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Abstract

In this paper we establish new inequalities of Ostrowski type, for func-
tions whose derivatives in absolute value are m-convex. We also give
some applications to special means of positive real numbers. Finally,
we obtain some error estimates for the midpoint formula.
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1. Introduction

Let f: I C [0,00) — R be a differentiable mapping on I°, the interior of the interval
I, such that f’ € L([a,b]) where a,b € I with a <b. If |f' (z)] < M, then the following
inequality holds (see [2]):

- [ s

This inequality is well known in the literature as the Ostrowski inequality. For some
results which generalize, improve, and extend the above inequality, see [2, 5, 6, 8, 10],
and references therein.

M {(x—a)Q;(b—x)Z

<
“b—a

In [14], G. Toader defined m-convexity, an intermediate between usual convexity and
the starshaped property, as the following:
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1.1. Definition. The function f : [0,0] — R, b > 0, is said to be m-conver, where
m € [0, 1], if we have

[z +m(1—t)y) <tf(z)+m(l—1)f(y)
for all z,y € [0,b] and ¢t € [0, 1].
Denote by K, (b) the set of m-convex functions on [0, b] for which f(0) < 0.

1.2. Definition. The function f : [0,b] — R, b > 0, is said to be starshaped if for every
x € [0,b] and ¢ € [0, 1] we have:

fte) < tf(x).

For m = 1, we recapture the concept of convex functions defined on [0, b], and for
m = 0 the concept of starshaped functions on [0, b].

The following theorem contains the Hermite-Hadamard integral inequality (see [7]).

1.3. Theorem. Let f : I C R — R be an M-Lipschitzian mapping on I, and a,b € I
with a < b. Then we have the inequality:

(1.1) ‘f(a;rb> - bia/abf(x)dx

In [13], E. Set, M. E. Ozdemir and M.Z. Sarikaya established the following theorem.

(b—a)
<M==

1.4. Theorem. Let f : I° C [0,0"] — R, b* > 0, be a differentiable mapping on I°,
a,b € I° with a < b. If |f'|? is m-convezx on [a,b], ¢ > 1 and m € (0,1], then the
following inequality holds:

w2 [r(4) -5k [ f@ad] <0-0 (318(;) )(If’(a)l st (2)]).

where % < b*. O

In [11], U. Kirmaci proved the following theorem.

1.5. Theorem. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° with
a < b. If the mapping |f'| is convezr on [a,b], then we have

(1.3) ‘f(a;rb> - bia/abf(x)dx

S.S. Dragomir and G. Toader proved the following Hermite-Hadamard type inequality
for m-convex functions, see [9, p.7].

ay f(l’)dx<min{f(a)+;1f(m)7f(b)+;nf(%)}'

Some generalizations of this result can be found in [4].

b—a
8

< (If' @]+ [ ®])- O
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In [3], M. K. Bakula, M. E. Ozdemir and J. Peéari¢ proved the following theorems.

1.6. Theorem. Let I be an open real interval such that [0,00) C I. Let f : I — R be
a differentiable function on I such that f' € L([a,b]), where 0 < a < b < oco. If |f'|? is
m-convez on [a,b] for some fized m € (0,1] and g € [1,0), then

‘fW);f b_a/)f ) da (uf+u§>7

o {|f’(a>|‘1+m\f’(‘;—;”>\" |72+ m | f ()] }
M1 = min )

S

where

2 ’ 2

O

i O FED] ]+ m PG
f2 = min , .
2 2
1.7. Theorem. Let I be an open real interval such that [0,00) C I. Let f : I — R be

a differentiable function on I such that f' € L([a,b]), where 0 < a < b < oo. If |f'|? is
m-convez on [a,b] for some fized m € (0,1] and g € [1,0), then

(42) -

. < T min ('f/(a”q*mlf’(%)Iq)é’(mlf'(%>lq+|f'<b>lq)é . O

x)dx

- 2 2

The main purpose of this paper is to establish new Ostrowski type inequalities for
functions whose derivatives in absolute value are m-convex. Using these results we give
some applications to special means of positive real numbers, and obtain some error esti-
mates for the midpoint formula.

2. The results

In [1], in order to prove some inequalities related to the Ostrowski inequality, M. Alo-
mari and M. Darus used essentially the following lemma, in which however the constant
(b — a) has been changed to (a — b) in the formulation of equality (2.1).

2.1. Lemma. Let f: I C R — R be a differentiable mapping on I°, where a,b € I with
a<b. If f' € L([a,b]), then the following equality holds:

21 fl=) -

b 1
bia/a flu) du = (a—b)/o p(t)f (ta+ (1 —t)b) dt
for each t € [0,1], where

t zfte[ = | >
t—1 Ute(

for all x € [a,b]. O

p(t) =

2.2. Theorem. Let I be an open real interval such that [0,00) C I. Let f: I — R be
a differentiable function on I such that f' € L([a,b]), where 0 < a < b < oo. If |f'] is
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m-convez on [a,b] for some fized m € (0,1], then the following inequality holds:

- [ s

<e-amn{[t-1(82) ()| Ir@

(22) ey () -3 (82) 1 (=) Il
(=) 1 () el
st () -1 () 1 (2) ] 1 @)

for each x € [a,b].

Proof. By Lemma 2.1, we have

- [t

<(b-a) /Ob:” t]f (ta+ (1—)b)| dt

1

+(b-a) [)72(1 —t)|f (ta+ (1 —t)b)| dt.

“b—a

Since | f'| is m-convex on [a, b] we know that for any ¢ € [0, 1],

()

b
|f'(ta+ (L=t)b)| = |f ta+m(1—t)m)

<t|f'(a)] +m(1 1)

Hence,

<(b—a)./ot{t|f'a | +m(1—t)

Gl

b—a/ 1—t{t‘f )| +m(1—t)

where we use the facts that
b—x

/ t|elf @]+ mti -
=1 (82) 1@l 3 (522) - 1 (52) 1 (),
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()]
=2 -a(e=) (=) @]+ m (=2 17 ().
-3(=) +3 (82 =

Analogously we obtain

and
1

/b;z (1—1t) { |/ (a)| +m(1—1)

b—a

and the proof is completed. O

2.3. Remark. Suppose that all the assumptions of Theorem 2.2 are satisfied. If we
choose x = “—er then we have

a+b

ne:

b—a . /
sTmm{wa)

which is the inequality (1.6) with ¢ = 1.

F)] ol el ()

2.4. Remark. Suppose that all the assumptions of Theorem 2.2 are satisfied. Then
a+b

(A) If we choose m =1 and z = , we obtain

f<a+b

which is the 1nequahty (1.3).
(B) If in addition we choose |f’ z)| <M, M >0 in (A), then:

f(a+b (b;a)

which is the mequahty (1.1).

(1 @]+ ®)])

<M

2.5. Theorem. Let I be an open real interval such that [0,00) C I. Let f: I — R be

a differentiable function on I such that f' € L([a,b]), where 0 < a < b < co. If |f’|ﬁ
is m-convex on [a,b] for some fized m € (0,1] and p > 1, % + % =1, then the following
inequality holds:

=T R

(23) X{bb__z { { P L|Hq

RS Fm{ el ()] e +mly m\}r

2

_Q
——

for each x € [a, b].
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Proof. From Lemma 2.1, and using the Holder inequality, we have

1
b—a

]ﬂm—

/ab flw)du

g(b—a)/oﬁt‘f’(ta—b-(l—t)b)‘ dt

1

+(b—a)ﬂ72(1—t)|f’(ta+(1—t)b)] dt

b—a

< (b—a)(/ozztpdt)%(/ozz I/ (ta+ (1 — £)b)]? dt)%

+(b—a)<ﬁz

b—a
p+1

)

b—=x

g(b—a)(b_a .

p+1

)'(

b—=zx
b—a

O +m|f ()] 1f @ +m|f (&)

“b—a

)%

2

X (min{
—|—(b—a)(§:s

(i {

p+1

)" () (

(@ +m[f GO @ +m|f ()]

i)

2

Tr—a

)%

1- t)Pdt) ’ ( /; |f (ta+ (1 — t)b)|" dt)s

2

[/ @) +m |/

@ @I +m]f(

2

b

m

X {(b—m)Q{min{

2

|q—|—m‘f’

' 2
@ @I +m|f )]

ryf

+(x—af{mm{LWW)

where we use the facts that
) p+1

b—=x
/qufaa+(1—ﬂmfdt
0

2

b—x

b—a
/ tP dt = <
0

and by (1.4) we get

o
p+1’

b—a
b—=x

/;(1—1:)1’&:(

IO +m|f )" 1f @) +m|f (5

’ 2

b—a

m

b—a
§min{

1
ﬁ;IU%m+%1—medt

2
b—a

Tr—a

'@l +m|f ()

' 2

),

a
m

L@+ m]f(

< min{

The proof is completed.

2

)

’ 2
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2.6. Corollary. Suppose that all the assumptions of Theorem 2.5 are satisfied. If we
choose |f'(z)| < M, M > 0, then we have

@) -2 [

() () e

2.7. Corollary. Suppose that all the assumptions of Theorem 2.5 are satisfied. If we
1

_ atb 1 1 \P
choose = %452 and 5 < (m) < 1, then we have

b _ 1 1
‘f(a;rb>—bia/a f(u) du SbT(ul +u2)7

where

o = { SO DT TRl T

2 ’ 5
Hz—min{|f( )|q+n;|f (5" 7 |f’(aT+b)|q~;m’f'(%)|q}. .

2.8. Remark. Corollary 2.7 is similar to the inequality (1.5), but for the left-hand side
of the Hermite-Hadamard inequality.

2.9. Theorem. Let I be an open real interval such that [0,00) C I. Let f: 1 — R be
a differentiable function on I such that f' € L([a,b]), where 0 < a < b < oo. If |f'|? is
m-convez on [a,b] for some fited m € (0,1] and q € [1,00), x € [a,b], then the following
inequality holds:

) - L [t
co-o(3) (20" V() e
(b —x)%(b — 3a + 2z) I

w2 ()T

. (z:(ij)?(lé) K% . (b—xé(éi%i;)b—%c)) i

(2.4) +m

for each x € [a, b].
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Proof. By Lemma 2.1, and using the well known power mean inequality, we have

-5 [t

b—=x

g(b—a)/o i t|f'(ta+ (1 —t)b)|dt

1

+(b—a) /Hu — )| (ta+ (1 — )] dt

b—a

b 1

< (b—a)(/oba tdt) 3(/Oba t’f’(ta—&—(l—t)b)’th) '

1
1

(1—t)\f’(ta+(1—t)b)\th>q
o0 3) (=) G=2) v
(b— :céiéb——a&;li-i-Qm) I (&)

() [ ) o

+mlma3
3\b—

+m

where we use the facts that

b*ir 2
/b tdt = (b_x) ,
0 b—a

b—=x

/bia t|f (ta+ (1 —t)b)|" dt
b—z\? / q b—xz)%(b—3a T
<3 (22) 1@ +ml=T 02t 20

b—a 6(b—a)? ’
! 1/(z—a\’
/Zm(l—t)dt_§<b_a) 7
and
1
/ (1=0)|f (ta+ (1 —t)b)|* dt
b—x
b—a
1 (b—2)*(3a—2x —b) 0 1 z—a\?|., [ b\
< |= - -
_{64— 6(b—a)3 }‘f "+ "3\b—a f m
The proof is completed. O

2.10. Remark. Suppose that all the assumptions of Theorem 2.9 are satisfied. If we

choose x = “—H’, we obtain
317% / 1|l.,(b
<t-o (2 ) (1F @ +mi 1 (2)]).

u) du

()
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which is the inequality (1.2).

3. Applications to special means

Let us recall the following means for two positive numbers.
(AM) The arithmetic mean

A:Amwy:“;ﬂa¢>u

(p-LM) The p-logarithmic mean

a ifa=»b
LP:LP(avb): +1 +1 1 ) a7b>07 peR\{—170}7
ppt+1l_gp .
[<p_+1><bfa)] Toifa#d
(IM) The identric mean
a ifa=1b
I =1I(a,b) = - ; a,b> 0.
(.0) é(%)““ if a#b

The following propositions hold:
3.1. Proposition. Let a,b € [0,00), and a < b, n > 2 with m € (0,1]. Then we have
|An(a7 b) - LZ(G,, b)|

b a . n—1 b nt n—1 a nt
< n—— .
n—g m1n{2A (a ,m<m> ), 2A ((b) ,m(m>
Proof. The proof follows by Remark 2.3 on choosing f : [0,00) — [0,00), f(z) = z",

n € Z, n > 2, which is m-convex on [0, c0). g

3.2. Proposition. Let a,b € [0,00), with a < b, and m € (0,1]. Then we have

I(a+1,b+1) b—a ( % L
1 < a a
] < 5 (o +od).
where
1 q + 2m q 2 q + m q
1 ) b1 m\ aForam aTbr2 m\ 35m
7y = min , ,
2 2
q q q q
1 . (a}kl) +m <a+l217+n2m> <a+i+2> +m (alnm)
1y = min 5 , 3

Proof. The proof follows by Corollary 2.7 on choosing f : [0,00) — (—00,0], f(z) =

—In(z 4 1), which is m-convex on [0, c0), p > 1. a

4. Applications to the midpoint formula for 1-convex functions
Let d be a division a = 20 < 1 < +*+ < Zn—1 < T, = b of the interval [a,b], and

consider the quadrature formula

(4.1) / f(@)de = M(f,d) + E(f,d),

where

n—1

M) = Y (i — ) £ (ZELE2L)

=1
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is the midpoint formula and E(f, d) denotes the associated approximation error (see [12]).

Here, we obtain some error estimates for the midpoint formula.

4.1. Proposition. Let I be an open real interval such that [0,00) C I. Let f: 1 — R be
a differentiable function on I such that f' € L([a,b]), where 0 < a < b < oo. If |f'|? is
1-convex on [a,b] and p > 1, % + % =1, then in (4.1), for every division d of [a,b], the
midpoint error satisfies

n—1
1 1 1
|E(f,d)| < 7 Y (@irr —x)” (uf +u2"> 7

where

/(zi+2:£i+1 ) g

T;+x;
fl(==+)
2 ' 2

. {lf’(m)qur
p1 = min

ey [ ()|
2 b
{|f’($i+1)|q /(%)

T () }

2 = min

FEEz) | ()|
2 ’ 2

;4T q
f(==)
2

+ | f (wig1)]?

Proof. Applying Corollary 2.7 for m = 1 to the subinterval [z;, z;y1], (¢ =0,1,2,...,n—

1) of the division, we have
-'1;7,+1 + x; 1 Fit1 Ti+1 — T4 3 3
i ) [ @] < B (),
Titl — Ti Jy, 4

where
z;+x; q
P+ 1 ()]
B = D)
1T TI q !
FEEFED L+ (i)
M2 = B .
Hence, in (4.1) we have
- 7.+1 . )
| S - oor (25|
- 7.+1 . .
S <><—>!
=0
1 1 1
<1 (»’Cz‘+1 —zi)? (lﬁq + qu) ,
i=0
which completes the proof. O

4.2. Proposition. Let I be an open real interval such that [0,00) C I. Let f: 1 — R be
a differentiable function on I such that f' € L([a,b]), where 0 < a < b < oco. If |f'|? is
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1-convex on [a,b], and q € [1,00), = € [a,b], then in (4.1), for every division d of [a,b],
the midpoint error satisfies

_1 n—1
374
|E(f,d)| < (T) > @i —2)? (| (@) + | £ (@ig1)]) -
=0
Proof. Similar to that of Proposition 4.1 on using Remark 2.10 with m = 1. O
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