APPROXIMATION BY q-PHILLIPS OPERATORS

İsmet Yüksel*

Received 10:06:2010 : Accepted 27:10:2010

Abstract

In this study, we introduce a q-analogue of the Phillips operators and investigate approximation properties. We establish direct and local approximation theorems. We give a weighted approximation theorem. We estimate the rate of convergence of these operators for functions of polynomial growth on the interval $[0, \infty)$.

Keywords: Phillips operators, q-type operators, Rate of convergence, Weighted approximation, q-integral.

2010 AMS Classification: 41 A 25, 41 A 36.

Communicated by Alex Goncharov

1. Introduction

Phillips firstly introduced the q-analogue of Bernstein polynomials based on q-integer and q-binomial coefficients in [12]. Gupta and Finta obtain some direct results on certain q-Durrmeyer type operators in [6]. Recently, Aral and Gupta introduced Durrmeyer type modification of the q-Baskakov type operators in [1]. We aim to introduce a q-analogue of Phillips operators and to study approximation properties. Before this, we mention the following notations and formulas, which can be founded in [2, 8, 9] and [10]: For $n \in \mathbb{N}, \ 0 < q < 1 \text{ and } a, b \in \mathbb{R},$

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}, \ n \in \mathbb{N} \setminus \{0\}; \ [0]_q = 0,$$

$$[n]_q! = [1]_q[2]_q \cdots [n]_q, \ n \in \mathbb{N} \setminus \{0\}; \ [0]_q! = 1.$$

(1.2)
$$[n]_q! = [1]_q[2]_q \cdots [n]_q, \ n \in \mathbb{N} \setminus \{0\}; \ [0]_q! = 1,$$
(1.3)
$$(a+b)_q^n = \prod_{j=1}^n (a+q^{j-1}b),$$

and

$$(1.4) \qquad (1+a)_q^{\infty} = \prod_{j=1}^{\infty} (1+q^{j-1}a).$$

^{*}Gazi University, Faculty of Science, Department of Mathematics, Teknikokullar, 06500 Beşevler, Ankara, Turkey. E-mail: iyuksel@gazi.edu.tr

The q-binomial coefficients are given by

(1.5)
$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{[n]_q!}{[k]_q![n-k]_q!}, \ 0 \le k \le n.$$

The q- derivative $D_q f$ of the function f is given by

(1.6)
$$(D_q f)(x) = \frac{f(x) - f(qx)}{(1 - q)x}, \text{ for } x \neq 0$$

and $(D_q f)(0) = f'(0)$ provided f'(0) exists.

The two q-analogues of the exponential function are defined by

(1.7)
$$e_q^x = \sum_{n=0}^{\infty} \frac{x^n}{[n]_q!} = \frac{1}{(1 - (1-q)x)_q^{\infty}}$$

and

(1.8)
$$E_q^x = \sum_{n=0}^{\infty} q^{n(n-1)/2} \frac{x^n}{[n]_q!} = (1 + (1-q)x)_q^{\infty}.$$

The q-Jackson integrals and the q-improper integrals are defined as

(1.9)
$$\int_{0}^{a} f(x) d_{q}x = a(1-q) \sum_{n=0}^{\infty} f(aq^{n})q^{n}, \ a > 0$$

and

(1.10)
$$\int_{0}^{\infty/A} f(x)d_{q}x = (1-q)\sum_{n\in\mathbb{Z}}^{\infty} f(\frac{q^{n}}{A})\frac{q^{n}}{A}, \ A > 0,$$

respectively. The q-Gamma function is given by

(1.11)
$$\Gamma_q(s) = K(A, s) \int_0^{\infty/A(1-q)} t^{s-1} e_q^{-t} d_q t,$$

where

(1.12)
$$K(A,s) = \frac{A^s}{1+A} \left(1 + \frac{1}{A}\right)_q^s (1+A)_q^{1-s}.$$

In particular, for $s \in \mathbb{Z}$, $K(A, s) = q^{s(s-1)/2}$ and K(A, 0) = 1.

2. Construction of the operators

Let f be a real valued continuous function on the interval $[0, \infty)$. Using the formulas and notations in (1.1)–(1.12), we now define the q-Phillips operators as

(2.1)
$$\mathcal{P}_{n}^{q}(f;x) = [n]_{q} \sum_{k=1}^{\infty} p_{n,k}(x;q) \int_{0}^{\infty/A(1-q)} q^{k(k-1)} f(t) p_{n,k-1}(t;q) d_{q}t + e_{q}^{-[n]_{q}x} f(0),$$

where

(2.2)
$$p_{n,k}(x;q) := \frac{([n]_q x)^k}{[k]_q!} e_q^{-[n]_q x}.$$

In the case q = 1, these operators are reduced to the Phillips operators studied in [11] and [13].

Now we give an auxiliary lemma for the Korovkin monomial functions.

2.1. Lemma. Let $e_m(t) = t^m$, m = 0, 1, 2, 3, 4. We have

$$\begin{split} \text{(i)} \quad & \mathcal{P}_n^q(e_0;x) = 1, \\ \text{(ii)} \quad & \mathcal{P}_n^q(e_1;x) = \frac{x}{q}, \\ \text{(iii)} \quad & \mathcal{P}_n^q(e_2;x) = \frac{x^2}{q^4} + \frac{[2]_q}{q^3[n]_q}x, \\ \text{(iv)} \quad & \mathcal{P}_n^q(e_3;x) = \frac{x^3}{q^9} + \frac{([2]_qq + [4]_q)}{q^8[n]_q}x^2 + \frac{[2]_q[3]_q}{q^6[n]_q^2}x, \\ \text{(v)} \quad & \mathcal{P}_n^q(e_4;x) = \frac{x^4}{q^{16}} + \frac{([2]_qq^2 + [4]_qq + [6]_q)}{q^{15}[n]_q}x^3 \\ & \qquad \qquad + \frac{([2]_q[3]_qq^2 + [2]_q[5]_qq + [4]_q[5]_q}{q^{13}[n]_q^2}x^2 + \frac{[2]_q[3]_q[4]_q}{q^{10}[n]_q^3}x. \end{split}$$

Proof. (i) Using the formulas (1.10), (1.11), (1.12) and (2.2), we can calculate the following integral:

$$\int_{0}^{\infty/A(1-q)} t^{m} p_{n,k}(t;q) d_{q}t = \int_{0}^{\infty/A(1-q)} t^{m} \frac{([n]_{q}t)^{k}}{[k]_{q}!} e_{q}^{-[n]_{q}t} d_{q}t$$

$$= \frac{1}{[n]_{q}^{m+1}[k]_{q}!} \int_{0}^{\infty/(A/[n]_{q})(1-q)} u^{k+m} e_{q}^{-u} d_{q}u$$

$$= \frac{\Gamma_{q}(k+m+1)}{[n]_{q}^{m+1}[k]_{q}! K(A/[n]_{q}, k+m+1)}$$

$$= \frac{[k+m]_{q}!}{[n]_{q}^{m+1}[k]_{q}! q^{(k+m+1)(k+m)/2}}.$$
(2.3)

Using (1.7), (1.8) and (2.3) we obtain

$$\mathcal{P}_{n}^{q}(e_{0};x) = \sum_{k=1}^{\infty} q^{k(k-1)/2} p_{n,k}(x;q) + e_{q}^{-[n]_{q}x}$$

$$= \left(\sum_{k=1}^{\infty} q^{k(k-1)/2} p_{n,k}(x;q) + 1\right) e_{q}^{-[n]_{q}x}$$

$$= E_{q}^{[n]_{q}x} e_{q}^{-[n]_{q}x}$$

$$= 1,$$

which completes the proof of (i).

(ii) From (2.3), we have the equality

$$\mathcal{P}_n^q(e_1; x) = \sum_{k=1}^{\infty} \frac{[k]_q}{[n]_q} q^{(k^2 - 3k)/2} p_{n,k}(x; q).$$

Thus, we obtain

$$\mathcal{P}_{n}^{q}(e_{1};x) = \frac{1}{[n]_{q}} \sum_{k=1}^{\infty} q^{(k^{2}-3k)/2} \frac{([n]_{q}x)^{k}}{[k-1]_{q}!} e_{q}^{-[n]_{q}x}$$
$$= \frac{x}{q} \mathcal{P}_{n}^{q}(e_{0};x),$$

as required.

(iii) From (2.3), we have the equality

$$\mathcal{P}_n^q(e_2; x) = \sum_{k=1}^{\infty} \frac{[k]_q [k+1]_q}{[n]_q^2} q^{(k^2 - 5k - 2)/2} p_{n,k}(x; q)$$

Using the equality $[k]_q[k+1]_q = [k]_q[k-1]_q + [2]_qq^{k-1}[k]_q$, we obtain

$$\begin{split} \mathcal{P}_{n}^{q}(e_{2};x) &= \frac{1}{[n]_{q}^{2}} \sum_{k=2}^{\infty} q^{(k^{2}-5k-2)/2} \frac{([n]_{q}x)^{k}}{[k-2]_{q}!} e_{q}^{-[n]_{q}x} \\ &+ \frac{[2]_{q}}{[n]_{q}^{2}} \sum_{k=1}^{\infty} q^{(k^{2}-3k-4)/2} \frac{([n]_{q}x)^{k}}{[k-1]_{q}!} e_{q}^{-[n]_{q}x} \\ &= \frac{x^{2}}{q^{4}} \mathcal{P}_{n}^{q}(e_{0};x) + \frac{[2]_{q}x}{q^{3}[n]_{q}} \mathcal{P}_{n}^{q}(e_{0};x), \end{split}$$

which is the required result.

(iv) From (2.3), we have the equality

$$\mathcal{P}_n^q(e_3; x) = \sum_{k=1}^{\infty} \frac{[k]_q [k+1]_q [k+2]_q}{[n]_q^3} q^{(k^2 - 7k - 6)/2} p_{n,k}(x; q).$$

Using the equality

$$[k]_q[k+1]_q[k+2]_q = [k]_q[k-1]_q[k-2]_q + ([2]_qq + [4]_q)q^{k-2}[k]_q[k-1]_q + [2]_q[3]_qq^{2k-2}[k]_q,$$

we obtain

$$\begin{split} \mathcal{P}_{n}^{q}(e_{3};x) &= \frac{1}{[n]_{q}^{3}} \sum_{k=3}^{\infty} q^{(k^{2}-7k-6)/2} \frac{([n]_{q}x)^{k}}{[k-3]_{q}!} e_{q}^{-[n]_{q}x} \\ &\quad + \frac{([2]_{q}q+[4]_{q})}{[n]_{q}^{3}} \sum_{k=2}^{\infty} q^{(k^{2}-5k-10)/2} \frac{([n]_{q}x)^{k}}{[k-2]_{q}!} e_{q}^{-[n]_{q}x} \\ &\quad + \frac{[2]_{q}[3]_{q}}{[n]_{q}^{3}} \sum_{k=1}^{\infty} q^{(k^{2}-3k-10)/2} \frac{([n]_{q}x)^{k}}{[k-1]_{q}!} e_{q}^{-[n]_{q}x} \\ &\quad = \frac{x^{3}}{q^{9}} \mathcal{P}_{n}^{q}(e_{0};x) + \frac{([2]_{q}q+[4]_{q})x^{2}}{q^{8}[n]_{q}} \mathcal{P}_{n}^{q}(e_{0};x) + \frac{[2]_{q}[3]_{q}x}{q^{6}[n]_{q}^{2}} \mathcal{P}_{n}^{q}(e_{0};x), \end{split}$$

which is the required result.

(v) From (2.3), we have the equality

$$\mathcal{P}_n^q(e_4; x) = \sum_{k=1}^{\infty} \frac{[k]_q [k+1]_q [k+2]_q [k+3]_q}{[n]_q^4} q^{(k^2 - 9k - 12)/2} p_{n,k}(x; q).$$

Using the equality

$$\begin{split} [k]_q[k+1]_q[k+2]_q[k+3]_q &= [k]_q[k-1]_q[k-2]_q[k-3]_q \\ &+ ([2]_qq^2 + [4]_qq + [6]_q)q^{k-3}[k]_q[k-1]_q[k-2]_q \\ &+ ([2]_q[3]_qq^2 + [2]_q[5]_qq + [4]_q[5]_q)q^{2k-4}[k]_q[k-1]_q \\ &+ [2]_q[3]_q[4]_qq^{3k-3}[k]_q, \end{split}$$

so we can write,

$$\begin{split} \mathcal{P}_{n}^{q}(e_{4};x) &= \frac{1}{[n]_{q}^{4}} \sum_{k=4}^{\infty} q^{(k^{2}-9k-12)/2} \frac{([n]_{q}x)^{k}}{[k-4]_{q}!} e_{q}^{-[n]_{q}x} \\ &+ \frac{[2]_{q}q^{2} + [4]_{q}q + [6]_{q}}{[n]_{q}^{4}} \sum_{k=3}^{\infty} q^{(k^{2}-7k-18)/2} \frac{([n]_{q}x)^{k}}{[k-3]_{q}!} e_{q}^{-[n]_{q}x} \\ &+ \frac{[2]_{q}[3]_{q}q^{2} + [2]_{q}[5]_{q}q + [4]_{q}[5]_{q}}{[n]_{q}^{4}} \sum_{k=2}^{\infty} q^{(k^{2}-5k-20)/2} \frac{([n]_{q}x)^{k}}{[k-2]_{q}!} e_{q}^{-[n]_{q}x} \\ &+ \frac{[2]_{q}[3]_{q}[4]_{q}}{[n]_{q}^{4}} \sum_{k=1}^{\infty} q^{(k^{2}-3k-18)/2} \frac{([n]_{q}x)^{k}}{[k-1]_{q}!} e_{q}^{-[n]_{q}x}. \end{split}$$

Thus,

$$\begin{split} \mathcal{P}_{n}^{q}(e_{4};x) &= \frac{x^{4}}{q^{16}}\mathcal{P}_{n}^{q}(e_{0};x) + \frac{\left([2]_{q}q^{2} + [4]_{q}q + [6]_{q}\right)x^{3}}{q^{15}[n]_{q}}\mathcal{P}_{n}^{q}(e_{0};x) \\ &+ \frac{\left([2]_{q}[3]_{q}q^{2} + [2]_{q}[5]_{q}q + [4]_{q}[5]_{q}\right)x^{2}}{q^{13}[n]_{q}^{2}}\mathcal{P}_{n}^{q}(e_{0};x) \\ &+ \frac{\left([2]_{q}[3]_{q}[4]_{q}\right)x}{q^{10}[n]_{q}^{3}}\mathcal{P}_{n}^{q}(e_{0};x), \end{split}$$

as required.

2.2. Remark. Take a fixed number $q \in (0,1)$. Since

$$\lim_{n \to \infty} [n]_q = \frac{1}{1 - q},$$

in Lemma 2.1, $\mathfrak{P}_n^q(t^m, x)$, $m \in \mathbb{N}$, does not tend to x^m as $n \to \infty$. From this result, we have to consider the condition $q := (q_n)$ as a sequence with $\lim_{n \to \infty} q_n = 1$ for approximation properties of the operators $\mathfrak{P}_n^q(f, x)$ defined by (2.1)

For shortness, q denotes the n^{th} term of the sequence $(q_n) \subset (0,1)$ with $\lim_{n\to\infty} q_n = 1$ after this section.

2.3. Lemma. For the operators $\mathfrak{P}_n^q(f,x)$ defined by (2.1), we have the inequality

$$\mathcal{P}_n^q((t-x)^2;x) \le \frac{2}{q^4} \left(1 - q^3 + \frac{1}{[n]_q}\right) x(1+x).$$

Proof. From the linearity of the \mathcal{P}_n^q operators, and Lemma 2.1, we have the second moment

$$\mathcal{P}_n^q((t-x)^2; x) = \frac{x^2}{q^4} + \frac{[2]_q}{q^3[n]_q} x - 2x \frac{x}{q} + x^2$$
$$= \left(\frac{1}{q^4} - \frac{2}{q} + 1\right) x^2 + \frac{[2]_q}{q^3[n]_q} x$$
$$\leq \frac{2}{q^4} \left(1 - q^3 + \frac{1}{[n]_q}\right) x (1+x).$$

Therefore, The proof is completed.

2.4. Lemma. If we make a slight modification to the operators $\mathfrak{P}_n^q(f;x)$ defined in (2.1) as follows:

(2.4)
$$\overline{\mathcal{P}}_n^q(f;x) = \mathcal{P}_n^q(f;x) - f\left(\frac{x}{q}\right) + f(x),$$

then we have

$$\overline{\mathcal{P}}_n^q(t-x;x) = 0.$$

Proof. From Lemma 2.1,

$$\overline{\mathcal{P}}_n^q(1;x) = \mathcal{P}_n^q(1;x)$$

and

$$\overline{\mathbb{P}}_n^q(t;x) = \mathbb{P}_n^q(t;x) - \frac{x}{a} + x = x.$$

Therefore, we obtain the result stated in the Lemma.

3. Local approximation

In this section, let $C_B[0,\infty)$ be the space of all real valued continuous bounded functions on $[0,\infty)$ and let $f\in C_B[0,\infty)$ be equipped with the norm $\|f\|=\sup_{x\in[0,\infty)}|f(t)|$. We denote the first modulus of continuity on the finite interval [0,a], a>0, by

(3.1)
$$\omega_{[0,a]}(f;\delta) = \sup_{0 < h \le \delta, x \in [0,a]} |f(x+h) - f(x)|$$

Peetre's K-functional is defined by

$$K_2(f;\delta) = \inf \{ \|f - g\| + \delta \|g''\| : g \in W_\infty^2 \}, \ \delta > 0$$

where $W_{\infty}^2=\{g\in C_B[0,\infty):g',g''\in C_B[0,\infty)\}$. By [3, Theorem 2.4, p. 177] there exists a positive constant M such that

$$(3.2) K_2(f;\delta) \le M\omega_2(f;\sqrt{\delta}),$$

where

$$\omega_2(f; \sqrt{\delta}) = \sup_{0 < h < \delta} \sup_{x \in [0,\infty)} |f(x+2h) - 2f(x+h) - f(x)|.$$

3.1. Theorem. For every $x \in [0, \infty)$ and $f \in C_B[0, \infty)$ we have the inequality

$$|\mathcal{P}_n^q(f;x) - f(x)| \le M\omega_2\left(f;\sqrt{\delta_{n,q}(x)}\right) + \omega_{[0,a]}\left(f;\frac{1-q}{q}x\right),\,$$

where

$$\delta_{n,q}(x) := \frac{2}{q^4} \left(1 - q^3 + \frac{1}{[n]_q} \right) x(1+x).$$

Proof. Let $g \in W^2_{\infty}$ and $x \in [0, \infty)$. Using Taylor's expansion

$$g(t) = g(x) + (t - x)g'(x) + \int_{x}^{t} (t - u)g''(u) du,$$

and from Lemma 2.4, we have

$$\overline{\mathcal{P}}_n^q(g;x) = g(x) + \overline{\mathcal{P}}_n^q \left(\int_x^t (t-u)g''(u) \, du; x \right).$$

Then, we get

$$\left| \overline{\mathbb{P}}_n^q(g; x) - g(x) \right| = \left| \mathbb{P}_n^q \left(\int_x^t (t - u) g''(u) \, du; x \right) - \int_x^{x/q} \left(\frac{x}{q} - u \right) g''(u) \, du \right|$$

$$\leq \mathbb{P}_n^q \left(\left| \int_x^t (t - u) g''(u) \, du \right|; x \right) + \int_x^{x/q} \left| \frac{x}{q} - u \right| |g''(u)| \, du.$$

Using the inequality

$$\left| \int_{x}^{t} (t-u)g''(u)du \right| \le \left\| g'' \right\| \frac{(t-x)^2}{2},$$

and from Lemma 2.3, we write

(3.3)
$$\left| \overline{\mathcal{P}}_{n}^{q}(g;x) - g(x) \right| \leq \|g''\| \mathcal{P}_{n}^{q} \left(\frac{(t-x)^{2}}{2}; x \right) + \|g''\| \frac{\left(\frac{x}{q} - x \right)^{2}}{2} \\ \leq \frac{2}{q^{4}} \left(1 - q^{3} + \frac{1}{[n]_{q}} \right) x(1+x) \|g''\|.$$

The operators $\overline{\mathcal{P}}_n^q(f,x)$ are bounded, that is

$$(3.4) \left| \overline{\mathcal{P}}_n^q(f;x) \right| = \left| \mathcal{P}_n^q(f;x) - f\left(\frac{x}{q}\right) + f(x) \right| \le ||f|| \mathcal{P}_n^q(1;x) + 2||f|| \le 3||f||.$$

From (2.4), (3.3) and (3.4), we get

$$\begin{split} |\mathcal{P}_{n}^{q}(f;x) - f(x)| &= |\mathcal{P}_{n}^{q}(f - g;x) - (f - g)(x) + \mathcal{P}_{n}^{q}(g;x) - g(x)| \\ &\leq \left|\overline{\mathcal{P}}_{n}^{q}(f - g;x) - (f - g)(x)\right| + \left|\overline{\mathcal{P}}_{n}^{q}(g;x) - g(x)\right| \\ &+ \left|f\left(\frac{x}{q}\right) - f(x)\right| \\ &\leq 4 \left||f - g|\right| + \frac{2}{q^{4}} \left(1 - q^{3} + \frac{1}{[n]_{q}}\right) x(1 + x) ||g''|| \\ &+ \left|f\left(x + \frac{1 - q}{q}x\right) - f(x)\right|. \end{split}$$

Now taking the infimum over $g \in W_{\infty}^2$ on the right hand side of the above inequality, and using the inequalities (3.1) and (3.2), we get the desired result.

4. Weighted approximation

Weighted Korovkin-type theorems were proved by Gadzhiev [4] and [5]. Now, we give Gadzhiev's results in weighted spaces. Let $\rho(x) = 1 + \varphi^2(x)$, where $\varphi(x)$ is a monotone increasing continuous function on the real axis and B_{ρ} is the set of all functions f defined on the real axis satisfying the growth condition $|f(x)| \leq M_f \rho(x)$, where M_f is a constant depending only on f. Then B_{ρ} is a normed space with norm

$$||f||_{\rho} = \sup\{|f(x)|/\rho(x) : x \in \mathbb{R}\}$$

for any $f \in B_{\rho}$. Let C_{ρ} denote the subspace of all continuous functions in B_{ρ} , and C_{ρ}^* the subspace of all functions $f \in C_{\rho}$ for which $\lim_{|x| \to \infty} (f(x)/\rho(x))$ exists finitely.

4.1. Theorem. (See [4] and [5])

(a) There exists a sequence of linear positive operators $A_n(C_\rho \to B_\rho)$ such that

(4.1)
$$\lim_{n \to \infty} ||A_n(\varphi^{\upsilon}) - \varphi^{\upsilon}||_{\rho} = 0, \ \nu = 0, 1, 2,$$

and a function $f^* \in C_{\rho} \backslash C_{\rho}^*$ with $\lim_{n \to \infty} ||A_n(f^*) - f^*||_{\rho} \ge 1$.

(b) If a sequence of linear positive operators $A_n(C_\rho \to B_\rho)$ satisfies conditions (4.1), then

$$\lim_{n \to \infty} ||A_n(f) - f||_{\rho} = 0,$$
for every $f \in C_{\rho}^*$.

Throughout this paper we take the growth condition as $\rho(x) = 1 + x^2$.

4.2. Theorem. For every $f \in C_B[0,\infty)$ we have the following limit

$$\lim_{n \to \infty} \|\mathcal{P}_n^q(f) - f\|_{\rho} = 0.$$

Proof. Since $\mathfrak{P}_n^q(e_0;x)=1$, it is obvious that

$$\|\mathcal{P}_n^q(e_0) - e_0\|_{\rho} = 0.$$

Considering Lemma 2.1 (ii), we get

$$\|\mathcal{P}_{n}^{q}(e_{1}) - e_{1}\|_{\rho} = \sup_{x \in [0, \infty)} \frac{|\mathcal{P}_{n}^{q}(e_{1}; x) - x|}{1 + x^{2}}$$

$$\leq \sup_{x \in [0, \infty)} \frac{\left|\frac{x}{q} - x\right|}{1 + x^{2}}$$

$$\leq \left(\frac{1}{q} - 1\right) \sup_{x \in [0, \infty)} \frac{x}{1 + x^{2}}$$

$$= o(1).$$

Similarly, from Lemma 2.1 (iii) we get

$$\|\mathcal{P}_{n}^{q}(e_{2}) - e_{2}\|_{\rho} = \sup_{x \in [0,\infty)} \frac{\left|\mathcal{P}_{n}^{q}(e_{2}; x) - x^{2}\right|}{1 + x^{2}}$$

$$\leq \sup_{x \in [0,\infty)} \frac{\left|\frac{x^{2}}{q^{4}} + \frac{[2]_{q}}{q^{3}[n]_{q}}x - x^{2}\right|}{1 + x^{2}}$$

$$= \left(\frac{1 - q^{4}}{q^{4}} + \frac{[2]_{q}}{q^{3}[n]_{q}}\right) \sup_{x \in [0,\infty)} \frac{x + x^{2}}{1 + x^{2}}$$

$$= o(1).$$

Thus, from Theorem 4.1, we obtain the desired result.

5. Rate of convergence

In this section, we want to estimate the rate of convergence for the sequence of the \mathcal{P}_n^q operators. As is known, if f is not uniformly continuous on the interval $[0,\infty)$, then the usual first modulus of continuity $\omega(f;\delta)$ does not tend to zero, as $\delta \to 0$. For every $f \in C_\rho^*[0,\infty)$, we would like to take a weighted modulus of continuity $\Omega(f;\delta)$ which tends to zero as $\delta \to 0$.

Let

(5.1)
$$\Omega(f;\delta) = \sup_{0 < h < \delta, x > 0} \frac{|f(x+h) - f(x)|}{(1+h^2)(1+x^2)}, \text{ for each every } f \in C_\rho^*[0,\infty).$$

The weighed modulus of continuity $\Omega(f;\delta)$ was defined by Ispir in [7]. It is known that $\Omega(f;\delta)$ has the following properties.

- **5.1. Lemma.** [7] Let $f \in C_{\rho}^{*}[0, \infty)$. Then:
 - (i) $\Omega(f;\delta)$ is a monotone increasing function of δ ,
 - (ii) For each $f \in C^*_{\rho}[0,\infty)$, $\lim_{\delta \to 0^+} \Omega(f;\delta) = 0$, (iii) For each $m \in \mathbb{N} \setminus \{0\}$, $\Omega(f;m\delta) \leq m\Omega(f;\delta)$, (iv) For each $\lambda \in \mathbb{R}^+$, $\Omega(f;\lambda\delta) \leq (1+\lambda)\Omega(f;\delta)$.

(iv) For each
$$\lambda \in \mathbb{R}^+$$
, $\Omega(f; \lambda \delta) \leq (1 + \lambda)\Omega(f; \delta)$.

Now we obtain a rate of convergence for the operators \mathcal{P}_n^q .

5.2. Theorem. Let $f \in C^*_{\rho}[0,\infty)$. Then we have the inequality

$$\|\mathcal{P}_n^q(f) - f\|_{\overline{\rho}} \le M(q)\Omega\left(f; \sqrt{1 - q^3 + \frac{1}{[n]_q}}\right),$$

where $\overline{\rho}(x) = 1 + x^5$ and M(q) is a positive real number dependent on q.

Proof. From the definition of $\Omega(f;\delta)$, and Lemma 5.1 (iv), we can write

$$|f(t) - f(x)| \le (1 + (t - x)^2)(1 + x^2)\left(1 + \frac{|t - x|}{\delta}\right)\Omega(f; \delta).$$

Then, we have the inequality

$$|\mathcal{P}_{n}^{q}(f;x) - f(x)| \leq (1+x^{2})\Omega(f;\delta)\mathcal{P}_{n}^{q}\left((1+(t-x)^{2})\left(1+\frac{|t-x|}{\delta}\right);x\right)$$

$$\leq (1+x^{2})\Omega(f;\delta)\left\{\mathcal{P}_{n}^{q}\left((1+(t-x)^{2});x\right) + \mathcal{P}_{n}^{q}\left((1+(t-x)^{2})\frac{|t-x|}{\delta};x\right)\right\}.$$

Applying the Cauchy-Schwarz inequality to the second term, we get

(5.3)
$$\mathcal{P}_{n}^{q}\left((1+(t-x)^{2})\frac{|t-x|}{\delta};x\right) \\
\leq \left\{\mathcal{P}_{n}^{q}\left((1+(t-x)^{2})^{2};x\right)\right\}^{1/2}\left\{\mathcal{P}_{n}^{q}\left(\frac{|t-x|^{2}}{\delta^{2}};x\right)\right\}^{1/2}.$$

From Lemma 2.1 and Lemma 2.3, we get the following estimates

$$\left(\mathcal{P}_{n}^{q}\left(1+(t-x)^{2};x\right)\right) \leq 1 + \frac{2}{q^{4}}\left(1-q^{3} + \frac{1}{[n]_{q}}\right)x(1+x)$$

$$\leq \frac{2}{q^{4}}\left(2-q^{3} + \frac{1}{[n]_{q}}\right)(1+x)^{2}$$

$$\leq M_{1}(q)(1+x)^{2},$$
(5.4)

$$(5.5) \quad \mathcal{P}_{n}^{q} \left((1 + (t - x)^{2})^{2}; x \right)$$

$$= 1 + 2\mathcal{P}_{n}^{q} ((t - x)^{2}; x) + \mathcal{P}_{n}^{q} ((t^{4}; x) - 4x\mathcal{P}_{n}^{q} ((t^{3}; x) + 6x^{2}\mathcal{P}_{n}^{q} (t^{2}; x) - 4x^{3}\mathcal{P}_{n}^{q} (t; x) + x^{4}\mathcal{P}_{n}^{q} (1; x)$$

$$= x^{4} \left(\frac{1}{q^{16}} - \frac{4}{q^{9}} + \frac{6}{q^{4}} - \frac{4}{q} + 1 \right)$$

$$+ x^{3} \left(\frac{\left([2]_{q}q^{2} + [4]_{q}q + [6]_{q} \right)}{q^{15}[n]_{q}} - 4 \frac{\left([2]_{q}q + [4]_{q} \right)}{q^{8}[n]_{q}} + 6 \frac{[2]_{q}}{q^{3}[n]_{q}} \right)$$

$$+ x^{2} \left(\frac{\left([2]_{q}[3]_{q}q^{2} + [2]_{q}[5]_{q}q + [4]_{q}[5]_{q}}{q^{13}[n]_{q}^{2}} - 4 \frac{[2]_{q}[3]_{q}}{q^{6}[n]_{q}^{2}} + \frac{2}{q^{4}} - \frac{4}{q} + 2 \right)$$

$$+ x \left(\frac{[2]_{q}[3]_{q}[4]_{q}}{q^{10}[n]_{q}^{3}} + 2 \frac{[2]_{q}}{q^{3}[n]_{q}} \right) + 1$$

$$\leq 8 \left(\frac{1 - q^{15}}{q^{16}} \right) x^{4} + \frac{48}{q^{15}[n]_{q}} x^{3} + \frac{68}{q^{13}[n]_{q}^{2}} x^{2} + \frac{28}{q^{10}[n]_{q}^{3}} x + 1$$

$$\leq M_{2}(q)(1 + x^{2})^{2}$$

$$(5.6)$$

and

$$\left\{ \mathcal{P}_n^q \left(\frac{|t - x|^2}{\delta^2}; x \right) \right\}^{1/2} \le \frac{1}{\delta} \sqrt{\frac{2}{q^4} \left(1 - q^3 + \frac{1}{[n]_q} \right) x (1 + x)} \\
\le \frac{M_3(q)}{\delta} \sqrt{1 - q^3 + \frac{1}{[n]_q}} (1 + x).$$
(5.7)

Choosing $M(q) = (M_1(q) + \sqrt{M_2(q)}M_3(q))M_4$, where $M_4 = \sup_{x \ge 0} (1+x^2)^2(1+x)/(1+x^5)$ and $\delta = \sqrt{1-q^3+\frac{1}{[n]_q}}$, and combining the estimates between (5.2) and (5.7), we end up with

$$|\mathcal{P}_n^q(f,x) - f(x)| \le (1+x^5)M(q)\Omega\left(f; \sqrt{1-q^3 + \frac{1}{q^3[n]_q}}\right),$$

as required. \Box

5.3. Remark. The weighted approximation theorem, Theorem 4.2, is obtained for the norm $\|\cdot\|_{\rho}$, where $\rho(x)=1+x^2$. In Theorem 5.2, we estimated the rate of convergence for the operators \mathcal{P}_n^q for the norm $\|\cdot\|_{\overline{\rho}}$, where $\overline{\rho}(x)=1+x^5$. It is an open problem to obtain the rate of convergence for the operators \mathcal{P}_n^q in the norm $\|\cdot\|_{\rho}$, where $\rho(x)=1+x^2$, without adding an extra condition to the function $f\in C_{\rho}^*$.

References

- Aral, A. and Gupta, V. On the Durrmeyer type modification of the q-Baskakov type operators, Nonlinear Anal. 72 (3-4), 1171-1180, 2010.
- [2] De Sole, A. and Kac, V. G. On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 16 (1), 11–29, 2005.
- [3] De Vore, R. A. and Lorentz, G. G., Constructive Approximation (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 303, Springer-Verlag, Berlin, 1993).

- [4] Gadzhiev, A. D. A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin.s theorem (Russian), Dokl. Akad. Nauk SSSR 218, 1001–1004, 1974.
- [5] Gadzhiev, A. D. Theorems of the type of P. P. Korovkin.s theorems (Russian), Presented at the International Conference on the Theory of Approximation of Functions (Kaluga, 1975), Mat. Zametki 20 (5), 781–786, 1976.
- [6] Gupta, V. and Finta, Z. On certain q-Durrmeyer type operators, Appl. Math. Comput. 209 (2), 415–420, 2009.
- [7] Ispir, N. On modified Baskakov operators on weighted spaces, Turkish J. Math. 25 (3), 355–365, 2001.
- [8] Jackson, F. H. On q-definite integrals, Quart. J. Pure Appl. Math. 41 (15), 193-203, 1910.
- [9] Kac, V.G. and Cheung, P. Quantum Calculus (Universitext, Springer-Verlag, New York, 2002).
- [10] Koelink, H. T. and Koornwinder, T. H. q-special functions, a tutorial. Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), 141– 142 (Contemp. Math. 134, Amer. Math. Soc., Providence, RI, 1992).
- [11] May, C.P. On Phillips operator, J. Approximation Theory 20 (4), 315–332, 1977.
- [12] Phillips, G. M. Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4, 511–518, 1997.
- [13] Phillips, R. S. An inversion formula for Laplace transforms and semi-groups of linear operators, Ann. of Math. 59 (2), 352–356, 1954.