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Abstract

We consider the action of a permutation group on a set in the spirit of
the theory of permutation groups, and graph arising from this action in
hyperbolic geometric terms. In this paper, we examine some relations
between elliptic elements and circuits in graph for the normalizer of
Γ0(N) in PSL(2, R).
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1. Introduction

Let PSL(2, R) denote the group of all linear fractional transformations

T : z 7→
az + b

cz + d
, where a, b, c and d are real and ad − bc = 1.

In terms of the matrix representation, the elements of PSL(2, R) correspond to the
matrices

±

(
a b
c d

)
; a, b, c, d ∈ R and ad − bc = 1.

This is the automorphism group of the upper half plane H := {z ∈ C : Im(z) > 0}. The
modular group Γ is the subgroup of PSL(2, R) such that a, b, c and d are integers. Γ0(N)
is the subgroup of Γ with N |c.
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In [6], the normalizer Nor(N) of Γ0(N) in PSL(2, R) consists exactly of the matrices
(

ae b/h
cN/h de

)
,

where e‖ N
h2 and h is the largest divisor of 24 for which h2|N with the understanding that

the determinant, e of the matrix is positive and that r‖s means that r|s and (r, s/r) = 1 (r
is called an exact divisor of s). The group Nor(N) is a Fuchsian group whose fundamental
domain has finite area, so it has a signature consisting of the geometric invariants

(g; m1, . . . , mr; s)

where g is the genus of the compactified quotient space, m1, . . . , mr are the periods of
the elliptic elements and s is the parabolic class number.

2. The Action of Nor(N) on Q̂

Every element of the extended set of rationals Q̂ = Q ∪ {∞} can be represented as

a reduced fraction
x

y
, with x, y ∈ Z and (x, y) = 1. Here, ∞ is represented as 1

0
= −1

0
.

The action of the matrix

(
a b
c d

)
∈ Γ on

x

y
is

(
a b
c d

)
:

x

y
7→

ax + by

cx + dy
.

2.1. Lemma. [2] Let N have the prime power decomposition 2α1 · 3α2 · pα3

3 · · · pαr

r .

Then Nor(N) acts transitively on Q̂ if and only if α1 ≤ 7, α2 ≤ 3 and αi ≤ 1 for
i = 3, . . . , r. �

In this study, N will be of the form 22p2, where p is prime and p > 3. All circuits in the
suborbital graph for the normalizer of Γ0(N) in PSL(2, R) were studied in [3,9] and [10],
where N is a square-free positive integer and when N satisfies the condition of transitive
action, respectively. Clearly, the general statement is an open problem and seems to be
very difficult. In this study, we also investigate a case in which the normalizer does not
satisfy the conditions in [3,9] and [10]. Therefore, we take N = 22p2, where p is an odd
prime, as probably the simplest case where the conditions of Lemma 2.1 are not satisfied.
We believe that we have succeeded in giving a method, finding a maximal subset that
satisfies the transitive action, to extend the current situation to one step further.

In this case, as h = 2, e must be 1 or p2. So, Nor(N) consists of the following two
types of element:

T1 =

(
a b/2

2p2c d

)
: ad − bp2c = 1 and T2 =

(
ap2 b/2
2p2c dp2

)
: adp4 − bp2c = p2.

Clearly, Nor(22p2) is not transitive on Q̂. Therefore, we will find a maximal subset of Q̂

on which Nor(22p2) acts transitively. For this, we give the following two results from [3].

2.2. Lemma. Given an arbitrary rational number k/s with (k, s) = 1, then there exists
an element A ∈ Γ0(N) such that A(k/s) = (k1/s1) with s1|N . �

2.3. Lemma. Let d|N and let (a1, d) = (a2, d) = 1. Then

(
a1

d

)
and

(
a2

d

)
are conjugate

under Γ0(N) iff a1 = a2 mod (d, N/d). �

From Lemma 2.2 and Lemma 2.3, we get easily;
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2.4. Corollary. Let d|N . Then the orbit

(
a
d

)
of a/d with (a, d) = 1 under Γ0(N) is the

set
{
x/y ∈ Q̂ : (N, y) = d, a ≡ x y

d
mod (d, N/d)

}
. Furthermore the number of orbits

(
a
d

)

with d|N under Γ0(N) is just ϕ(d, N/d), where ϕ(n) is Euler’s totient function, which is
the number of positive integers less than or equal to n that are coprime to n. �

So, the number of orbits of Γ0(2
2p2) on Q̂ is

∑
d|N ϕ(d, N/d), which is 3p+3. We give

them explicitly in the following corollary (Here, for the sake of completeness, we give a
simple proof);

2.5. Corollary. The orbits of Γ0(2
2p2) on Q̂ are as follows:

(
1
1

)
;

(
1
2

)
;

(
1
22

)
;

(
1
p2

)
;

(
1

2p2

)
;

(
1

22p2

)
;

(
1
p

)
,

(
2
p

)
· · ·

(
p − 1

p

)
;

(
1
2p

)
,

(
p + 2
2p

)
,

(
3
2p

)
,

(
p + 4
2p

)
· · ·

(
2p − 1

2p

)
;

(
1

22p

)
,

(
p + 2
22p

)
,

(
3

22p

)
,

(
p + 4
22p

)
· · ·

(
2p − 1
22p

)
.

Proof. Let us denote the representatives of the orbits by

(
a
d

)
, as above. The possible

values of d are 1, 2, 22, p, 2p, p2, 2p2, 22p, and 22p2 by Lemma 2.2. Hence, the num-
ber of non-conjugate classes of these orbits using Euler’s formula are 1 and p − 1 for
1, 2, 22, p2, 2p2, 22p2, and p, 2p, 22p respectively. By Lemma 2.3, the result is obvious. �

If one just examines the action of the elements of Nor(22p2) on the orbit

(
1
1

)
, the

following result is easily obtained:

2.6. Theorem. The set Q̂(22p2) :=

(
1
1

)
∪

(
1
2

)
∪

(
1
22

)
∪

(
1
p2

)
∪

(
1

2p2

)
∪

(
1

22p2

)
, is

an orbit of Nor(22p2) on Q̂.

Proof. Taking the element T1 =

(
a b/2

2p2c d

)
, we see that T1

(
1
1

)
=

(
2a + b

2(2p2c + d)

)
.

(i) If b and d are odd; then T1

(
1
1

)
∈

(
1
2

)
, and

(ii) If b is odd and d even; then T1

(
1
1

)
∈

(
1
22

)
.

Taking the element T2 =

(
ap2 b/2
2p2c dp2

)
, we have that T2

(
1
1

)
=

(
2ap2 + b

2p2(2c + d)

)
.

(iii) If b and d are odd; then T2

(
1
1

)
∈

(
1

2p2

)
,

(iv) If b is even and d odd; then T2

(
1
1

)
∈

(
1
p2

)
, and

(v) If b is odd and d even; then T2

(
1
1

)
∈

(
1

22p2

)
. �
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Therefore the set Q̂(22p2) is one on which Nor(22p2) acts transitively. We now con-

sider the imprimitivity of the action of Nor(22p2) on Q̂(22p2), beginning with a general
discussion of primitivity of permutation groups. Let (G, ∆) be a transitive permutation
group, consisting of a group G acting on a set ∆ transitively. An equivalence relation ≈
on ∆ is called G-invariant if, whenever α, β ∈ ∆ satisfy α ≈ β, then g(α) ≈ g(β) for all
g ∈ G. The equivalence classes are called blocks, and the block containing α is denoted
by [α].

We call (G, ∆) imprimitive if ∆ admits some G-invariant equivalence relation different
from

(i) The identity relation, α ≈ β if and only if α = β; and
(ii) The universal relation, α ≈ β for all α, β ∈ ∆.

Otherwise, (G, ∆) is called primitive. The above two relations are regarded as trivial
relations. Clearly, a primitive group must be transitive, for if not the orbits would form
a system of blocks. The converse is false, but we have the following useful result.

2.7. Lemma. [5]. Let (G, ∆) be a transitive permutation group. (G, ∆) is primitive if
and only if Gα, the stabilizer of α ∈ ∆, is a maximal subgroup of G for each α ∈ ∆. �

From the above lemma we see that whenever, for some α, Gα � H � G, then Ω
admits some G-invariant equivalence relation other than the trivial ones. Because of
transitivity, every element of Ω has the form g(α) for some g ∈ G. Thus one of the
non-trivial G-invariant equivalence relations on Ω is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

The number of blocks (equivalence classes) is the index |G : H |, and the block containing
α is just the orbit H(α).

We can apply these ideas to the case where G is Nor(22p2) and ∆ is Q̂(22p2), which

is the orbit in Theorem 2.6, Gα is the stabilizer of ∞ in Q̂(22p2); that is, G∞ =〈(
1 1/2
0 1

)〉
, and H is N0 :=

〈
Γ0(2

2p2), T1, A1

〉
, where T1 =

(
a (2b + 1)/2

2p2c −a ± 1

)
(as

in Section 2) and A1 :=

(
ap2 b

22p2c dp2

)
∈ Γ+

0 (22p2) is an Atkin-Lehner involution (see [6]

for the definition). Clearly G∞ < N0 < Nor(22p2).

2.8. Lemma. [1] The index |Nor(N) : Γ0(N)| is given by

|Nor(N) : Γ0(N)| = 2ρh2τ,

where ρ is the number of prime factors of N/h2, τ = ( 3

2
)ε1( 4

3
)ε2 ,

ε1 =

{
1 if 22, 24, 26‖N,

0 otherwise,
ε2 =

{
1 if 9‖N,

0 otherwise.
�

Using Lemma 2.8, we easily obtain the following.

2.9. Theorem. There are only two blocks, which are [∞] and [0]. These are as follows:

[0] :=

(
1
1

)
∪

(
1
2

)
∪

(
1
22

)
and [∞] :=

(
1
p2

)
∪

(
1

2p2

)
∪

(
1

22p2

)
.

Proof. Here, T 3
1 = I =⇒ trace(T1) = ±1 and A2

1 = I . So, we have that

|Nor(22p2) : Γ0(2
2p2)| = 12 and |N0(2

2p2) : Γ0(2
2p2)| = 6.

Hence, it is clear that |Nor(22p2) : N0(2
2p2)| = 2. �



Elliptic Elements and Circuits in Suborbital Graphs 207

3. Suborbital graphs of Nor(22p2) on Q̂(22p2)

In[14], Sims introduced the idea of the suborbital graphs of a permutation group G
acting on a set ∆. These are graphs with vertex-set ∆, on which G induces automor-
phisms. We summarize Sims’ theory as follows: Let (G, ∆) be a transitive permutation
group. Then G acts on ∆×∆ by g(α, β) = (g(α), g(β)), (g ∈ G, α, β ∈ ∆). The orbits of
this action are called suborbitals of G. The orbit containing (α, β) is denoted by O(α, β).
From O(α, β) we can form a suborbital graph G(α, β): its vertices are the elements of ∆,
and there is a directed edge from γ to δ if (γ, δ) ∈ O(α, β). A directed edge from γ to
δ is denoted by (γ → δ). If (γ, δ) ∈ O(α, β), then we will say that there exists an edge
(γ → δ) in G(α, β).

If α = β, the corresponding suborbital graph G(α, α), called the trivial suborbital
graph, is self-paired : it consists of a loop based at each vertex α ∈ ∆. By a circuit of
length m (or a closed edge path), we mean a sequence ν1 → ν2 → · · · → νm → ν1 such
that νi 6= νj for i 6= j, where m ≥ 3. If m = 3 or 4 then the circuit is called a triangle or
rectangle.

The above ideas are also described in a paper by Neumann[12], and in books by
Tsuzuku[15] and by Biggs and White [5], the emphasis being on applications to finite
groups.

In this study, G and ∆ will be Nor(N) and Q̂, respectively. All circuits in suborbital
graph for Nor(N), where N is a square-free positive integer, were studied in [3,9,10]. We

now investigate the suborbital graphs for the action Nor(22p2) on Q̂(22p2). Since the

action Nor(22p2) on Q̂(22p2) is transitive, Nor(22p2) permutes the blocks transitively; so
the subgraphs are all isomorphic. Hence it is sufficient to study only one block. On the
other hand, it is clear that each non-trivial suborbital graph contains a pair (∞, u/p2)

for some u/p2 ∈ Q̂(22p2) where (u, p2) = 1. Therefore, we work on the following case:
We denote by F (∞, u/p2) the subgraph of G(∞, u/p2) such that its vertices are in the
block [∞].

3.1. Theorem. Let r/s and x/y be in the block [∞]. Then there is an edge r/s → x/y
in F (∞, u/p2) iff

(i) If 22p2‖s, then x ≡ ±ur (mod p2), y ≡ ±us (mod p2), ry − sx = ±p2,
(ii) If 2p2‖s, then x ≡ ±2ur (mod 2p2), y ≡ ±2us (mod p2), ry − sx = ±2p2,
(iii) If p2‖s, then x ≡ ±4ur (mod p2), y ≡ ±4us (mod p2), ry − sx = ±p2.

(The plus and minus sign correspond to r/s > x/y and r/s < x/y, respectively)

Proof. Assume first that r/s
>

−→ x/y is an edge in F (∞, u/p2), and 22p2‖s. This means
that there exists some T in the normalizer Nor(22p2) such that T sends the pair (∞, u/p2)
to the pair (r/s, x/y), that is T (∞) = r/s and T (u/p2) = x/y. Since 22p2‖s, T must be

of the form T1 where b and c are even. T (∞) =
a

2pc
=

r

s
gives that r = a and s = 22p2c0.

T (u/p2) =
au + (b/2)p2

2p2cu + dp2
=

r

s
gives that x ≡ ur (mod p2), y ≡ us (mod p2). Furthermore,

we get ry − sx = p2 from the equation
(

a b/2
2p2c d

) (
1 u
0 p2

)
=

(
r s
x y

)
.

For the opposite direction, we assume that 22p2‖s and x ≡ ur (mod p2), y ≡ us (mod p2), ry−
sx = p2. In this case, there exist b, d ∈ Z such that x = ur + bp2 and y = us + dp2.
If we put these equivalences in ry − sx = p2, we obtain rd − bs = 1. So the element
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T0 =

(
r b/2
2s d

)
is clearly in N0. Where there is a minus sign and another condition,

similar calculations may be made. �

Now, let us represent the edges of F (∞, u/p2) as hyperbolic geodesics in the upper
half-plane H, that is, as Euclidean semi-circles or half-lines perpendicular to the real line.
Then we have:

3.2. Theorem. F (∞, u/p2) is self-paired iff u2 ≡ −1 (mod p2), 4u2 ≡ −1 (mod p2) or
2u2 ≡ −1 (mod 2p2).

Proof. Because of the transitive action, the form of a self-paired edge can be taken as
1/0 → x/y → 1/0. The conditions follows immediately from the first and second edge
by Theorem 3.1. �

3.3. Theorem. F (∞, u/p2) contains a triangle if and only if 4u2 ±2u+1 ≡ 0 (mod p2).

Proof. We suppose that there is a triangle such as k0/l0 → m0/n0 → x0/y0 → k0/l0
in F (∞, u/p2). Since N0 permutes the vertices transitively, we may suppose that the
triangle has the form 1/0 → m0/p2 → x0/y0 → 1/0. Furthermore, without loss of
generality, suppose m0/p2 < x0/y0. From theorem 3.1 (i), we have that m0 ≡ u (mod p2)
from the first edge and y0 = p2 or y0 = 2p2 from the third edge.

Case 1. If y0 = p2, then up2−x0p
2 = −p2 from the second edge by Theorem 3.1 (iii).

This means that x0 = u + 1. On the other hand x0 ≡ −4u2(mod p2), then we obtain
that 4u2 + u + 1 ≡ 0(mod p2). But 4u2 + u + 1 ≡ 0 (mod p2), contradicts the congruence
4u2 + 4u + 1 ≡ 0 (mod p2), which is obtained from the third edge with the relation
1 ≡ −4u(u + 1) (mod p2). If the minus sign is valid, which means that m0/p2 > x0/y0,
we obtain similar a contradiction.

Case 2. If y0 = 2p2, then 2up2−x0p
2 = −p2 from the second edge by Theorem 3.1 (iii).

This means that x0 = 2u + 1. Furthermore, x0 ≡ −4u2 (mod p2). Hence, we obtain
that 4u2 + 2u + 1 ≡ 0 (mod p2). In addition, this congruence coincides with the relation
1 ≡ −2u(2u+1) (mod p2) from the third edge. If m0/p2 > x0/y0, we obtain 4u2−2u+1 ≡
0 (mod p2). If we combine these, we have that 4u2 ± 2u + 1 ≡ 0 (mod p2).

For the opposite direction, we assume that 4u2 ± 2u + 1 ≡ 0 (mod p2). Using theo-
rem 3.1, it is clear that 1/0 → u/p2 → 2u±1/2p2 → 1/0 is a triangle in F (∞, u/p2). �

3.4. Corollary. If F (∞, u/p2) contains a triangle for any prime p greater than 3, we
have p ≡ 1 (mod 3).

Proof. Suppose that F (∞, u/p2) contains a triangle. Then 4u2 ± 2u +1 ≡ 0 (mod p2). It
follows that x2±x+1 ≡ 0 (mod p2) for x = 2u. Hence, we have that x2±x+1 ≡ 0 (mod p).
Taken with (2x ± 1)2 + 3 ≡ 0 (mod p), it follows that p ≡ 1 (mod 3). �

3.5. Examples. Using easy number-theoretical techniques, we can easily give some
examples. For p = 13, let us calculate which suborbital graphs contains a self-paired
edge.

(i) Since u2 ≡ −1 (mod 132), then u2 ≡ −1 (mod 13), giving u = 5 + 13k1 such that
k1 ∈ Z. Hence, we have (5 + 13k1)

2 ≡ −1 (mod 132), then 26 + 130k1 + 169(k1)
2 ≡

0 (mod 132). As 2 + 10k1 + 13(k1)
2 ≡ 0 (mod 13), we obtain k1 = 5 and u = 70. Since

702 ≡ −1 (mod 169), F (∞, 70/169) contains a self-paired edge.

(ii) In a similar way, for p = 7, let us find suborbital graphs which contains a triangle.
Since 4u2 + 2u + 1 ≡ 0 (mod 72), then 4u2 + 2u + 1 ≡ 0 (mod 7), giving u = 1 + 7k1

such that k1 ∈ Z. Hence, we have 4(1 + 7k1)
2 + 2(1 + 7k1) + 1 ≡ 0 (mod 72), then
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196(k1)
2 + 70k1 + 7 ≡ 0 (mod 72). As 28(k1)

2 + 10k1 + 1 ≡ 0 (mod 7), we obtain k1 = 2
and u = 15. Since 4(15)2 + 2(15) + 1 ≡ 0 (mod 49), F (∞, 15/49) contains a triangle.

3.6. Observation. For the transformation ϕ :=

(
−22u (4u2 + 2u + 1)/p2,
−22p2 22u + 2,

)
of order

3, where p ≡ 1 (mod 3) is an elliptic element, it is easily seen that

ϕ

(
1
0

)
=

(
u
p2

)
, ϕ

(
u
p2

)
=

(
2u + 1
2p2

)
, ϕ

(
2u + 1

2p2

)
=

(
1
0

)
.

The only elements of finite order in PSL(2, R) are elliptic. Nor(N) can only have finite
periods 2, 3, 4, 6.

In [2], the authors show that:

3.7. Lemma. [2]

(i) Nor(N) has at most one period of order 4. Nor(N) has a period of order 4 iff
2‖N/h2, and if p is an odd prime divisor of N/h2 then p ≡ 1 (mod 4).

(ii) Nor(N) has at most one period of order 6. Nor(N) has a period of order 6 iff
3‖N/h2, and if p is an odd prime divisor of N/h2 then p ≡ 1 (mod 3).

(iii) Nor(N) has at most one period of order 3. Nor(N) has a period of order 3 iff
for each prime divisor of p of N/h2, p ≡ 1 (mod 3). �

3.8. Lemma. [2]

• Nor(N) is a triangle group for precisely 26 values of N .
• If N = 1, 22, 24, 26, 32, 2232, 2432, 2632, then Nor(N) has signature (2, 3,∞).
• If N = 2, 23, 25, 27, 232, 2332, 2532, 2732, then Nor(N) has signature (2, 4,∞).
• If N = 3, 223, 243, 263, 33, 2233, 2433, 2633, then Nor(N) has signature (2, 6,∞).

All calculations for different N show that there is a very close relation between elliptic
elements and circuits in the graph. According to our unpublished data and the above
lemmas, it seems that

3.9. Conjecture. Let N = 2α3βp2. Then F (∞, u/p2) has a circuit as follows:

α β Circuits Conditions

0, 2, 4, 6 0, 2 triangle p ≡ 1 (mod 3)

1, 3, 5, 7 0, 2 rectangle p ≡ 1 (mod 4)

0, 2, 4, 6 1, 3 hexagon p ≡ 1 (mod 3)
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[1] Akbaş, M. and Singerman, D. The Normalizer of Γ0(N) in PSL(2, R), Glasgow Math. J.
32, 317–327, 1990.
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[5] Bigg, N. L. and White, A. T. Permutation groups and combinatorial structures, (London
Mathematical Society Lecture Note Series 33, CUP, Cambridge, 1979).

[6] Conway, J.H. and Norton, S. P. Monstrous moonshine, Bull. London Math. Soc. 11, 308–
339, 1977.

[7] Jones, G. A., Singerman, D. and Wicks, K. The modular group and generalized Farey graphs

(London Math. Soc. Lecture Note Series 160, CUP, Cambridge, 1991), 316-338.
[8] Keskin, R. On suborbitals graphs for some Hecke groups, Discrete Math. 234 (1–3), 53–64,

2001.
[9] Keskin, R. Suborbital graphs for the normalizer of Γ0(m), European J. Combin. 27 (2),

193–206, 2006.
[10] Keskin, R. and Demirtürk, B. On suborbital graphs for the normalizer of Γ0(N), Electronic

J. Combin. 27, R116, 2009.
[11] Maclachlan, C. Groups of units of zero ternary quadratic forms, Proc. Roy. Soc., Edinburgh

Sect. A 88, 141–157, 1981.
[12] Neumann, P. M. Finite Permutation Groups, Edge-Coloured Graphs and Matrices, in Topics

in Group Theory and Computation, Ed. M.P. J. Curran (Academic Press, London, New
York, San Fransisco, 1977).

[13] Schoeneberg, B. Elliptic Modular Functions (Springer Verlag, Berlin, 1974).
[14] Sims, C. C. Graphs and finite permutation groups, Math. Z. 95, 76–86, 1967.

[15] Tsuzuku, T. Finite Groups and Finite Geometries (Cambridge University Press, Cambridge,
1982).


