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Abstract
In this study, we introduce a g-analogue of the Phillips operators and
investigate approximation properties. We establish direct and local
approximation theorems. We give a weighted approximation theorem.
We estimate the rate of convergence of these operators for functions of
polynomial growth on the interval [0, co).
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1. Introduction

Phillips firstly introduced the g-analogue of Bernstein polynomials based on g-integer
and ¢g-binomial coefficients in [12]. Gupta and Finta obtain some direct results on certain
g-Durrmeyer type operators in [6]. Recently, Aral and Gupta introduced Durrmeyer type
modification of the ¢-Baskakov type operators in [1]. We aim to introduce a g-analogue
of Phillips operators and to study approximation properties. Before this, we mention
the following notations and formulas, which can be founded in [2, 8, 9] and [10]: For
neN, 0<g<1anda,beR,

(1.1) e =1+q+q"+---+¢"", ne N\{0}; [0], =0,
(1.2) [nlg! = [q[2]q - -+ [nlg, n € N\{O}; [0]¢! =1,

(1.3)  (a+b)7 H (a+ ¢’ 'b),
and

(14) (Q+ar=J[0+d ).
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The g-binomial coefficients are given by

n nlq!
(1.5) hﬂq:ED%%EDWOSkSm

The g- derivative Dy f of the function f is given by

(1L6)  (Dof)(@) = f(‘(?jij;)(j” for 2 £ 0

and (Dgqf)(0) = f'(0) provided f’(0) exists.

The two g-analogues of the exponential function are defined by

D 4= pn = a-a—ooF

and
T - n(n—1)/2 x" — _ oo

The g-Jackson integrals and the g-improper integrals are defined as
(19) [ f@)di=al=0)3 flag")", a>0
0 n=0

and
oo /A

110 [ s@de=a-0X 1% A0
0 nez
respectively. The g-Gamma function is given by
00/A(1—q)
(111) Tu(s) = K(A,s) / et dgt,

q

where
(1.12) K(A s)—i 141 S(1+A)1’S
’ 14 A A . a

In particular, for s € Z, K(A,s) = ¢**~9/? and K(A,0) = 1.

2. Construction of the operators
Let f be a real valued continuous function on the interval [0, c0). Using the formulas
and notations in (1.1)—(1.12), we now define the ¢-Phillips operators as

o oo /A(1-q)
21)  PL(fix) = [nle Y pur(z3q) / ¢V ()i (£ q) dgt + e "7 £(0),
k=1

where

k
(22)  puslesq) = el oo
’ [K]q!
In the case ¢ = 1, these operators are reduced to the Phillips operators studied in [11]
and [13].

Now we give an auxiliary lemma for the Korovkin monomial functions.
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2.1. Lemma. Let e (t) =t™, m=0,1,2,3,4. We have

(i) Pi(eo;z) :}é
(ii) Pi(er;x) = E, ’
) P (s _2? 2P
o q4+?[3[]n]q W) 2
i qelxzx_3 2]qq + 44 22 2[4(3lq
(iv) Pilesie) = 75 + ¢l T sz
(v) Piles; ) = ;Ts + (lag ;ET}ZZ+ [6](1)1:3
([2]q[3]qq2 + [2]4[5]qq + [4]4[5]q o [2]4[3]4[4]q
- ¢ SIS

Proof. (i) Using the formulas (1.10), (1.11), (1.12) and (2.2), we can calculate the fol-
lowing integral:

oo /A(1-q) oo /A(1-q)

" Dk (b q)dgt = / t

e;["]qt dyt

. o0o/(A/[n]q)(1—q)
_ k+m —u
= e
_ Ty(k+m+1)

[n)g " [K]g! K (A/[n]q, k +m + 1)
[n]T+1 [k]q!q(k+m+1)(k+m)/2 ’

(2.3) =
Using (1.7), (1.8) and (2.3) we obtain

¢V 2, (w5q) + eq M0

N

Pileosx) =

ES
Il

1

o0
> T P k(wsq) + 1) eq M

k=1

Il
& —

nlgz —[nlqz
q  €q

Il
—_

which completes the proof of (i).
(ii) From (2.3), we have the equality

oo

[k]q (k2 —=3k)/2

Pulersz) =) ¢ Pk (25 9)-
= [n]q
Thus, we obtain
1 k2 —3k)/2 (Ne®)* —tnlge
Phler;z) = — > g e,
[n]q kzzl [k —1]g! !
T
= =P €0;T),
7 (eo; @)

as required.
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(iii) From (2.3), we have the equality

> k+1 2_5
4 (eg; :Z [ lg (k k— 2)/2 (23 9).

k=1
Using the equality [k]q[k + 1]q = [k]q[k — 1]q + [2]q¢"*[K]q, We obtain

1 i g2 5E=2/2 ([n)g)" ol

Pi(e2s ) =
3 = [k — 2]
[2],1 Z (k2 —3k—a)/2 ([n]q)" )" o lnloe
nlg [k — 1],
k=1
2
= %TZ(@O; x)+ [32]—?‘1 (eo; ),
q [n]q
which is the required result.
(iv) From (2.3), we have the equality
- k+1)gk+2lq 2
(Pt] 63, Z [ [n]S[ ]q (k —Tk— 6)/2 (x,q)

k=1
Using the equality

[k]Q[k + 1]a[k + 2]q = [k]q[k - 1]a[k - 2](1 + ([Q]qq + [4111)‘11672[743]t1[]C - 1]q
+ [214[3]ag”* 2 K],

we obtain
P (e5: 1) = q(k2 7k—6)/2 ([n]g2)"* o [Mlaz
@50 = 1 2 [k—3]q' q
qq+ - (k2—5k— 10)/2([”]:195) —[nlqz
i () Zq k= 2],1°
Q]q[3]q 2 —ak-10)/2 ([1]e@)"  —n)ya
q e
g Z k=1,
z® 2],q + [4]4)z> 2]4[3]q
= Lontensa) + L I g o) 4 et e,
q q
which is the required result.
v) From (2.3), we have the equalit,
V) (2.3) y
= k+ gk + 2gk + 3]y 2
TR S CHER L LSS AR

Using the equality
[k]qlk + gk + 2)q[k + 3]q = [K]q[k — 1]q[k — 2]q[k — 3]q
+ ([21ad” + [4laq + [6la)a" " [Klalk — Lalk — 2],
+ ([2a[3lad” + [21a15]aq + [4]a[5a)a™* ~* [Klalk — 1
+ [214[3]a[4laa™ ~* [Kla,
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so we can write,

?2(64; x) = 4 Z (k2 9k—12)/2 [(]Ln]qz]) 'e;[”]qz
q k=4

[Q]qq + [4aq + [6lg = k2—70-18)/2 ([M]g2)* e
I DL e i

[Q]Q[?’]qqz + [2]61[5]qq + [4]61[5111 i q(kQ—Sk—2O)/2 ([n]qm)k e;[n]qw

i [l 2 [ 2l
[2]4[3]4[4]4 - (k2 —3k—18)/2 ([n]qx)k ef[n]qz
2 -1
Thus,
i(erse) = pPhlense) + ) T
NCHCE S5 ESTHRE P
([2]q[3]q[4lq) g eo: T
+ qlo[n]g :Pn( 05 )7
as required. (]

2.2. Remark. Take a fixed number ¢ € (0,1). Since
. 1
i e = 37
in Lemma 2.1, PL(t™,z), m € N, does not tend to z™ as n — oo. From this result,
we have to consider the condition g := (gn) as a sequence with limp—o gn = 1 for
approximation properties of the operators P%(f, z) defined by (2.1)

For shortness, ¢ denotes the n'" term of the sequence (gn) C (0,1) with limyp—oo gn =1
after this section.

2.3. Lemma. For the operators PL(f, x) defined by (2.1), we have the inequality

Lt —a)x 2o L x x
it —arin < 2 (1= + ) et o)

Proof. From the linearity of the P operators, and Lemma 2.1, we have the second
moment

2 2]
P t—:c2;:c:x—+ [ 1 p—2z= + 2?
((t=a)5o) = G 7*[nlq
1 2 2 [2]q
— (L2, 1) 24
(q‘* q 7*[nlq
2 3 1 )
<—=(1l—-¢ +—|zxz(1+=x
= ( o, ) 0T
Therefore, The proof is completed. O

2.4. Lemma. If we make a slight modification to the operators PL(f;x) defined in (2.1)
as follows:

(24)  T(fia) = PL(fra) — f (2) i),
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then we have

Pr(t —x;2) = 0.

Proof. From Lemma 2.1,
Pu(l;a) = Ph(Ls2)
and

Phltie) = Phlse) — T +a =2

Therefore, we obtain the result stated in the Lemma. O

3. Local approximation

In this section, let Cg[0, 00) be the space of all real valued continuous bounded func-
tions on [0,00) and let f € Cg[0,00) be equipped with the norm ||f|| = sup |f(¢)].
)

x€[0,00

We denote the first modulus of continuity on the finite interval [0, a], a > 0, by
(1) wpoa(f;0)=  sup  [f(z+h)— f(z)].

0<h<8,z€(0,a]
Peetre’s K-functional is defined by
Ks(f;6) =inf {||f — gl —|—5Hg”“ ig € Wfo}7 0>0

where W2 = {g € Cg[0,00) : ¢’,g" € Cp[0,00)}. By [3, Theorem 2.4, p. 177] there
exists a positive constant M such that

(3.2)  Ka(f;0) < Muws(f; V),
where

wa2(f; V) = sup  sup |f(x+2h) = 2f(z +h) - f(z)|.

0<h<8 £€[0,00)

3.1. Theorem. For every z € [0,00) and f € Cp[0,00) we have the inequality

[P4(f:2) — (@) < Ma (f v/ Fra @) + wi0.0 (f; - %) ,

q

where

On,q() = q—24 (1 -4+ ﬁ) z(1+ ).

Proof. Let g € W2 and z € [0,00). Using Taylor’s expansion
t
9(6) = (@) + (¢~ 0)g (@) + [ (¢~ g () du,
and from Lemma 2.4, we have
t

Thlgia) = g(a) + 7 | / (t — w)g" () du;

x



Approximation by g¢-Phillips Operators 197

Then, we get
t z/q
Thtgie) — (o) = o1 | [ - wg'aue |~ [ (£ )"
t z/q

< PL /(t—u)g"(u)du iz |+ / ‘E—u lg" (u)| du.
q

Using the inequality

t

Ja- i < 52

x

and from Lemma 2.3, we write

2
2 zZ_z
Io175 (525 ) + 12

IA

. i (g52) — 9()

2 3 1 ) 7
< —|1-¢ +—z(1+z)|g |
= o) 2+l
The operators ?i(ﬁ x) are bounded, that is

(34)  [PhL(fim)| = < 7194 (152) + 2011 < 31711

Pi(frx) — f (g) + f(2)
From (2.4), (3.3) and (3.4), we get

[P5(f;2) = f(@)] = [PR(f — g52) — (f — g)(2) + Ph(g;2) — g(2)]
< Pais = gi2) = (F — 9)@)| + [Phigio) — g(a)

+ ‘f(%) - f(=@)

2 3 1 "
<4|lf-gll+=(1-4q +—)x1+:c
1f =gl + ( oP (1+2)llg"l

+‘f(x+1;qx)—f(x) .

Now taking the infimum over g € W2 on the right hand side of the above inequality,
and using the inequalities (3.1) and (3.2), we get the desired result. a

4. Weighted approximation

Weighted Korovkin-type theorems were proved by Gadzhiev [4] and [5]. Now, we give
Gadzhiev’s results in weighted spaces. Let p(z) = 1 + ?(z), where ¢(z) is a monotone
increasing continuous function on the real axis and B, is the set of all functions f defined
on the real axis satisfying the growth condition | f(z)| < Myp(x), where My is a constant
depending only on f. Then B, is a normed space with norm

1fll, = sup{lf ()| /p(z) : © € R}

for any f € B,. Let C, denote the subspace of all continuous functions in B,, and C}
the subspace of all functions f € C, for which lim|,_o (f(x)/p(x)) exists finitely.



198 I. Yiiksel

4.1. Theorem. (See [4] and [5])

(a) There exists a sequence of linear positive operators An(C, — Bp) such that

(41) lim HA”(SOU) - SOD”P = 07 v= 07 17 27

and a function f* € C,\Cp with lim ||An(f*) — f*|, > 1.
(b) If a sequence of linear positive operators An(C, — B)) satisfies conditions (4.1),

then
Tim [ 40(f) ~ fll, = 0.
for every f € Cj. O

Throughout this paper we take the growth condition as p(x) =1+ x>,
4.2. Theorem. For every f € Cg[0,00) we have the following limit
T [[P4()) ~ /= 0.
Proof. Since P%(eo;x) = 1, it is obvious that
175 (e0) — eollo = 0.

Considering Lemma 2.1 (ii), we get

|P% (e1; ) —

Pller) —e = su
H n( 1) 1||P zE[O,Iio) 1+ 22
z
——
< sup 1

z€[0,00) 1+ 22

(l _ 1) ap "
q z€[0,00) 1422

=o0(1).

Similarly, from Lemma 2.1 (iii) we get

“(‘Pgl(eZ;x) - xz‘

IA

P (e2) — ea], =
H n(eQ) 62”9 zes[ggo) 14 22
@ 2o
¢ nl
< sup
z€[0,00) 1+:C2

1-g¢* 2 z + 2?

= ( 4q £ I ) sup 2

q [nlq z€[0,00) 1+
=o0(1).

Thus, from Theorem 4.1, we obtain the desired result. O

5. Rate of convergence

In this section, we want to estimate the rate of convergence for the sequence of the
P2 operators. As is known, if f is not uniformly continuous on the interval [0, c0), then
the usual first modulus of continuity w(f;d) does not tend to zero, as & — 0. For every
f € C30,00), we would like to take a weighted modulus of continuity Q(f; d) which tends
to zero as 6 — 0.



Approximation by g¢-Phillips Operators 199
Let

1) Qi) = sup LEFH @)

=~ L for each every f € C,[0,00).
0<h<s 520 (1 +h2)(1—|—x2) v f p[ )

The weighed modulus of continuity Q(f; ) was defined by Ispir in [7]. It is known that
Q(f;9) has the following properties.

5.1. Lemma. [7] Let f € C;[0,00). Then:

(1) Q(f;9) is a monotone increasing function of 0,
(ii) For each f € C}0,00), lim+ Q(f;0) =0,
§—0

)
(iii) For each m € N\ {0}, Q(f; md) < mQ(f;9),
(iv) For each A € R, Q(f; A6) < (1 + N)Q(f;9). O

Now we obtain a rate of convergence for the operators Py .

5.2. Theorem. Let f € C;[0,00). Then we have the inequality

IP2(f) = fllz < M(9)Q (fq/l -+ ﬁ) ;

where p(x) = 1+ z° and M(q) is a positive real number dependent on q.

Proof. From the definition of Q(f;J), and Lemma 5.1 (iv), we can write

10~ 1@ < 0+ = +at) (14 55 ) o),

Then, we have the inequality

P(f12) — F(2)] < (1 +22)QF: 6)PS ((1 (- a)?) (1 Ll “’”') ;x)
(5.2) < (14a)QF:8) {25 (1 + (t—2)°): )
491 ((1 + - - “”';x)} .

Applying the Cauchy-Schwarz inequality to the second term, we get

P ((1 +t—a)lt - “”';x)

< @ra+e-arriay o (52Ea))

From Lemma 2.1 and Lemma 2.3, we get the following estimates

(5.3)

(TZ(l—&-(t—m)Q;x)) §1+;—4(1—q3+ﬁ)x(1+x)
2 3 1 2
Sq—4(2—q +m)(1+$)

(5.4) < Mi(q)(1+ )%,
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(5.5)  PL((A4(t— x)?)?; )

=1+2P%((t — )% ) + Ph((t"; 2) — d2PRL((t%; )
+ 62> PL(t%; ) — 42 PL(t; ) + 2" PL(1; 2)

1 4 6 4
(A8t
q q

q16 q9
e ([200¢® + [4laa +[6]a)  (12laq + [4]4) [2]4
* ( o, T, +6q3[n]q>
2 [ ([20a[31a¢® + [2a[Blag + [4aBle  ,[214Bla |, 2 4
e ( q*3[n]? 4q6[n13 +q4 q+2)
o (([2lal3la[4)g [2]4
i ( PmE “qS[nlq)“
1—¢"®\ 4 48 4 68 o 28
SB( q*e )x +q15[n]qx +q13[n13x +q1°[n]2x+1
(5.6) < Ms(q)(1+2°)?
and
J (=2l NP2 oo Uy
()} <5\/q4(1 ? ) #1+2)
(5.7) <Ms@ sy g,

4 [n]q

Choosing M (q) = (M1(q) ++/M2(q) M3(q)) Ma, where My = sup, (1 +2)?(1+2)/(1+
1

z%) and § = /1 — ¢+ L and combining the estimates between (5.2) and (5.7), we
a
end up with
5 1
1P5(fi2) = f(@)| < L+ 2")M()Q | fiy 1=+ 75— |,
a*[nq
as required. O

5.3. Remark. The weighted approximation theorem, Theorem 4.2, is obtained for the
norm || - || , where p(z) =1+ x2. In Theorem 5.2, we estimated the rate of convergence

for the operators Pj for the norm |- ||, where p(z) =1 + x°. Tt is an open problem to
obtain the rate of convergence for the operators P7 in the norm || - || ,, where p(z) = 1+,
without adding an extra condition to the function f € Cj}.
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