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Abstract

Let wi and ws be weight functions on RY, R? x Ry, respectively.
Throughout this paper, we define DJ7 . (]Rd) to be the vector space
of f e L, (]Rd) such that the wavelet transform W, f belongs to
Li, (]Rd ><]R+) for 1 < p,g < oo, where 0 # g € S(]Rd). We en-
dow this space with a sum norm and show that DZ;7.,, (]Rd) becomes
a Banach space. We discuss inclusion properties, and compact em-
beddings between these spaces and the dual of D27, (Rd). Later we
accept that the variable s in the space DL, (]Rd) is fixed. We denote
this space by (folq,w)s (Rd)7 and show that under suitable conditions
(Df,’l‘{wz)s (]Rd) is an essential Banach Module over L},l (]Rd). We ob-
tain its approximate identities. At the end of this work we discuss the
multipliers from (ij’l‘{wz)s (]Rd) into Lf}l (]Rd), and from Lil (Rd)

into (D57,,). (RY).
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1. Introduction

In this paper we work on R? with Lebesgue measure dz. C. (Rd) and S (]Rd) denote the
space of complex-valued continuous functions on R? with compact support and the space
of complex-valued continuous functions on R? rapidly decreasing at infinity, respectively.
Also LP (Rd) ,(1 < p < 00) denotes the usual Lebesgue space. For any function f : RY —
C, the translation, modulation and dilation operators T, M, and Ds are given by
Tof (t) = f(t—a), Mof(t) = €™t f (t) and D, f () = |s| 2 f (%) for all z,w € RY,
0 # s € R, respectively. The parameters in wavelet theory are “time” x and “scale”
s. The dilation operator Ds preserves the shape of f, but it changes the scale. In
this paper we also use weight functions, which are positive real valued, measurable and
locally bounded functions w on R? which satisfy w (z) > 1, w (z +y) < w (z)w (y) for all
z,y € R Let a > 0. A weight w(x,s) = (1 + || + |s|)® which is defined on R? x R is
called a weight of polynomial type. We have the inequality w (z + 2, s) < w (z, s) w (z,t)
for z,z € R? and s,t € Ry. Indeed

w(@+zs) =0+z+zl+[s)" <(1+|z+2+][s+1)°
S (el s (L4 [ + [t)* = w (2, 5)w (2,1).

i(5) = {1+ e ()}

for 1 < p < oco. It is known that Lf, (]Rd) is a Banach space under the norm |\f||p w =

We set

waHp. Particularly L., (]Rd) is called a Beurling algebra, because it is a Banach convo-
lution algebra. Let w1 and ws are two weight functions. We write wi < w2 if there exists
C > 0 such that wi (z) < Cwz (z) for all z € R%. Two weight function w; and w2 are
called equivalent, written wi &~ ws, if and only if w1 < w2 and w2 < w;.

d
Let (z,t) = Y xt; be the usual scalar product on R?. For f € L' (R?), the Fourier
=1

N
transform f is given by

F@ = [f@e = da.
/

Given any fixed 0 # g € L? (]Rd) (called a wavelet function), the wavelet transform of a
function f € L? (Rd) with respect to g is defined by

Wl (eos) =% [0 (252) de= (7.0.0)

for x € R and 0 # s € R. We can write the wavelet transform as the convolution
Wof (x,8) = f* Dsg* (z), where ¢* (t) = g(—t). Also, the wavelet transform of a
function f € L? (Rd) with respect to 0 # g € L' (]Rd) is defined similarly. It is easy to
see that Wy (1% f) = T(.,0)Wy f.

For gi1,g2 € L? (]Rd)7 d > 1, assume that for almost all w € R? with lw] =1,

W [ ]a ) )| § < o

I A T

0
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Then for all fi fo € L? (Rd)7

———— dzds
//Wnﬁw$whﬁ@8)H1=KUmM-
0 Rd
The conditions (1) and (2) are called the wavelet admissibility conditions.
Let f € L? (Rd). If g1.90 € L? (Rd) satisfy the admissibility conditions, then f is

reconstructed from its wavelet transform by

dx ds
K//ngf (z,8) TwDsga—— e

R4 O

For two Banach modules Bi and Bs over a Banach algebra A, we write M4 (B1, B2) or
Hom 4 (B1, B2) for the space of all bounded linear operators from B; into Bs satisfying
T (ab) = aT (b) for all a € A, b € By. These operators are called (right) multipliers. It
is known that

Homa (B17B;) = (B1®a B2)* »

where Bj is the dual of B2 and By ® 4 Bs is the A-module tensor product of By and Bs
[18].

2. The space DY, (Rd)

2.1. Definition. Let 0 # g € S (]Rd), and let w1, wa be weight functions on R* and
R? x Ry, respectively. For 1 < p,q < 0o, we set

e, (Rd) - {f €Lk, <]Rd> | W,f € LY, <]Rd x ]R+)} .
It is easy to see that || fllppa = [Ifll,., + IWsfll,., is a norm on the vector space
wi,wy 5 N
D, (BY).

2.2. Theorem. (Dﬁ’,’l‘{w2 RY), |- ”DZ’I‘I,%) is a Banach space.

Proof. Suppose that (fn),.y is a Cauchy sequence in D7, (Rd). Clearly (fn),en
and (Wyfn),cy are Cauchy sequences in Lf, (]Rd) and LI, (]Rd X R+)7 respectively.
Since LT, (]Rd) and L, (]Rd X R+) are Banach spaces, there exist f € LI, (]Rd) and
h € LY, (R x Ry) such that ||fn — fll,., — 0, [Wgfu —hll,,, — 0. This implies
[Wofn —hll, — 0.Then (Wyfn), oy has a subsequence (Wofrx ), en Which converges
pointwise to h almost everywhere. It is easy to show that ||fn, — pr — 0. Also by
Holder’s inequality, we have
|W9f (:E,S) - h(:L’,S)| = |W9f (:E,S) —h (:E,S) + ngnk (:E,S) - ngnk (:L’,S)|
< |<f”k7T D59> - <f7TIDS.g>| + |W9fnk (17,8) - h(:L’,S)|

/|np— (O[T Dag (8)| dt + [ Wy fu (2,5) — b (z,5)]

T o — TNl 4 Wy fry (@, 8) = h(z, )]

By using this inequality it is easily seen that Wyf = h almost everywhere. Since
the equivalence classes of Wy f and h are equal then ||fn — fllppe  — 0 and f €
wl,w2

Dre ., (Rd). That means DEf,,, (]Rd) is a Banach space. ]
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2.3. Lemma. We have the inclusion

dzd
C. (Rd X R+7d1:ds> c L? (Rd x Ry, ﬁ) 7

where fff is the weighted Lebesque measure on R% x Ry.

Proof. Take any h € C. (R? x Ry, dzds). Let supph = K and f (z,s) = “Ls(fﬁ)‘. Since
s> 0 and f is continuous, then suppf = K. If we set max f (x,s) = m, then

h(z
Al otz = [ L
REIXRy
< m//d:cds =mu (K)
K
is finite. Hence we obtain h € L* (R? x Ry, 4342). 0

The following example shows that D7, (Rd) # 0.

2.4. Example. Let wa be any weight function on R x R;. Take the weight function
w1 (t) =1+ |t on R. Assume that g € S (R) satisfies the admissibility conditions. Now,
we consider the space Df,’l‘{w2 (R) for 1 < ¢ < oo. Take any F € C. (R X R4, dzds) C
L? (R x Ry, d‘ys). Then

% //F(:c,s)TzDsg (t) d:;ds =f(t).

RXR+

Thus we have

dxds
1oy =| 5 [ F@o D)
RxR 2,w1
1 |F (z,s)]|
S F . / T ||T1;Dsg||2’w1 dx ds
(3) RXR+
|F z,s)
<% [[ 5 @ 1D.gl, dods
RXR+
_ 1 | (z,s)[ (1 + |z])
== /# 1Dugll,.,, duds.
RxRy
Also
2
IDsgll3,., < L S/ lg (u)]* w1 (u)® wi (5)* du = wi (s)?
2wy — \/g
R
Hence
(4) Dsgll3,., <wi(s)] =1+l -

Combining (3) and (4), we obtain

®) ol [[ RO (0 aras

RxR
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\F(ﬂc,S)\(lt\w\)(ZHS)

s

then also supp (%) = A. Moreover if we set max (%) =

(z,s)€EA
N, by (5) we have

/]

where p (A) is the area of the set A. Then we obtain f € L2, (R) C L® (R). Hence by
Theorem 10.2 in [9], we have W, f € L? (R x Ry, dj;“). Since the wavelet transform is
one-to-one, this implies Wy f = F. It is also known that C. (R x Ry) C LI, (R x Ry ).
Thus we have W, f € L, (R x Ry). That means f € Di’lq)wz (R).

Since F' is continuous and s # 0, is continuous. If we set suppF = A,

N
i < 72 N9l 1(4) < o0,

2.5. Theorem. Let w1 be a weight function and w2 a weight function of polynomial
type. Then
(1) DBY,, (RY) is invariant under translations.
(2) The mapping f — T.f is continuous from DI, (Rd) into DI, (]Rd) for
every fived z € R?,

Proof. 1) Let f € D52, (R?). Then we have f € L%, (R?) and W, f € L2, (RY x Ry).
Since [|T:fl, ., < wi(2)[Ifll,.,  we see that T.f € Lf, (RY) for all z € R* [7].
Also, since wp is a weight function of polynomial type then we write wa (z + z,5) <

w2 (x,8) wa (2,t) for every fired t € Ry. By using the equality Wy (1% f) = T(;,0) Wy f, we
have

W (T f)llg oy < w2 (2,8) [[Wof]
for all fixed z € R and ¢t € Ry. Thus, we obtain

1T fllppa,,, <wi(2)[1fll,w, w2 (z0[Wfll, -

Hence T.f € DEZ,, (]Rd). This means that D27 (]Rd) is invariant under translations.

q,w2

2) Let f € D51 (Rd). Since f + T f is linear, it is enough to prove the theorem for

wi1,w2

f=0. Let € > 0 be given. Choose § > 0 to be § = 575+ Thus, if HfHDg,lqw2 <4,
then || f][, ,, < ||f||D£,lqw2 <édand | fll, ., < ||f||Dg,1qw2 < 6. Also, similarly to the proof
of ||Wy (Tzf)||q’w2 < wsz (2,t) ”ng”q,w in 1), we obtain
HTszDgﬁ% =T fll oy + IWo (T2 )l g,
<d{w1 (2)+w2(z,t)} =e. O

3. Inclusion properties of the space D%, (]Rd)

3.1. Proposition. For every 0 # f € D2, (R?) there exists C (f) > 0 such that
C(Hw(z) <Al ,, Swilz) HfHDp,q1
w1,

oy
Proof. Let 0# f € DI, (R%). By [7, Proposition 1.7], there exists C (f) > 0 such that
C(Hwr(2) SITafllyw, S0 (@) 1w, -
By using W, (T= f) = T(.,0) Wy f, we write
C(Nwr(2) SIT=flly 0, + W (T2 ))lly < wr (2) £, + IWefll,
Swi (2) [1fllp,0, w1 (2) W fll,

=1 () {fllp, + IWall, } = w1 G IS,
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for all f € DI, (R?). Hence, we obtain
CHw (z) <NT=1N L, <G, - 0
le,l le,l

3.2. Lemma. Letwi, w2, ws and wa be weight functions. If DY, (]Rd) c Dy, (Rd),
then D% . (R?) is a Banach space under the norm ||f||p = ||l pr.a .+ Ifllpra . -
wy,w3 wo,wy

Proof. Suppose that (fn),, oy is a Cauchy sequence in (D27, (Rd) A 1p)- Then (fn), ey

is a Cauchy sequence in (Dﬁ’,’l‘{w3 (RY) 11+ 1l pr.a ) and (Df,g{w (RY) - [l oy ) Since
w1l,w3 w2,wq

these spaces are Banach spaces, there exist f € DY, (]Rd) and h € DI, (]Rd) such

that || fn = fllpga,,, — 0, Ifn = hllpgae, — 0. Using the inequalities | -[|, < |- ”Dﬂ;%
and ||-|, <|-Il ,, weobtain |fn — f|, — 0, and ||fn — hl, — 0. Also by using the
P

wy,ws
inequality [|f — hll, <|[fn — fll, +[fn — hll,, we see that || f — h||, = 0, and then f = h.
Thus an - f”D —0and f € (Df;l‘{% (Rd) s H : ”D) That means (Dgquyws (Rd) s H : ||D)
is a Banach space. O

It is easy to prove the following Lemma 3.3.
3.3. Lemma. Let k be a constant number and 1 < p < co. Ifw = k, then
I (Rd x R+> — P (Rd x R+> . 0

3.4. Theorem. Suppose that wi and w2 are weight functions. Then ij’l‘{l (Rd) -
DPA(RY) if and only if wa < wi.

wa,1

Proof. Let wa < wi. Then there exists C' > 0 such that w2 (z) < Cw; (2) for all z € R4,
We can choose C' > 1. Take any f € D2, (R*). Thus we write ||f|| < Cf|

wi,l p,w2 —
Furthermore, since [[W, f||, < oo, we have

HfHDg,qu = 1fllp.wp +IWe£ll,

< ISl

p,w1”

p,wi1

+C Wy fll, = C||f|\D,,,q1 < oo,
w1,
Therefore, D77, (R?) c DI, (RY).
Conversely, suppose that DE:?, (R?) € D27, (R?). For every f € D7, (R?), we have
feDrd (]Rd). By Proposition 3.1, there are constants Cy, Ca, C3, C4 > 0 such that

wa,l
(6) Cron (2) <|T:f1l ., < Cowi(2)
w11
and
(7) Csw2 (2) < | T:f1l,, < Cawz(2)
wo,1

for all z € R%. Also, from Lemma 3.2 the space Dg'lqyl (]Rd) is a Banach space under

the norm || f||, = Hf||Dp,q1 + ||f||Dp,q1. Then by the closed graph theorem, there exists
wq, w9,
C > 0 such that

) oz, <C U lppa,
wg, w1,

for all f € D, (R?). Furthermore, by Proposition 3.1 T.f € DE?, (R?), and by (8)
we write

© A, <CITAI,,

wg,1 wy,1
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Hence, combining (6), (7) and (9), we obtain
Csw2 (2) < 11l ,, < C'||Tzf||Dp,q1 < CChwi (2)-

wg,1 w1,
Thus, w2 (2) < cc—izwl (2). If we take k = CCC;Z, then we find w2 (2) < kw1 (2). O

3.5. Proposition. Let w1, wa be weight functions and ws =~ k1, wa =~ k2, where k1, k2
are constant numbers. Then D¢ (]Rd) c DR, (]Rd) if and only if wa < w1.

wi,w3

Proof. Since w3z ~ ki1 and w4 =~ k2, by Lemma 3.3 we can write LT, (]Rd X R+) =
LP (Rd X R+) and L%, (]Rd X R+) = LP (Rd X R+). By using Theorem 3.4, we obtain

DEf . (RY) € DEY,, (RY) if and only if wa < wy. a
3.6. Corollary. Let ws = k1 and wa = ka2. Then DL? . (]Rd) =D2I,. (]Rd) if and only
if w1 = wa.

Proof. Follows easily from Proposition 3.5. g

3.7. Proposition. Assume that wi, w2, ws, and ws are weight functions. If w =
max {w1, ws} and m = max {w2, w4}, then we have

) d s d\ _ s d
D2, (RY) N DL, (RY) = DI, (RY).
Proof. For every f € DY, (]Rd), we have
10 = W6l + Wl <15

Hence, f € DI ., (]Rd). Similarly we have f € D5, (Rd). Then we obtain DI'T, (Rd) -
Diu, (RT) N DEL,, (RT).

Conversely take any f € DI, (]Rd) N DL, (]Rd). Since w = max {w1, w3} and
m = max {wa, wa}, it easily shown that

171y = 0+ 17l < o

o THIWa Ll < 00

Thus, we may write DI, (Rd) NDEI,, (Rd) c D%, (]Rd). Finally, we obtain

D2, (RY) N DL, (RY) = D2S, (RY). 0

3.8. Proposition. Let w1, w2, ws, and wa be weight functions. If ws < w1 and wy < wa,
then

DEt., (RY) € DIy, (RY)
for all f € DEZ,, (RY).

Proof. Let w3 < w1 and ws < wz. Then there exist C1,C2 > 0 such that ws (t) <
Ciwi (t) and wa(z,u) < Cows(z,u) for all t € RY (z,u) € R? x Ry, Take any

fe Dy, (RY). Since f € LY, (RY) and Wy f € LY, (R? x Ry), we have |f[|, . <
Cillfll,., and [Wofll, ., < CollWyfll,,,  Therefore, we find f € D&, (R?), and
hence D%, (R?) c D%2,,, (RY). O

3.9. Proposition. Let wi, w2, w3, and ws be weight functions. If DL, (Rd) -
Drt.,, (Rd), then there exists a C > 0 such that

Ifllppa,, <Cliflipea,,

for every f € DEI . (]Rd).
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Proof. We endow the space D¢, (Rd) with the norm || ||, = || - lppa + |- ||ppa -
wl,w2 w3,wq

By Lemma 3.2, the space (D2, (Rd) ,-1lp) is Banach space. If we use the closed
graph theorem, then there exists C' > 0 such that ||f||pp.a < C||f|lppa  for every
w3,wq w1l,w2

feDri,, (RY). ]

3.10. Lemma. Let wi be any weight function and w2 a weight function of polynamial
type. Then, there exists C (f) > 0 such that

CNwr(2) <ITfNl ,, < (@) +wzO)f,,,

w1,w2 w1,w2
for every 0 # f € DY, (Rd) andt € Ry.

Proof. Let 0 # f € DI, (]Rd) be given. Since f € L%, (Rd), then by [7, Proposition
1.7] there exists C (f) > 0 such that

C(Nwr(2) < NITefllyw, <1l -

Furthermore, using the inequality [|[W, (1% f)]]
Theorem 2.5, we have

C(Nwi (2) SNTefllpw, +11Wo (T2l w,
S w1 (2) fllp w, +w2 (26 W flly o,
<@ flpga,, w2 (01 b,
={wi (2) + w2 (2, O} I fll pr

wi,wa

< w2 (2,0) Wy £l

q,w2 — q,w2

in the proof of

for all t € Ry g

4. Compact embeddings of the space DY, (Rd)

4.1. Lemma. Let (fn), oy be a sequence in DS, (RY). If (fn)pen converges to zero
in DR, (]Rd), then

/fn(:c)k(x) dr — 0

asn — oo for all k € C. (]Rd).

Proof. Let k € C. (Rd) and % + 1 =1. Then we may write

(10) /fn (@) k() de| < [kl I fall, < NENS 1 fnllpga, -
R4

Therefore, by the assumption and (10), we obtain [ fn (z) k (z) dz — 0 as n — oo for
RA
all k € C. (R?). O

4.2. Theorem. Let w1, wy be weight functions of polynomial type on RY, R? x Ry
respectively, and let v be a weight function on R*. If v < w1 and m - 0 for

every fived s and for x — oo, then the embedding of the space DEI,,, (]Rd) into LY, (]Rd)
1S mever compact.
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Proof. Since v < wi, there exists C1 > 0 such that v (z) < Chws (z) for all z € R?. This
implies D¢, (Rd) c L? (Rd). Let (tn),cy be a sequence with ¢, — co as n — oo in

R?. Since W does not tend to zero as © — oo, then there exists § > 0 such

that W > 6 > 0 for  — oco. For any fixed f € D%f,, (]Rd) and fixed to € R4,
by

define a sequence (fn)neN

fo = (w1 (tn) + w2 (tn,t0)) " Tt, f.
This sequence is bounded in DL?,,, (]Rd). Indeed, since the wavelet transform is linear,

we can write

I fall ppsa

w1,wa

= [[(@t (t) + w2 (tn, 20)) ™ T £ s
(11) -1 o
= (w1 (tn) + w2 (tnvto)) ”Tt"fHDg’lq,wg ’

By using (11) and Lemma 3.10, we obtain
[ allpga,, < (@ (k) + w2 (bnrto) ™ ITefll g
< (W1 (tn) + w2 (tnyt0)) " (Wi (tn) + w2 (tn, to)) || f]] prea

w1,w
= Ifllpz.a

Wi wa

Now we show that there cannot exist a norm convergent subsequence of (fn), .y in
L? (Rd). For all k € C. (]Rd)7 we have

1
ﬂzﬂfn (e k) el < oy s (tmto)/ |(Tt"f;5~””)| |k (x)| da
(12) 1
: w1 (tn) + w2 (tn, to) lkll, 1T 1L
1
- w1 (tn) + wa (tn,t()) ”k”s Hf||p7

where % + % = 1. Since the right hand side of (12) tends to zero as n — oo, then we have
/fn () k (x) dz — 0.
RA

Therefore, by Lemma 4.1 the only possible limit of (fn),, oy in LD (Rd) is zero. On the
other hand it is known by [6] that ||T%, f||,, , & v (tn). Thus there exist C1,C2 > 0 such
that

(13)  Cw(tn) < T2, fll,, < Cov (tn) .

By using the inequality (13), we obtain

(14) 1l = [[(@1 (tn) + w2 (b, 00) T Te £, = (@1 (n) + w2 (Ens0)) " (1T £,
> C1 (w1 (tn) + w2 (tn, to))71 v(tn).
Also, since WM > ¢ > 0 for all ¢,, by using (14), we can write

[ £all,,,,, = C1 (w1 (tn) + w2 (tn,t0)) "' v (tn) > 6C1 > 0.

This means that it is not possible to find a norm convergent subsequence of (fn), oy in
L? (Rd), and the proof is complete. d
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4.3. Corollary. Let w1, ws be weight functions of polynamial type on R?, RY x Ry,
respectively. Also, let w3, ws be any weight functions on R, RY x Ry respectively. If

mﬁiig;(w — 0 for every fized s as x — oo, then the embedding

of the space DI ., (Rd) into DY, (Rd) s never compact.

w3 < w1, wa < w2 and

Proof. Sincews < w1 and wy < wa, by Proposition 3.8, we have D7, (]Rd) c DRl (]Rd).
Also, the unit map is continuous from DZ7 ., (Rd) into DLI . (]Rd). Now, assume that
the unit map is compact. Take any bounded sequence (fn),,cy in D5, (]Rd). If there
exists a convergent subsequence of (fn), oy in DL, (]Rd)7 this sequence also converges

in LT, (]Rd). But this is not possible by Theorem 4.2. This completes the proof. (]

5. Dual space of D, (R?)

Consider for each p, ¢, (1 < p,q < o), the mapping ® : D%, (]Rd) — LL, (]Rd) X
L%, (R* x Ry) defined by @ (f) = (f, Wy f). Let H =& (D%, (R?)). Then
I CHIT = I We DI =110, + 1Wo Sl

is a norm on L%, (]Rd) x L, (Rd X R+). Also, @ is an linear isometry from D7, (]Rd)
into LE, (]Rd) x Li, (Rd X R+). Now, we define a set K by

K= { (p,0) € LZ}I (]Rd) x Lz;,l <Rd x R+>

/f () w (y) dy

+ / ng(x,s)w(a:,s)dxds—o,V(f,ng)GH},

RIXR4

1 1 1 1
where;—&—;-landa—&—?—l.

5.1. Proposition. The dual space of DL?,,, (Rd) is Li}l (Rd) X Lilgl (]Rd X R+) /K,

1 1 1 1
where;-&-yfl anda—k?fl.

Proof. Since DI, (Rd) is a Banach space, then H = ® (Dﬁ’,’l‘{w2 (Rd)) is closed. If we
use the duality theorem in [15], we obtain

(15) H* = Lz’l,l <]Rd> X Li;,l (Rd x R+> /K,

where H* is the dual of H. Moreover, since ® is an isometry, then (D%?,, (R%))" = H*.
Finally by using (15) we obtain

(Do, (RY) = L0 (RY) x L, (R xRy ) /K. O

6. The space (Dg’ﬁwz)s (Rd)

Throughout this section we accept that the scale s in D7, (]Rd) is fixed. We denote
this new space by (Df,’l‘{w2)s (Rd). That means (Df,’lq’%)s (Rd) is the vector space of
functions f € L%, (]Rd) such that their wavelet transforms W, f are in LZ, (]Rd)7 where s
is fixed. We endow this space with the sum norm ”f”(Dg’f{wz)s =1fllpw, + IWafllyw,-
By using the method in Theorem 2.2, it is easy to see that this space is a Banach space
with this sum norm.
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6.1. Proposition. Let w2 be a weight function of polynomial type. Then (Df,’lq’%)s (]Rd)
is dense in LY, (]Rd).

Proof. Since w2 is a weight of polynomial type, then Dsg* € Lfaz (Rd). Take any
fedc. (Rd). Then f € L%, (Rd). Also, by [7, Theorem 1.11], Lg, (Rd) is a Banach
convolution module over L},2 (]Rd). Thus if we use the equality Wyf = f % Dsg*, we
obtain

IWafllgws = I * Dsg™ll gy < IFllg sy 1Dsg" 1 0y < 00
Hence C. (]Rd) - (Df,’lq)wz)s (]Rd) C L, (]Rd). Since C. (Rd) is dense in L%, (Rd), the

proof is complete. O

6.2. Proposition. Let k be a constant number and ws ~ k. Then the spaces (Dq’q )S (]Rd)

wi,w2

and LY, (Rd) are algebraically isomorphic and homeomorphic.

Proof. By the definition of the space (Dg;;{wz)s (Rd), we have (Dfﬂ'lqyw)s (]Rd) C Li, (Rd).
Since w2 ~ k, there exists C' > 0 such that | -|| < C|-|l,- Now, take any f €
LE, (]Rd). By using Wy f = f % Dsg”*, we have

(16) [ fllgwy + IWallgwy SN llgy +C N % Dsg™ll,-

It is also known that L9 (]Rd) is a Banach convolution module over L! (]Rd). Thus from
(16), we have

[fllgwy +CIF * Dsg™lly <M fllgy +C Nl I1Dsg7 4

SN llgoy {1+ ClIDsg"[l1} < oo
Combining (16) and (17), we find f € (DE.,), (R?), and LZ, (RY) C (D%{,,), (RY).
Finally we have (ij’l‘{wz)s (Rd) =L, (]Rd). Moreover, if we take M = {1 +C ||Dsg*||1},
by (16) and (17) we have
1l < Moz, < Ml

for all f € (Df,’lq,%)s (Rd). That means (Df,’lq,%)s (Rd) and L, (]Rd) are algebraically
isomorphic and homeomorphic. O

q,w2

(17)

6.3. Theorem. (Df,'lq w) (Rd) is invariant under translations and the translation map-
’ s

ping z — T f is continuous from R into (Df,’lq,%)s (]Rd).
Proof. Let f € (Df,’lq,%)s (]Rd) be given. Then we write
Il oy, = I F oy + IWa (L)l
S w1 (2) [1f1lp,0, + w2 (2) Wy fllg,u, < oo

Hence (Df,'l‘{w2)s (Rd) is translation invariant. Moreover, it is known that the translation
mapping is continuous from R¢ into L%, (Rd) [7]. Thus, for any given € > 0, there exists
81 (¢) > 0 such that if ||z — u|| < & for z,u € R%, then

|T.f = Tuf]| -

P,w1 < 5
Also, since the translation mapping is continuous from R? into Li, (Rd), then for the
same ¢ > 0, there exists d2 (¢) > 0 such that if ||z — u|| < 2 for all z,u € R%, then
€
[Wo (T2 f = Tuf)ll g, < 5-

q,w2 2
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If we set & = min {61, 02}, and if ||z — u|| < 6 for z,u € R?, then

ITof = Tufll gy = ITef = Ty Iy (Tf = Tuf) oy <

N ™

This completes the proof. O

6.4. Proposition. (D51q7w2)s (Rd) is Banach function space.

Proof. Take any function f € (Df,’lq,%)s (]Rd)7 and a compact subset K C R% Since
K c R% is compact and p > 1, then there exists C' > 0 such that

/|f<x>| dr < Cfll,.
K

Then
J15 @1 o< {1510y + Wl } = C el o),
K
Since (ij’l‘{wz)s (]Rd) is Banach space, the proof is complete. a

6.5. Theorem. Suppose that wa = k, where k is a constant number. Then (ij’l‘{wz)s (Rd)

is an essential Banach module over Li,l (]Rd).

Proof. It is known that (Df,’lq,%)s (]Rd) is a Banach space. Now we take any f €
(Dp’q )S (Rd) and h € Li,l (]Rd). Since LT, (]Rd) is a Banach convolution module over

wi,w2

L}dl (]Rd), we can write

(18) I *hll, 0, <10, IRl

Thus by using Wy f = f x Dsg”, we have

1wy *

(19)
Wy (f % )l gy = II(F 5 1) % Dsgll g,
S NP NS * Dsg gy = IPIL (1Wo fllg o, -

Thus Wy (f *h) € L, (]Rd). Combining (18) and (19), we obtain

1 5 Bl o,y = 15 bl + 1Wa (F B,
< Wl 1l + A

v WV gy = Wl o 17

Hence (Dp’q )S (Rd) is a Banach module over Lil (Rd).

wi,w2

In order to show that (ij’l‘{wz)s (]Rd) is an essential Banach module ove]rLcld1 (]Rd)7
we will use the Module Factorization Theorem [20]. For this, it suffices to prove that
Li,l (]Rd) * (Df,’l‘{%)s (]Rd) is dense in (Df,’l‘{w2)s (Rd). It is known that L},l (]Rd) has a
bounded approximate identity [8]. Let U be a neighbourhood of the unit element of R%.
We can choose an approximate identity (ea),; which is positive bounded and satisfies

suppea C U, |leal|; =1 for all @ € I. Take any h € (ij’l‘{wz)s (]Rd). For fixed ag € I,
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we have

Heao *h — hH(Df,’l‘{wz)S = /eao (Z) T.h (y) dz — ./eao (Z) h (y) dz

_ / Caq (2) (T:h (y) — b (y)) d=

J, (DB ws),
< /eao (T = bl pga,) d=
Rd

We know by Theorem 6.3 that the translation mapping z — T f is continious from R?
into (Df,’lq,%)s (]Rd). Hence for given any € > 0, we can make ||T.h — h”(Dp,q ) <e
w1,w2 /g

Then, we obtain
lea b= Bl (g, < [eon ()edz =2
Rd

Therefore Li,l (]Rd) * (Df,’l‘{wz)s (]Rd) is dense in (Dp g )S (Rd). Finally, from the Module

W ,wa
Factorization Theorem, the proof is complete. (]

By using [4, Theorem 6.5 and Corollary 15.3], it easy to prove following Corollary 6.6.

6.6. Corollary. Let (ea)ael be an approximate identity in L}dl (]Rd), and let wa =
k where k is constant number. Then (ea)ael is an approximate identity of the space

(DE), (RY). O

7. Space of multipliers of (D57 .,), (R?)

Consider the mapping ¢ from (Df,’lq)wz)s (Rd) into L, (]Rd) x L, (]Rd) defined by

& (f) = (f,Wyf). This mapping is a linear isometry of (Df,’lq’%)s (]Rd) into L%, (]Rd) X
Li, (]Rd) with the norm

e CON = WaHIl =110, + 1Wafllg o,
for all f € (D51q7w2)s (Rd). Let H=2® ((Df,’ﬁw) (Rd)). Define the set K to be

S

K= { (p.9) € L¥, (]Rd) x L7, (Rd>

/f (v) v (v) dy+

+/W9f(x73)¢(x73) dLE:O, V(f,ng) GH}
nd

1 1 1 1
Where5+7f1and5+?f1.

wi,w2
1
’

7.1. Proposition. The dual space ((Dp’q )S (Rd))* is isomorphic to Li’:,l (Rd) X
L? 1.

—1
w2

d 1 1 _ 1 1
(R)/Kwhere——i—— 1¢mda+7_

P p’

Proof. This result follows easily from the Duality Theorem in [15]. g
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7.2. Theorem. Let wy =k, where k is a constant number. Then the spaces Lp,,1 (Rd) X
“1
Lq,,1 (Rd) /K and Hole1 ((Df,’l‘{%) (Rd) , L (]Rd)) are algebrically isomorphic and
wy w S w1

topologically homeomorphic.

Proof. By Theorem 6.5, (Df,’lq,%)s (Rd) is an essential Banach module over Li,l (]Rd). If
we use [17, Theorem 1.4] and Proposition 7.1, we obtain

Hom, ((D4,), (27) L2 (27))
= Hongj1 <(D£’1q,w2)s (Rd) d <Li’1 <Rd>> )
= (D), (RY) < LL, (R))
((Prea), (R7))" 2 20 (RY) = £ (R) /K

and the proof is complete. O

1

Let w2 = k. Suppose that (ea),; is a bounded approximate identity in L}L,l (Rd).
The relative completion (55'1‘{“,2) (]Rd) of (Dg'ﬂw)s (Rd) is defined by

(2.) () = {7, () | 5o e 022, ()

for all « € I and sup || f * eaH(Dp,q ) < oo}
acl w12/,

(5”"1 ) (]Rd) is a Banach space with the norm

w1,w2
Il pes.n), = s 17 > eellogey),
and this space does not depend on the approximate identity [5].

7.3. Theorem. Let wa = k for a constant number k.Then the spaces <55’1‘{w2) (]Rd)

and M (Li,1 (]Rd) , (D51q7w2)s (]Rd)) are algebrically isomorphic and topologically homeo-
morphic

Proof. Since (]:35’1?%)8 (Rd) is the relative completion of (Df,’lq,%)s (]Rd)7 it is easy to
prove this theorem using [5, Theorem 2.6]. a
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