′(x⊗ y)

= q1(d2([s0x, s1y]− [s1x, s1y]) ( ∵ δq2 = q1∂2)

= q1([s0d1x, y]− [x, y])

= d1q1(x) · y − [q1x, q1y]

= w([q1x]⊗ [q1y]).

QM3)- For q2a ∈ L and q1x ∈ M, we have

ω ([δq2a]⊗ [q1x]) = ω ([q1∂2a]⊗ [q1x])

= q2ω
′(∂2a⊗ x)

= q2([s1d2a, (s1x− s0x)]).

We have from [1], for x ∈ NL1 and a ∈ NL2,

∂3(M(1,0)(2)(x, a)) = [s1d2a, (s1x− s0x)]− [s1x, a] ∈ ∂3(NL3),

and then we get

ω ([δq2a]⊗ [q1x]) ≡ q2([s1x, a]) mod (∂3(NL3))

= q2(x · a).

On the other hand,

ω([q1x]⊗ [δq2a]) = ω([q1x]⊗ [q1∂2a])

= q2ω
′(x⊗ ∂2a)

= q2([s0x, s1d2a]− [s1x, s1d2a]).

Again from [1] we have for x ∈ NL1 and a ∈ NL2,

∂3(M(2,0)(1)(x, a)) = [s0x, s1d2a]− [s1x, s1d2a]− [s0x, a] + [s1x, a] ∈ ∂3(NL3),

and then

ω([q1x]⊗ [δq2a]) ≡ q2([s0x, a]− [s1x, a]) mod ∂3(NL3)

= q2([s1s0d1x, a]− [s1x, a])

= ∂1q1(x) · q2(a)− q2(x · a).

Thus we obtain

ω ([δq2a]⊗ [q1x] + [q1x]⊗ [δq2a]) = ∂1q1(x) · q2(a).

QM4)- For q2a, q2b ∈ L, we have

ω([δq2a]⊗ [δq2b]) = ω([q1∂2a]⊗ [q1∂2b])

= q2ω
′(∂2a⊗ ∂2b)

= q2([s1d2a, s1d2b]− [s1d2a, s0d2a]).

Similarly from [1] we have for a, b ∈ NL2,

∂3(M(1)(0)(a, b)) = [s1d2a, s1d2b]− [s1d2a, s0d2a]− [a, b] ∈ ∂3(NL3),
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and then we get

ω([δq2a]⊗ [δq2b]) ≡ q2([a, b]) mod ∂3(NL3)

= [q2a, q2b].

�

If the Moore complex of the simplicial Lie algebra is of length 2, we have ∂3(NL3) = 0
and thus we have a functor from the category of simplicial Lie algebras with Moore
complex of length 2 to that of the quadratic modules

SimpLieAlg62 −→ QM.

Therefore, the situations observed in this paper can be summarized in the following
diagram of unbroken arrows

SimpLieAlg62

xxqqq
qq
qq
qq
q

[1]

''
QM X2Mod.oo
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