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Abstract

In [1], Ateş defined the semidirect product version of the Schützenberger
product for any two monoids, and examined its regularity. Since this is
a new product and there are so many algebraic properties that need to
be checked for it, in this paper we determine necessary and sufficient
conditions for this new version to be strongly π-inverse, and then give
some results.
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1. Introduction

The semidirect product has a venerable history in semigroup theory. It has played a
central role not only in the decomposition theory of finite semigroups but also in many
algebraic and geometric properties (see, for example, in [2]). It is therefore of interest to
improve this product for some other constructions. In this direction one step has been
taken by Ateş ([1]). In [1], the author defined a new monoid construction under the
semidirect product (which is called the semidirect product version of the Schützenberger
product) and then gave necessary and sufficient conditions for this product to be regular.
In [7], the author determined necessary and sufficient conditions for the semidirect prod-
uct of two monoids to be regular. (As far as we can see, one of the starting points for the
paper [1] is the main result of the paper [7]). After that work, in [8], the author investi-
gated inverse and orthodox properties of semidirect and wreath products of monoids (see
[6] for details of wreath products). Then, in [9], the authors determined necessary and
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sufficient conditions for the semidirect and wreath products of two monoids to be strongly
π-inverse. So as a next step of [1], in this paper, by combining some material from [1] and
[9], we study the property of being strongly π-inverse for the semidirect product version
of the Schützenberger product of any two monoids, and give some results.

1.1. Definition. Let A, B be monoids and θ a monoid homomorphism

θ : B → End(A), b 7→ θb, 1 7→ idEnd(A),

where End(A) denotes the collection of endomorphisms of A, which is itself a monoid
with identity id : A 7→ A. Then the semidirect product of these two monoids, denoted by
A⋊θ B, is the set of ordered pairs (a, b) (where a ∈ A and b ∈ B) with the multiplication
given by

(a1, b1)(a2, b2) = (a1(a2)θb1 , b1b2).

We note that, for every a ∈ A and b1, b2 ∈ B,

(1.1) (a)θb1b2 = ((a)θb2)θb1 ,

and the monoids A and B are identified with the submonoids of A⋊θ B having elements
(a, 1B) and (1A, b).

1.2. Definition. For a subset P of A×B and for a ∈ A, b ∈ B, we let define

Pb = {(c, db); (c, d) ∈ P} and aP = {(ac, d); (c, d) ∈ P}.

Then the Schützenberger product of the monoids A and B, denoted by A ⋄ B, is the set
A× ℘(A×B)×B, (where ℘( · ) denotes the power set) with the multiplication given by

(a1, P1, b1)(a2, P2, b2) = (a1a2, P1b2 ∪ a1P2, b1b2).

A ⋄ B is a monoid with identity (1A, ∅, 1B) ([5]).

By considering the above two definitions, the following definition has recently been
given in [1].

1.3. Definition. [1] The semidirect product version of the Schützenberger product of the
monoids A by B, denoted by A⋄sv B, is the set A×℘(A×B)×B with the multiplication

(1.2) (a1, P1, b1)(a2, P2, b2) = (a1(a2)θb1 , P1b2 ∪ P2, b1b2).

A ⋄sv B is a monoid with identity (1A, ∅, 1B), where the homomorphism θ is defined as
in the semidirect product construction.

Now let us recall the following material that will be needed for this paper. The reader
is referred to [3, 4] for more details on this material.

For a monoid M , the set of inverses for an element a ∈ M is defined by

a
−1 = {b ∈ M : aba = a and bab = b}.

Then M is called a regular monoid if and only if the set a−1 6= ∅ for all a ∈ M . To have
an inverse element can also be important in a semigroup. Therefore, for a semigroup S,
we call S an inverse semigroup if every element has exactly one inverse. The well known
examples of inverse semigroups are groups and semilattices. In addition, let E(S) and
RegS be the set of idempotent and regular elements, respectively, for a semigroup S.
Here, S is called π-regular if, for every s ∈ S, there is an m ∈ N such that sm ∈ RegS.
Moreover, if S is π-regular and the set E(S) is a commutative subsemigroup of S, then S

is called a strongly π-inverse semigroup. We recall that RegS is an inverse subsemigroup
of a strongly π-inverse semigroup S.
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2. Main Results

In the paper [9, Lemma 1], the authors determined necessary conditions for the semidi-
rect product of two monoids to be strongly π-inverse. Using a similar idea as with this
lemma, we present the following preliminary result as a lemma which actually constructs
the necessity part of the main result (see Theorem 2.2 below).

2.1. Lemma. Let A ⋄sv B be a strongly π-inverse monoid. Then we have the following:

(i) Both A and B are strongly π-inverse monoids.

(ii) For every e ∈ E(A) and f ∈ E(B), (e)θf = e.

(iii) For a ∈ A and f ∈ E(B), if a(a)θf = a then (a)θf = a.

(iv) For every a ∈ RegA and f ∈ E(B), (a)θf = a.

(v) For every a ∈ A and b ∈ B, there exists m ∈ N such that bm ∈ RegB and

a(m) ∈ RegA, where a(m) = a ((a)θb) ((a)θb2) · · · ((a)θbm−1).
(vi) For every (a, P, b) ∈ A⋄sv B, there exist P1 ⊆ A×B and m ∈ N such that either

P = P1b =
⋃

(a1,b1)∈P1

{(a1, b1b)} or P = P1b
2 =

⋃

(a1,b1)∈P1

{(a1, b1b
2)}

or · · · or P = P1b
m−1

or P = P1b
m
.

Proof. (i) For arbitrary a ∈ A and for some P1 ⊆ A × B, there exist m ∈ N and
(a1, P1, b1) ∈ A ⋄sv B such that

(a, ∅, 1B)m(a1, P1, b1)(a, ∅, 1B)m = (a, ∅, 1B)m.

By applying (1.2), we obtain (ama1(a
m)θb1 , P1, b1) = (am, ∅, 1B). Then we get b1 = 1B ,

and so ama1(a
m)θb1 = ama1a

m. Therefore ama1a
m = am, so A is π-regular. Also,

for e, f ∈ E(A), since (e, ∅, 1B), (f, ∅, 1B) ∈ E(A ⋄sv B), we have (e, ∅, 1B)(f, ∅, 1B) =
(f, ∅, 1B)(e, ∅, 1B), and so ef = fe. Hence A is a strongly π-inverse monoid.

Similarly, for arbitrary b ∈ B and for some P2 ⊆ A × B, there exist m ∈ N and
(a2, P2, b2) ∈ A ⋄sv B such that

(1A, ∅, b)
m(a2, P2, b2)(1A, ∅, b)

m = (1A, ∅, b)
m
,

that is, (1A, ∅, b
m)(a2, P2, b2)(1A, ∅, b

m) = (1A, ∅, b
m) which implies bmb2b

m = bm. Thus
B is π-regular. In addition, for g, h ∈ E(B), since (1A, ∅, g), (1A, ∅, h) ∈ E(A ⋄sv B) and
A ⋄sv B is a strongly π-inverse monoid, we have (1A, ∅, g)(1A, ∅, h) = (1A, ∅, h)(1A, ∅, g),
and so (1A, ∅, gh) = (1A, ∅, hg). Hence, we get gh = hg which implies that B is a strongly
π-inverse monoid.

(ii) Let e ∈ E(A) and f ∈ E(B). Then (e, ∅, 1B), (1A, ∅, f) ∈ E(A ⋄sv B) and

(e, ∅, 1B)(1A, ∅, f) = (1A, ∅, f)(e, ∅, 1B),

which implies (e(1A)θ1B , ∅, f) = (1A(e)θf , ∅, f). Thus (e, ∅, f) = ((e)θf , ∅, f), and so
(e)θf = e.

(iii) If a((a)θf ) = a, then (a, ∅, f) ∈ E(A⋄svB) and (a, ∅, f)(1A, ∅, f) = (1A, ∅, f)(a, ∅, f)
since (1A, ∅, f) ∈ E(A ⋄sv B) and A ⋄sv B is strongly π-inverse. Therefore we obtain
(a)θf = a.

(iv) From (i), for every a ∈ RegA, there exists a unique a1 ∈ A (and a unique
(a1)θf ∈ A) such that

a((a1)θf )a = a and ((a1)θf )a((a1)θf ) = (a1)θf .

Then (a((a1)θf )a)θf = (a)θf . Further, ((a)θf )(((a1)θf )θf )((a)θf ) = (a)θf and so ((a)θf )((a1)θf2)((a)θf ) =
(a)θf . Since f ∈ E(B), we obtain

((a)θf )((a1)θf )((a)θf ) = (a)θf .
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Additionally, for every f ∈ E(B), since a((a1)θf ) ∈ E(A), we have

(a((a1)θf
︸ ︷︷ ︸

a1

))θf = a((a1)θf ) = (aa1)θf

by (ii), and then we get

(a1)θfa(a1)θf = (a1)θf (aa1)θf

= (a1)θf (a)θf (a1)θf = (a1)θf .

Hence both a and (a)θf are inverses of (a1)θf , and so (a)θf = a.

(v) Since A ⋄sv B is a strongly π-inverse monoid, for every (a,P, b) ∈ A ⋄sv B there
exist m ∈ N and (a1, P1, b1) ∈ A ⋄sv B such that

(a, P, b)m(a1, P1, b1)(a, P, b)
m = (a, P, b)m.

Then, by (1.2), we get
(
a((a)θb)((a)θb2) · · · ((a)θbm−1), P b

m−1 ∪ · · · ∪ Pb ∪ P, b
m
)
(a1, P1, b1)(a,P, b)

m

= (a,P, b)m.

By processing the left hand side, we have
(
a((a)θb)((a)θb2) · · · ((a)θbm−1)((a1)θbm),

(Pb
m−1 ∪ · · · ∪ Pb ∪ P )b1 ∪ P1, b

m
b1
)
(a, P, b)m = (a,P, b)m,

and then, by iterating this process, we obtain

(2.1)

(
a((a)θb)((a)θb2) · · · ((a)θbm−1)((a1)θbm )(a((a)θb)((a)θb2) · · · ((a)θbm−1))θbmb1 ,

((Pb
m−1 ∪ · · · ∪ Pb ∪ P )b1 ∪ P1)b

m ∪ (Pb
m−1 ∪ · · · ∪ Pb ∪ P ), bmb1b

m
)

=
(
a((a)θb)((a)θb2) · · · ((a)θbm−1), P b

m−1 ∪ · · · ∪ Pb ∪ P, b
m
)
.

So, bmb1b
m = bm and thus bm ∈ RegB. First components of the equality in (2.1) give

that

a((a)θb)((a)θb2) · · · ((a)θbm−1)((a1)θbm)
(
a((a)θb)((a)θb2) · · · ((a)θbm−1)

)
θbmb1

= a((a)θb)((a)θb2) · · · ((a)θbm−1).

For simplicity, let us label a((a)θb)((a)θb2) · · · ((a)θbm−1) by a(m). Thus we have

a
(m)((a1)θbm)((a(m))θbmb1) = a

(m)
.

By (iii) we get (a(m))θbmb1 = a(m), since bmb1 ∈ E(B). Indeed

(bmb1)
2 = b

m
b1b

m

︸ ︷︷ ︸

bm

b1 = b
m
b1.

Therefore

a
(m)((a1)θbm)a(m) = a

(m)
,

which gives a(m) ∈ RegA, as required.

(vi) By Equality (2.1), we have

((Pb
m−1∪· · ·∪Pb∪P )b1∪P1)b

m∪(Pb
m−1∪· · ·∪Pb∪P ) = Pb

m−1∪· · ·∪Pb∪P

and then

(Pb
m−1

b1b
m ∪ · · · ∪ Pbb1b

m ∪ Pb1b
m ∪ P1b

m) ∪ (Pb
m−1 ∪ · · · ∪ Pb ∪ P )

= Pb
m−1 ∪ · · · ∪ Pb ∪ P.
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Moreover, again by (2.1), since bmb1b
m = bm, for every (a, P, b) ∈ A⋄svB, either P = P1b

or P = P1b
2 or · · · or P = P1b

m−1 or P = P1b
m, where P1 ⊆ A×B. Otherwise, for P ′ =

Pbm−1∪· · ·∪Pb∪P , there would not be an equality between P ′ and (P ′b1∪P1)b
m∪P ′,

which gives a contradiction with A ⋄sv B being a strongly π-inverse monoid.

The above arguments complete the proof of the lemma. �

The main result of this paper is the following.

2.2. Theorem. Let A and B be any two monoids. Then A ⋄sv B is a strongly π-inverse

monoid if and only if

(i) Both A and B are strongly π-inverse monoids.

(ii) For every a ∈ RegA and f ∈ E(B), (a)θf = a.

(iii) For every a ∈ A and b ∈ B, there exists m ∈ N such that bm ∈ RegB and

a(m) ∈ RegA, where a(m) = a((a)θb)((a)θb2) · · · ((a)θbm−1).
(iv) For every (a, P, b) ∈ A ⋄sv B, either

P = P1b =
⋃

(a1,b1)∈P1

{(a1, b1b)} or P = P1b
2 =

⋃

(a1,b1)∈P1

{(a1, b1b
2)}

or · · · or P = P1b
m−1

or P = P1b
m
,

where P1 ⊆ A×B.

Proof. Necessity is obvious by Lemma 2.1, so it just remains to prove sufficiency. There-
fore, let us suppose that the conditions (i)–(iv) of the theorem hold.

By (iii), for every (a, P, b) ∈ A ⋄sv B, there exist m ∈ N, a1 ∈ A and b1 ∈ B such that

b
m
b1b

m = b
m and a

(m)
a1a

(m) = a
(m)

.

Also, by (ii), we have a(m)(a1)θbma(m) = a(m), for bmb1 ∈ E(B). By using (iv), we
further obtain the equality

(a, P, b)m(a1, P1, b1)(a, P, b)
m = (a, P, b)m,

which gives the π-regularity of A ⋄sv B.

Now we need to show that E(A⋄svB) is commutative. Firstly, for arbitrary (e, P, f) ∈
E(A ⋄sv B), we must prove that e ∈ E(A) and f ∈ E(B). In fact, if (e, P, f)2 = (e, P, f),
then f2 = f , Pf ∪ P = P and e(e)θf = e. Thus (e)θf ∈ E(A) (since f2 = f and so
f ∈ E(B)), and then by (iii) there exists m ∈ N such that

e((e)θf )
︸ ︷︷ ︸

e

((e)θf2) · · · ((e)θfm−1) = e
(m) ∈ RegA

=⇒ e((e)θf2)
︸ ︷︷ ︸

e

· · · ((e)θfm−1) = e
(m) ∈ RegA

=⇒ · · · =⇒ e((e)θfm−1) = e ∈ RegA.

By considering (ii), for every e ∈ RegA and f ∈ E(B) we have (e)θf = e. If we multiply
both sides of this equation by e ∈ A, then we obtain e((e)θf)

︸ ︷︷ ︸

e

= e2. Hence e2 = e, which

means that e ∈ E(A).
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Now, for (e, P, f), (e1, P1, f1) ∈ E(A ⋄sv B), we have e, e1 ∈ E(A) and f, f1 ∈ E(B).
Actually, by (i) and (ii), we get

(e, P, f)(e1, P1, f1) = (e ((e1)θf )
︸ ︷︷ ︸

e1

, P f1 ∪ P1, ff1)

= (ee1, {Case 1,Case 2}, ff1) (see below for Cases 1 and 2)

= (e1e,Case 1 - Case 2, f1f)

= (e1((e)θf1), P1f ∪ P, f1f) = (e1, P1, f1)(e, P, f).

Case 1: If f = f1, then Pf1 ∪ P1 = Pf ∪ P1. Since f ∈ E(B), P must be equal to
P2f , where P2 ⊆ A×B. Indeed, if we take P = P2f , then we get Pf∪P1 = P2f

2∪P2f =
P2f ∪ P2f = P2f = P1f ∪ P .

Case 2: If P1 = P , then Pf1∪P1 = Pf1∪P . Now we can take P = P2f or P = P2f
2,

so we obtain

Pf1 ∪ P = P2f
2
f1 ∪ P2f

2 = P2ff1f ∪ P2f (since E(B) is commutative)

= P2f ∪ P2f (since B is π-regular)

= P2f = P.

From the other side, we also have

P1f ∪ P = Pf ∪ P = P2ff ∪ P2f = P2f ∪ P2f (since f ∈ E(B))

= P2f = P.

We note that Case 2 coincides with the general case of P . In other words, for P1 6= P ,
we can also take P = P2f or P = P2f

2.

Hence the result. �

In the following we present some consequences of Theorem 2.2 concerning when the
“inverse” and “strongly π-inverse” properties hold. Before stating the first and immediate
consequence of Theorem 2.2 (and also of [1, Theorem 2.5]), let us recall the following
important result.

2.3. Theorem. [4, Theorem 5.1.1] The following conditions on a semigroup S are equiv-

alent:

(i) S is an inverse semigroup.

(ii) Every R-class of S contains exactly one idempotent and every L-class of S con-

tains exactly one idempotent.

(iii) S is regular and the idempotents of S commute with one another. �

Now, by considering [1, Theorem 2.5] and Theorem 2.3, we can present the following
corollary which states necessary and sufficient conditions for A ⋄sv B to be an inverse
monoid.

2.4. Corollary. A ⋄sv B is an inverse monoid if and only if the following conditions

hold:

(i) Both A and B are inverse monoids.

(ii) For every a ∈ A and b ∈ B, there exists an idempotent f2 = f ∈ B such that

bB = fB and a ∈ A(a)θf , where θ : B → End(A) is a homomorphism as in

(1.1).
(iii) For every (a, P, b) ∈ A ⋄sv B, either

P = P1b =
⋃

(a1,b1)∈P1

{(a1, b1b)} or P = P1bd =
⋃

(a1,b1)∈P1

{(a1, b1bd)},
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where P1 ⊆ A×B and d ∈ b−1.

(iv) (a)θf = a, for every a ∈ RegA and f ∈ E(B).

Proof. Let us suppose that A ⋄sv B is an inverse monoid. By [1, Theorem 2.5], A and
B are regular and so the conditions (ii) and (iii) hold. In addition, since E(A ⋄sv B)
is a commutative subsemigroup of A ⋄sv B, for e, f ∈ E(A) and g, h ∈ E(B), we
have (e, ∅, 1B)(f, ∅, 1B) = (f, ∅, 1B)(e, ∅, 1B) and (1A, ∅, g)(1A, ∅, h) = (1A, ∅, h)(1A, ∅, g).
Thus we get ef = fe and gh = hg. Hence (i) holds. Finally, by Lemma 2.1, one can see
that (iv) holds.

Conversely suppose that the monoids A and B both satisfy conditions (i)-(iv). It
is obvious that, by the sufficiency part of [1, Theorem 2.5], we get the regularity of
A ⋄sv B. Moreover, by considering (iii) and (iv), it can be easily shown that E(A ⋄sv B)
is commutative. But, as in the proof of Theorem 2.2, we need to emphasize that one can
consider P = P1f or P = P1f

2 (where f ∈ E(B)) in (iii). �

2.5. Corollary. Let A and B be two monoids and let A ⋄sv B be a strongly π-inverse

monoid. Then

(i) (e, P, f) ∈ E(A⋄svB) if and only if e ∈ E(A) and f ∈ E(B), for some P ⊆ A×B.

(ii) E(A ⋄sv B) ∼= E(A) ⋄sv E(B).
(iii) (a, P, b) ∈ Reg(A ⋄sv B) if and only if a ∈ RegA and b ∈ RegB, for some

P ⊆ A×B.

(iv) Reg(A ⋄sv B) ∼= RegA ⋄sv RegB.

Proof. In the proof, we first note that conditions (i) and (ii) are immediate consequences
of Lemma 2.1 and Theorem 2.2.

The proof of (iii) can be done as follows: For an element (a, P, b) in Reg(A ⋄sv B),
there exists (a1, P1, b1) ∈ A ⋄sv B such that (a, P, b)(a1, P1, b1)(a,P, b) = (a,P, b). Then,
by applying the equality in (1.2), we get

bb1b = b and a((a1)θb)((a)θbb1) = a.

Meanwhile, since bb1b = b we have b ∈ RegB. Now let us consider a((a1)θb)((a)θbb1) = a

and let us take (a((a1)θb)((a)θbb1))θb = (a)θb. This actually gives us

((a)θb)((a1)θb2)((a)θbb1b) = (a)θb.

Again, by using bb1b = b, we obtain ((a)θb)((a1)θb2)((a)θb) = (a)θb. Thus we have
(a((a1)θb)a)θb = (a)θb. Hence a ∈ RegA.

Conversely, for b ∈ RegB and a ∈ RegA, there exist b1 ∈ B and a1 ∈ A such that
bb1b = b and aa1a = a. Hence

(a, ∅, b)((a1)θb1 , ∅, b1)(a, ∅, b) = (a(((a1)θb1)θb)((a)θbb1), ∅, bb1b)

= (a((a1a)θb1)θb, ∅, bb1b)

= (a((a1a)θbb1), ∅, bb1b)

= (aa1a, ∅, bb1b) (by Lemma 2.1(ii))

= (a, ∅, b).

Finally, condition (iv) is quite obvious. �

Following on from this paper, some other algebraic properties (e.g., orthodox and
periodicity) can be studied for the semidirect product version of the Schützenberger
product of any two monoids (semigroups) as a future project.
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