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Abstract

In this paper, a data constrained generalized maximum entropy (GME)
estimator for the general linear measurement error model is proposed.
GME estimation, as developed by (A. Golan, G. Judge and D. Miller A
Maximum Entropy Econometrics: Robust Estimation with limited data

(Wiley, New York, 1996)), was formulated as a convex mixed-integer
nonlinear optimization problem. Shannon entropy measures and its
generalization, namely ‘entropy of order r’ by Tsallis and Rényi are
briefly discussed. A Monte Carlo comparison is made with the classical
maximum likelihood estimation (MLE) method. The results show that,
with moderate sample size; the GME outperforms the MLE estimators
in terms of mean squared error.
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1. Introduction

The traditional maximum entropy formulation is based on the entropy-information
measure of Shannon [27] to reflect the uncertainty about the occurrence of a collection of
events. It is developed and described in Jaynes [18, 19] and used to recover the unknown
probability distribution of underdetermined problems. Suppose we have a set of events
{x1, x2, . . . , xK} whose probabilities of occurrence are p1, p2, . . . , pK . Then using an
axiomatic method to define a unique function to measure the uncertainty of a collection
of events, Shannon [27] defines the entropy of the distribution (discrete events), as the

average of self-information H(P ) = −
∑K

i=1
pi ln(pi), where 0 ln(0) = 0. Thereafter,

many entropy measures have been proposed as a generalization of Shannon’s entropy,
the most well known generalizations are Rényi’s entropy measure and the Tsallis entropy
measure, which were later known as entropy measures of order r.

Since the 1990’s many attempts have been made to apply the method of maximum
entropy in the area of linear models. In 1996, Golan et al. [14] proposed an estimator
based on the maximum entropy formalism of Jaynes that they called the generalized
maximum entropy (GME) estimator, by using a dual objective function. The logic of
using the GME estimation method is that GME tends to dominate traditional estimation
methods with small samples, it does not rely on any distributional assumption, also it is
robust in fitting nonlinear models (Golan, [13]; Peeter, [23]); and it is also robust in case of
strong collinearity of the independent variables (Paris, [22]; Ciavolino and Al-Nasser, [8]).
The idea underlying the GME approach is to view each unknown parameter, and error
term as an expected value of some proper probability distribution; then by maximizing
the joint entropies subject to the data, represented by each unobserved value, and the
requirement for proper probability distributions; better estimates can be achieved with
less assumptions (Csiszar [10], Donho et al. [12], Golan, et al. [15], Al-Nasser [4], Al-
Nasser [3], Golan [13], Caputo and Paris [5]; Ciavolino and Al-Nasser [8], Ciavolino and
Dahlgaard [9], Al-Nasser [1]).

The remainder of this paper is divided into five sections. Section 2 presents the
Ultrastructural Model. Section 3 presents the entropy measures and their generalizations.
In Section 4 a generalized maximum entropy estimation approach idea is introduced to
the ultrastructural model, Section 5 presents Monte Carlo evidence on the numerical
performance of GME and maximum likelihood estimation (MLE), and the last section
presents some concluding comments.

2. The ultrastructural ME model

Consider the simple linear relationship between two mathematical variables ξ and η

η = α+ βξ,

where α is the intercept and β is the slope. The classical theory of regression analysis as-
sumes that these variables are measured without error; particularly in the social sciences
and natural science this assumption is often violated. Hence, this linear relationship is
reformulated such that both variables are contaminated with measurement errors. Then
the observed values can be defined by:

(1)
xi = ξi + δi,

yi = ηi + εi, i = 1, 2, . . . , n

where δ and ε are the measurement errors associated with ξ and η, respectively. It
is assumed that δ1, δ2, . . . , δn are identically and independently distributed (i.i.d) with
mean 0 and variance σ2

δ . Similarly, ε1, ε2, . . . , εn are i.i.d with mean 0 and variance σ2
ε .
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Further, suppose that the true values of the variable (ξ) have possibly different means;
say µ1, µ2, . . . , µn, so that we can write

(2) ξi = µi + ωi, i = 1, 2, . . . , n,

where ω1, ω2, . . . , ωn are i.i.d with mean 0 and variance σ2
ω. Finally, assume that the dis-

tribution of (δ1, δ2, . . . , δn), (ε1, ε2, . . . , εn) and (ω1, ω2, . . . , ωn) are mutually independent
of each other. This provides the specification of the ultrastructural model.

This model can be reduced to the functional measurement error model if we assume
that the ξi are fixed; i.e. ωi = 0, i = 1, 2, ...n. Also it can be reduced to the structural
measurement model if we assume µi = µj , ∀i, j = 1, 2, . . . , n. On the other hand, if
δi = 0, i = 1, 2, ...n , then the ultrastructural model reduces to the classical regression
model with no measurement error; for more details see, Dolby (1976) and Cheng and
Van Ness (1999).

Assuming Normal measurement errors, then the MLE for the parameters of the ul-
trastructural model are unidentifiable, Srivastava and Shalabh [26]. Hence, to solve the
ultrastructural model (1-2), the MLE method required additional assumptions; Dolby

[11] derived the MLE estimates when the ratios λ =
σ2

ε

σ2

δ

, and ν =
σ2

ω

σ2

δ

are known. Then,

under the customary assumptions the MLE for the ultrastructural model results in a

quintic equation for β̂;

h(β̂) = νSxxβ̂
5 + (3νλSxx − νSyy) β̂

3 − 2λ (ν − 1)Sxyβ̂
2

+
{
2λ2 (ν + 1)Sxx − λ (ν + 2) Sxx

}
β̂ − 2λ2 (ν + 1)Sxy = 0

This generally should be solved by iterative numerical methods. However, Gleser [16]
showed that the likelihood is maximized on the σ2

ω = 0 boundary of the parameter set.
Thus, the ML estimates for the ultrastructural model are just the ML estimates of the
functional model; which leads to

β̂ =
(Syy − λSxx) + ((Syy − λSxx)

2 + 4λSxy)
1/2

2Sxy
.

The ML solution of the other parameters will be:

α̂ = ȳ − β̂x̄, µ̂i =
λxi + β̂(yi − α̂)

λ+ β̂2
,

where Sxx =
∑n

i=1
(xi − x̄)2/n, Syy =

∑n
i=1

(yi − ȳ)2/n, Sxy =
∑n

i=1
(xi − x̄)(yi − ȳ)/n,

x̄ =
∑n

i=1
xi/n and ȳ =

∑n
i=1

yi/n.

For more details see Cheng and Van Ness [7], Carroll et al. [6].

3. Entropy measures and higher order entropies

For a random vectorX = {x1, . . . , xK} with probability distribution p = {p1, . . . , pK},

such that
∑K

i=1
pi = 1; then any entropy measure function H should satisfy the following

requirements (Kapur, [21]):

(1) It should be a function of p1, p2, . . . , pK ; i.e., H = HK(p) = HK (p1, p2, . . . , pK).
(2) The entropy measure function should be a continuous function of p1, p2, . . . , pK .
(3) H should be a symmetric function of its arguments.
(4) It should not change if an impossible outcome is added to the probability scheme

i.e.

HK+1 (p1, p2, . . . , pK , 0) = HK (p1, p2, . . . , pK) .

(5) HK (p1, p2, . . . , pK) = 0 when pi = 1, pj = 0, j 6= i, i = 1, 2, ..., K.
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(6) HK has a maximum value when all probabilities are uniform; p1 = p2 = · · · =
pK = 1

K
.

(7) The maximum value of HK should increase as K increases.

3.1. Shannon Entropy. Shannon [27] defines the entropy of the distribution (discrete
events) X = {x1, . . . , xK} with corresponding probabilities p = {p1, . . . , pK} as

(3) H(p) = −

K∑

i=1

pi ln(pi),

where 0 ln 0 = 0. The quantity (− ln(pi)) is called the amount of self information of the

event xi. More than thirty measures of entropy have been introduced in the literature
on Information Theory generalizing Shannon’s entropy (Taneeja, [28]). Thus the idea
of generalized entropies started with Rényi [25] who characterized a scalar parametric
entropy as entropy of order r, which includes Shannon’s entropy as a limiting case. Later
on Tsallis [29] proposed another generalization to distinguish a non extensive system
from an extensive system.

3.2. Rényi Entropy. Rényi [25] defines a higher order entropy, or the so called entropy

of order r, as

(4) HR
r (p) =

1

1− r
ln
∑

k

prk

It is an important measure function in ecology and statistics as indices of diversity.
This entropy function satisfies additional properties that are used for an information
theoretical proof of the Central Limit Theorem:

(1) HR
r (p) is concave in P for r ∈ [0, 1], but concavity breaks down for r > 1.

(2) HR
r (p) is decreasing in r and is additive/extensive for all r.

Later, Kapur [21] proposed a generalized Rényi’s measure further to give a measure of
entropy of order r and type s.

Hr,s (p) =
1

1− r
ln

∑n
i=1

pr+s−1

i∑n
i=1

psi
, r 6= 1, s > 0, r + s− 1 > 0.

This reduces to Rényi’s measure when s = 1, and to Shannon’s measure when s = 1,
r → 1.

3.3. Tsallis Entropy. Tsallis [29] used the r-parameter to distinguish a non extensive
system from an extensive system, and defines entropy of order r as

HT
r (p) =

∑
k p

r
k − 1

1− r
, r > 0, r 6= 1.

Note that HT
r (p) is concave in p for r > 1, and in this case the system is called a

non extensive system or a non-classical system. A similar non additive entropy measure
proposed by Havrada and Charvat [17] obtained the first non-additive measure of entropy:

Hr(p) =

∑n
i=1

pri
21−r − 1

, r 6= 1, r > 0.

It should be noted that Tsallis’ entropy is simply related to Rényi’s [25] entropy; in the
two cases, Shannon’s entropy is obtained in the limit case as r → 1.
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3.4. Comparisons of Entropy Measures. To demonstrate the benefit of using the
GME estimation method with different entropy measures, consider the dice problem
introduced by Jaynes [20].

Suppose we have a six-sided die that can take on the values k = 1, 2, 3, . . . , 6, with
unknown probabilities p = (p1, p2, . . . , p6)

′ such that the six probabilities must sum to 1.
Also, suppose we have an additional piece of information µ at the beginning. The problem
is clearly ill-posed or underdetermined because there are six unknown probabilities, but
we only have two pieces of information.

For instance, suppose we expect the die to be roughly ‘fair’, and the observed average
matches the mean of the discrete uniform distribution, µ = 3.5. Then, many would
assert that the underlying distribution is discrete uniform because the sample information
matches our prior beliefs. However, if µ 6= 3.5, the sample information suggests that the
underlying distribution is not likely to be uniform. Then the GME is used to solve this
problem by maximizing H(p) subject to;

∑
6

k=1
pk = 1, and

∑
6

k=1
kpk = µ.

The lagrangian function for this problem is

L = H (p) + λ

(
µ−

6∑

k=1

kpk

)
+ γ

(
1−

6∑

k=1

pk

)
,

where λ and γ are Lagrangian multipliers. Then by solving the first-order conditions,
the GME probability distribution places the weights

p̂k =
exp

(
−kλ̂

)

∑
6

k=1
exp

(
−kλ̂

) ,

p̂k =

[(
kλ̂+ γ̂

)∑6

k=1
(p̂k)

α
] 1

α−1

∑
6

k=1

[(
kλ̂ + γ̂

)∑
6

k=1
(p̂k)

α
] 1

α−1

, and

p̂k =

[(
kλ̂+ γ̂

)] 1

α−1

∑
6

k=1

[(
kλ̂ + γ̂

)] 1

α−1

based on Shannon, Réyni and Tsallis; respectively.

The optimal solution of Jayne’s dice problem can be obtained by using a numerical
optimization package, the estimated maximum entropy distributions, for various values
µ = 2, 3.5, 4, are given in (Table 1 – Table 3):

Table 1. Optimal distribution of Jayen’s dice problem when µ = 2

P1 P2 P3 P4 P5 P6 H(p)

Shannon 0.477 0.255 0.137 0.073 0.038 0.020 1.37

Tsallis r = 0.20 0.560 0.180 0.099 0.066 0.049 0.046 3.62

r = 0.50 0.530 0.205 0.114 0.069 0.047 0.034 2.37

r = 0.80 0.499 0.236 0.126 0.071 0.041 0.027 1.66

Rényi r = 0.20 0.554 0.185 0.102 0.067 0.052 0.040 4.87

r = 0.50 0.525 0.212 0.114 0.068 0.048 0.033 4.37

r = 0.80 0.502 0.232 0.126 0.069 0.043 0.027 6.66
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Table 2. Optimal distribution of Jayen’s dice problem when µ = 3.5

P1 P2 P3 P4 P5 P6 H(p)

Shannon 0.167 0.167 0.166 0.166 0.166 0.168 1.79

Tsallis r = 0.20 0.167 0.167 0.167 0.166 0.167 0.166 3.99

r = 0.50 0.167 0.167 0.166 0.166 0.167 0.167 2.90

r = 0.80 0.166 0.166 0.168 0.167 0.166 0.166 2.15

Rényi r = 0.20 0.167 0.166 0.166 0.167 0.167 0.167 5.24

r = 0.50 0.167 0.166 0.166 0.167 0.167 0.167 4.90

r = 0.80 0.167 0.167 0.167 0.166 0.166 0.167 7.15

Table 3. Optimal distribution of Jayen’s dice problem when µ = 4.0

P1 P2 P3 P4 P5 P6 H(p)

Shannon 0.104 0.122 0.146 0.174 0.208 0.246 1.75

Tsallis r = 0.20 0.108 0.123 0.142 0.169 0.202 0.256 3.95

r = 0.50 0.106 0.123 0.143 0.172 0.203 0.252 2.85

r = 0.80 0.104 0.123 0.145 0.173 0.206 0.249 2.11

Rényi r = 0.20 0.108 0.125 0.140 0.166 0.205 0.255 5.20

r = 0.50 0.107 0.124 0.142 0.169 0.206 0.252 4.85

r = 0.80 0.105 0.121 0.148 0.173 0.204 0.250 7.11

Comparing the result for different entropy measures, it could be noted that Shannon’s
entropy measure produces the smallest values of the entropy function H(p) for all cases.
However, all entropy measures give almost the same results with fair dice when the first
moment is known, and are equivalent to the theoretical case.

4. Generalized maximum entropy

To illustrate the GME estimation approach, consider the general linear model: Yi =
f(Xi, β) + εi, i = 1, 2, . . . n, where the Yi ’s are responses, f is a known function of
the unknown parameter vector β = (β1, β2, . . . , βK)′ and the covariate vector Xi =
(xi1, xi2, . . . , xiK)′ , i = 1, 2, . . . , n whose values are assumed to be known, and εi, i =
1, 2, . . . , n are random errors.

In GME, the model is fitted after some reformulation of the unknown parameters β,
and the unknown error terms ǫi, i = 1, 2, 3, . . . , n, if they are not in probability format.
This can be done by reparameterizing their possible outcome values probabilistically as a
convex combination of random variables. This combination is presented as the expected
value of some proper probability distribution. For each unknown, assume that there exists
a discrete probability distribution that is defined over the parameter space [0, 1]; by a set
of equally distanced discrete points; then the formulation of the model parameters will
be of the form β = ZP ; where Z is a (K ×KR) matrix and P is a KR-vector of weights
such that pk > 0 and P ′

k1R = 1 for each k. Simply, each βk, k = 1, 2, . . . ,K can be
defined by a set of equally distanced discrete points Z′

k = [zk1, zk2, zk3, . . . , zkR], where
R ≥ 2 with corresponding probabilities P ′

k = [pk1, pk2, pk3, . . . , pkR] ∈ [0, 1]. That is,

βk =
R∑

r=1

zkrpkr,
R∑

r=1

pkr = 1, 0 ≤ pkr ≤ 1, k = 1, 2, . . . ,K.
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The support points Z for β are known. Golan et al. [14] suggested that these values can
be specified uniformly symmetric around 0 with large values of the lower and the upper
bounds. For example, one can select the support point z = (−c, 0, c), given that c is a
large value (i.e. c = 100 or 1000, . . ., etc). Moreover, assuming one specifies Z to span
the true values of β, then the GME is a consistent estimator, which is an advantage of
the GME estimation method.

The disturbance ǫi can be treated in a similar fashion. For a set of T ≥ 2 support
points ǫi assumed to be bounded between two finite values vt, vT , which are symmetric
around zero and with corresponding unknown probability weights w1t, wnT . That is,
each error term may be modeled as; ε = VW , where V is a (n× nT ) matrix and W is
a nT -dimensional vector of weights; that is to say:

εi =

T∑

j=1

vijwij ,

T∑

j=1

wij = 1, 0 ≤ wij ≤ 1, i = 1, 2, . . . , n.

Placing bounds for vj is difficult in practice. Alternatively, Chebychev’s inequality (see,
Pukelsheim [24]) may be used as a conservative means of specifying sets of error bounds.
The empirical GME literature indicates that, in general, the number of support values
R for unknown parameters is 5, and the number of support values T of the error term is
3; see for example Paris [22], Al-Nasser [2], Al-Nasser [1], and Golan [13].

Now, using the reparameterized unknowns β = ZP and ε = VW , we rewrite the
general linear model as follows:

y = f(x, ZP ) + VW

Then the maximum entropy principle may be stated in terms of scalar summations with
two nonnegative probability components, and the GME estimators can be achieved by
solving the following non-linear programming problem:

(5)

Maximize H(P,W )

subject to the following constraints;

(i) y = f(x,ZP ) + VW,

(ii) 1K =
(
IK ⊗ 1′R

)
P,

(iii) 1n =
(
In ⊗ 1′J

)
W,

where H(P,W ) could be any of the entropy measure functions. Note that ⊗ is the
Kronecker product, 1K is a K-dimensional vector of ones. The GME system in (5) is a
non-linear programming system and can be solved by applying the lagrangian method,
in which after finding the lagrangian function, one solves the first order conditions. For
more details see Golan et al. [14].

4.1. GME procedure applied to the ultrastructural model. Without loss of gen-
erality, assume that the ξi are fixed; i.e. ωi = 0, i = 1, 2, . . . , n. The compound model
of the Ultrastructural model given in (1-2) can be rewritten as follows:

(6) yi = α+ β (xi − δi) + εi, i = 1, 2, . . . , n.

Then by using the GME we can solve the problem after some reformulation of the un-
known parameters α and β, and the unknown error terms δi, and ǫi, i = 1, 2, 3, . . . , n. In
the compound model (6), there are two unknown parameters which are reparametrized
as

α = AQ; where 1′RQ = 1,
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where A is a row vector of size R and Q a R-dimensional column vector of weights. The
slope will be in the form

β = ZP ; where 1′KP = 1,

where Z is a row vector of size K and P is a K-dimensional column vector of weights.
Also, there are two error terms that are reparametrized in the following terms

δ = V
∗W ∗ where (In ⊗ 1′T )W

∗ = 1n,

ε = VW; where (In ⊗ 1′J )W = 1n.

Noting that, V∗ and V are (n× nT ) and (n× nJ) matrices, respectively; and W∗ and
W are a nT -dimensional and nJ-dimensional vectors of weights; respectively. Based on
these reparametrizations, the new ultrastructural model can be rewritten as

Y = AQ+X (ZP − V ∗W ∗) + VW

4.2. GME solution: Shannon’s entropy based solution. Generalized Maximum
Entropy (GME) for the model given in (6) may be formulated as a nonlinear programming
(NP) system. The NP selects q, p, w∗ and w ≥ 0 to maximize the joint Shannon entropy:

H(Q,P,W,W ∗) = −Q′ ln(Q)− P ′ ln(P )−W ′ ln(W )−W ∗′ ln(W ∗)

Subject to

Y = AQ+X (ZP − V ∗W ∗) + VW,

1′RQ = 1,

1′KP = 1,
(
In ⊗ 1′T

)
W ∗ = 1n,

(
In ⊗ 1′J

)
W = 1n.

Here, we have 3n+ 2 constraints and R+K + n(T + J) unknowns. The solution of this
system can be found by deriving the first order conditions of the Lagrangian function:

L = H(Q,P,W,W ∗) + γ′[Y − AQ−X(ZP − V ∗W ∗)− VW ] + θ′1[1− 1′RQ]

+ θ′2[1− 1′KP ] + ψ′[(In ⊗ 1′T )W
∗ + ζ′[(In ⊗ 1′J )W,

where, γ′ ∈ R
n, θ1 ∈ R

R, θ2 ∈ R
K , ψ ∈ R

n, and ζ ∈ R
n are the associated vectors

of Lagrangian multipliers. Taking the gradient of L to derive the first order condition,
and solving these conditions, the GME solution selects the most uniform distribution
consistent with the information provided in the data and the add up constraints:

Q̂ = exp(−A 1′nγ̂)
⊙{

1′R exp(−A 1′nγ̂)
}
−1
,

P̂ = exp(−Z 1′nγ̂(X − V ∗Ŵ ∗))
⊙
1′K

{
exp(−Z 1′nγ̂(X − V ∗Ŵ ∗))

}
−1

,

Ŵ = exp(−V ′γ̂)
⊙{

(In ⊗ 1J1
′

J ) exp(−V
′γ̂)
}
−1
,

Ŵ ∗ = exp(−V ∗′γ̂1′KZP̂ )
⊙{

(In ⊗ 1T 1
′

T ) exp(−V
∗′γ̂1′KZP̂ )

}
−1

.
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Here,
⊙

is the Hadamard (element wise) product. To simplify matters; the individual
probabilities take the forms:

q̂r =
exp

(
−ar

∑n
i=1

γ̂i
)

∑R
r=1

exp
(
−ar

∑n
i=1

γ̂i
) , r = 1, 2, ..., R;

p̂k =
exp

(
−zk

∑n
i=1

γ̂i
(
xi −

∑T
t=1

v∗t ŵ
∗

it

))

∑K
k=1

exp
(
−zk

∑n
i=1

γ̂i
(
xi −

∑T
t=1

v∗t ŵ
∗

it

)) , k = 1, 2, 3, . . . ,K;

ŵij =
exp(−γ̂ivj)∑J
j=1

exp(−γ̂ivj)
, i = 1, 2, 3, . . . , n, j = 1, 2, 3, . . . , J ;

ŵ∗

it =
exp

(
−γ̂iv

∗

t

∑K
k=1

zkp̂k
)

∑T
t=1

exp
(
−γ̂iv∗t

∑K
k=1

zkp̂k
) , i = 1, 2, 3, . . . , n, t = 1, 2, 3, . . . , T.

Then the intercept and slope of the model (6) can be estimated as

(7)
α̂ = AQ̂,

β̂ = ZP̂ .

4.1. Lemma. The GME estimators given in (7) are unbiased estimators.

Proof. Simply by taking the expected value of α̂, we have:

E
(
α̂
)
= E

(∑

r

ar p̂r
)
= E(a)

∑

r

p̂r.

Since
∑

r p̂r = 1, then

E(a) =
∑

r

arpr = α.

Therefore, α̂ is an unbiased estimator of the intercept. Consequently, the estimated
variance of α̂ is:

Var (α̂) = Var

(
∑

r

ar
∧

pr

)

=

R∑

r=1

p̂2rvar(ar)

=
∑

p̂2r

[(∑
a2rp̂r

)
−
(∑

arp̂r
)2]

=
∑

p̂2r

[(
∑

a2r
exp (−γ̂rar)∑R
r=1

exp (−γ̂rar)

)
−

(
∑

ar
exp (−γ̂rar)∑R
r=1

exp (−γ̂rar)

)2]
.

In a similar way we can prove that β̂ is an unbiased estimator of the slope; and conse-
quently we can derive the associated variance. Also, similarly we can derive the estimators
based on the other entropy measures. �

5. Monte Carlo experiments for the sensitivity analysis

Monte Carlo experiments were performed to comment on the choice of the support
points and number of support points of the unknown parameters and error terms in the
GME formulations. For fixed sample size, n = 20, a simulation study was carried out
by generating 1000 samples according to the ultrastructural relationship yi = 1+ xi + εi
and xi =

2+i
2

+ δi, i = 1, 2, . . . , n. The error terms were generated independently from
the standard normal, i.e., ε ∼ N(0, 1) and δ ∼ N(0, 1). Then a comparison between the
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GME and MLE estimation methods was made in terms of bias and Mean Squared Error
(MSE):

MSE(β̂) =
1

1000

1000∑

i=1

(
β̂i − β

)2
,

and

Bias(β̂) =
1

1000

1000∑

i=1

(
β̂i − β

)
.

Three experiments were conducted:

Experiment 1. The support parameter space of the error terms, V∗ and V were fixed to
be three in the intervals [−3Sx, 0, 3Sx] and [−3Sy , 0, 3Sy ] for δ and ε; respectively. Then,
this experiment was conducted for selecting the support values (a, z) and the number (R,
K) of support values for the unknown parameters α = AQ and β = ZP ; i.e.,

{ai, i = 1, 2, . . . , R}; {zj , j = 1, 2, . . . , K}.

In the first part of this experiment, we fixed the number of these support values to be 3
in the intervals [-1, 0, 1] to [-500, 0, 500]. The results of this simulation study shown in
Table 4 indicate that the best support values for both parameters should be in the interval
[-100, 0, 100]. Hereafter, in the second part of this experiment, we start to increase the
number of support values within this interval so as to have 4, 5, 6 or 7 support points,
and allocate them in an equidistant fashion. The results in Table 4 indicate that the
greatest improvement in precision comes when R and K are equal to 7. Moreover, it
could be noted that for all choices of the parameter spaces the GME results were more
accurate and more efficient than the MLE results.

Table 4. Selecting the parameters supports

Method α̂ β̂

Bias MSE Bias MSE

MLE -0.1465 0.6190 -0.0903 0.0549

[−1, 0, 1] -0.0906 0.0824 -0.0546 0.0323

[−10, 0, 10] -0.0765 0.0599 -0.0445 0.0296

[−100, 0, 100] -0.0579 0.0386 -0.0471 0.0311

[-500,0,500] -0.0647 0.0465 -0.0450 0.0294

Shannon Increasing number of support points

[−100,−50, 50, 100] -0.0608 0.0405 -0.0464 0.0308

[−100,−50, 0, 50, 100] -0.0744 0.0582 -0.0443 0.0291

[−100,−50,−25, 25, 50, 100] -0.0588 0.0393 -0.0466 0.0307

[−100,−50,−25, 0, 25, 50, 100] -0.0544 0.0354 -0.0436 0.0278

Experiment 2. To check the impact of the error terms support space, and based on the
experimental design outlines above, the Monte Carlo trial were repeated under the results
of Experiment 1. The number of support values for each of the parameters A and Z;
were fixed to be 7 support values within the interval [-100, 0, 100]. Also, this experiment
started by fixing the number of support values (J, T ) to be 3, then the experiment was
repeated by shifting the support values V∗ and V in the interval [hS, 0, hS], where
h = 1, 2, . . . , 7. Under the simulation assumptions, the results in Table 5 indicate that
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the greatest improvement in the precision comes from using h = 3. In a similar way to
Experiment 1, the simulation was repeated by increasing the number of support points in
the interval [-3S, 0, 3S] for each error term. Taking into consideration both parameters,
the greatest improvement comes when the number of support points is equal to 3.

Table 5. Selecting the error terms support

Method α̂ β̂

Bias MSE Bias MSE

MLE -0.1465 0.6190 -0.0903 0.0549

[−S, 0, S] -0.0540 0.0361 -0.0445 0.0282

[−2S, 0, 2S] -0.0534 0.0337 -0.0437 0.0279

[−3S, 0, 3S] -0.0544 0.0354 -0.0436 0.0278

[−4S, 0, 4S] -0.0557 0.0384 -0.0470 0.0311

[−5S, 0, 5S] -0.0714 0.0541 -0.0449 0.0296

Shannon Increasing the number of support points

[−3S,−1.5S, 1.5S, 3S] -0.0819 0.0672 -0.0397 0.0254

[−3S,−1.5S, 0, 1.5S, 3S] -0.0771 0.0633 -0.0405 0.0260

[−3S,−1.5S,−0.75S, 0.75S, 1.5S, 3S] -0.0603 0.0432 -0.0426 0.0266

[−3S,−1.5S,−0.75S, 0, 0.75S, 1.5S, 3S] -0.0644 0.0467 -0.0366 0.0219

Experiment 3. Based on the results of the previous experiments, which were related
to the choice of parameter supports, this experiment starts to increase the sample size;
n = 20, 30, 40, 50 and 100. For the higher entropy the order value r = 0.5 was used. The
simulation results in Table 6 show that the GME estimators have a lower MSE and lower
bias for all sample sizes for all entropy measures.

Table 6. Comparisons between GME and MLE

n Method Measure function α̂ β̂

Bias MSE Bias MSE

20 GME Shannon -0.0544 0.0354 -0.0436 0.0278

Tsallis 0.0557 0.0487 -0.065 0.0431

Rényi 0.0546 0.0492 -0.066 0.0431

MLE -0.1465 0.6190 -0.0903 0.0549

30 GME Shannon -0.0488 0.0313 -0.0449 0.0284

Tsallis -0.0496 0.0364 -0.0488 0.0361

Rényi -0.0539 0.0369 -0.0497 0.0395

MLE -0.1303 0.6721 -0.0896 0.0501

40 GME Shannon -0.0396 0.0218 -0.0398 0.0240

Tsallis -0.0475 0.0298 -0.0495 0.0267

Rényi -0.0487 0.0302 -0.0518 0.0325

MLE -0.0769 0.4213 -0.0798 0.0481

Table 6. (Continued)
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n Method Measure function α̂ β̂

Bias MSE Bias MSE

50 GME Shannon -0.0411 0.0211 -0.0382 0.0239

Tsallis -0.0426 0.0304 -0.0471 0.0282

Rényi -0.0439 0.0309 -0.0473 0.0292

MLE -0.0818 0.4186 -0.0764 0.0397

100 GME Shannon -0.0375 0.0191 -0.0394 0.0234

Tsallis 0.0391 0.0208 0.0484 0.0241

Rényi 0.0505 0.0219 0.0484 0.0242

MLE -0.0734 0.3381 -0.0789 0.0268

6. Concluding remarks

The maximum entropy estimator introduced in this study applies the definition of
Shannon’s entropy; or its generalization; of discrete random variables. This study gives
the researcher a more precise method for estimating the parameters of the ultrastructural
model by applying the GME estimation approach based on Shannon entropy or any of its
generalizations. The main idea of using GME is to improve the parameter estimation in
the generalized measurement error models and to reduce the additional assumptions that
are needed in the traditional MLE. In fact, all what the GME needs to be applicable
can be obtained from the sample or can be specified by the researchers experiences.
The Monte Carlo simulations provides good evidence for the superiority of the GME
based Shannon entropy, as well as the other entropies; Tsallis and Rényi, on the MLE in
terms of MSE. Hence, the GME can be considered a good alternative in estimating the
ultrastructural models.

Due to lack of space, Tables 4 and 5 give only the results for Shannon entropy. The
author will be happy to send interested readers tables giving the results for Tsallis and
Rényi entropy by e-mail.
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