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Abstract

Recently, E. Karapimar (Fized Point Theorems in Cone Banach Spaces,
Fixed Point Theory Applications, Article ID 609281, 9 pages, 2009)
presented some fixed point theorems for self-mappings satisfying certain
contraction principles on a cone Banach space. Here we will give some
generalizations of this theorem.
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1. Introduction and Preliminaries

It is quite natural to consider generalization of the notion of metric d : X x X — [0, 00).
The question was, what must [0,00) be replaced by. In 1980 Bogdan Rzepecki [17], in
1987 Shy-Der Lin [14] and in 2007 Huang and Zhang [5] gave the same answer: Replace
the real numbers with a Banach space ordered by a cone, resulting in the so called cone
metric. In this setting, Bogdan Rzepecki [17] generalized the fixed point theorems of Maia
type [15] and Shy-Der Lin [14] considered some results of Khan and Imdad [13]. Also,
Huang and Zhang [5] discussed some properties of convergence of sequences and proved a
fixed point theorem of contractive mapping for cone metric spaces: Any mapping 7" of a
complete cone metric space X into itself that satisfies, for some 0 < k < 1, the inequality
d(Tz,Ty) < kd(z,y) for all ,y € X, has a unique fixed point.

Following Huang and Zhang [5], many results on fixed point theorems have been
extended from metric spaces to cone metric spaces (see e.g. [1, 2, 3,5, 7, 8, 9, 10, 11, 12,
16, 18, 19, 20]).
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Recently, E.Karapinar [7] presented some fixed point theorems for self-mappings satis-
fying some contraction principles on a cone Banach space. More precisely, he proved that
for a closed and convex subset C of a cone Banach space with the norm || -||p, and letting
d: X x X — E with d(z,y) = ||z — y||p, if there exist a,b,s and T': C' — C satisfies the
conditions 0 < s+ |a| — 2b < 2(a+b) and ad(Tz, Ty) + b(d(z, Tx) + d(y, Ty)) < sd(z,y)
for all z,y € C, then T has at least one fixed point.

Here we will give some generalization of this theorem. Throughout this paper E :=
(E,|| - ||) stands for a real Banach space and P := Pg will always denote a closed non-
empty subset of E. Then P is called a cone if axz 4+ by € P for all z,y € P, and
non-negative real numbers a, b where P N (—P) = {0} and P # {0}.

For a given cone P, one can define a partial ordering (denoted by < or <p) with
respect to P by x < y if and only if y — x € P. The notation = < y indicates that z <y
and x # y, while z < y will denote y — x € intP, where intP denotes the interior of P.
From now on, it is assumed that intP # .

The cone P is called normal if there is a number K > 1 such that for all x,y € E:
0<z<y = |z|| < K|ly||. Here, the least positive integer K satisfying this equation
is called the mormal constant of P. P is said to be regular if every increasing sequence
which is bounded from above is convergent. That is, if {zs},>1 is a sequence such that
z1 <@g < -+ <y for some y € E, then there is € F such that lim,—« ||zn — 2| = 0.

1.1. Lemma. (see [4],[16])

(i) Ewvery regular cone is normal.
(i) For each k > 1, there is a normal cone with normal constant K > k.
(#47) The cone P is regular if every decreasing sequence which is bounded from below
is convergent. (]

1.2. Definition. (see [5]) Let X be a non-empty set. Suppose the mapping d : X x X —
FE satisfies:

(M1) 0<d(z,y) for all z,y € X,

(M2) ( ,y) =0 if and only if x = y,

(M3) d(z,y) < d(z,2) +d(z,y), for all z,y € X.
(M4) d(z,y) =d(y,z) for all z,y € X

then d is called a cone metric on X, and the pair (X, d) is a cone metric space (CMS).
It is quite natural to consider cone normed spaces (CNS):

1.3. Definition. ([1, 21]) Let X be a vector space over R. Suppose the mapping || - ||p
X — FE satisfies:

(N1) |lz|]lp >0 for all z € X,

(N2) |lz|]lp =0 if and only if z =0,
(N3) |z +yllp < |lzllp + llyllp, for all z,y € X.
(N4) ||kz||p = |k|||z]|p for all k € R,
then || - ||p is called a cone norm on X, and the pair (X,|| - ||p) a cone normed space

(CNS).
Note that each CNS is a CMS. Indeed, d(z,y) = ||z — y||p.
1.4. Definition. Let (X, || - ||p) be a CNS, z € X and {xn}n>1 a sequence in X. Then:

(7) {@n}n>1converges to x whenever for every ¢ € E with 0 < ¢ there is a natural
number N such that |z, —z||p < cfor alln > N. It is denoted by lim,—oc n =
Z, Or T — Z.
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(i) {zn}n>1 is a Cauchy sequence whenever for every ¢ € E with 0 < ¢ there is a
natural number N such that ||z, — z||p < ¢ for all n,m > N.

(zit) (X,]| - |lp) is a complete cone normed space if every Cauchy sequence is conver-
gent.

As expected, complete cone normed spaces will be called cone Banach spaces.

1.5. Lemma. (see [7]) Let (X,||-||p) be a CNS, P a normal cone with normal constant
K, and {xn} a sequence in X. Then,
(i) The sequence {xn} converges to x if and only if ||z, — z||p — 0, as n — oo,
(i) The sequence {xyn} is Cauchy if and only if ||zn — xm|lp — 0 as n,m — oo,
(¢it) If the sequence {xn} converges to x and the sequence {yn} converges to y then
[0 = ynllp — llz —yllp.

Proof. Immediate by applying Lemma 1, Lemma 4 and Lemma 5 in [5] to the cone metric
space (X, d), where d(z,y) = ||z — y||p for all z,y € X. O

1.6. Lemma. (see [19, 20, 7]) Let (X,|| - ||p) be a CNS over a cone P in E. Then
(1) int(P) + int(P) C int(P) and Aint(P) C int(P), A > 0.
(2) If ¢> 0 then there exists 6 > 0 such that ||b]| < § implies b K c.

(3) For any given ¢ > 0 and co > 0 there exists no € N such that % < c.

(4)

4) If an, b, are sequences in E such that an, — a, b, — b and a, < by,Vn, then
a <b. O

2. Main Results

From now on, X = (X,| - ||p) will be a cone Banach space, P a normal cone with
normal constant K, and T a self-mapping operator defined on a subset C of X.

2.1. Theorem. Let C be a closed and convex subset of a cone Banach space X with
norm ||z||p, and let d : X x X — E be such that d(z,y) = ||z — y|lp. If there exist
a,b,c,s and T : C — C satisfying the conditions

21) 0< % <1, a+b#0, a+b+c>0ands >0,

(2.2)  ad(Tz,Ty) + bld(z, Tz) + d(y, Ty)] + cd(y, Tz) < sd(z,y)

hold for all x,y € C. Then, T has at least one fized point.

Proof. Let zo € C be arbitrary. Define a sequence {z,} in the following way:

(2.3)  Tpgr = % n=01,2....

Notice that

(2.4)  @n—Tan = 2<:cn - (
which yields that

(2.5)  d(xn,Tzn) = ||Tn — Txnllp = 2| — Tntillp = 2d(Tn, Tnt1)

for n =0,1,2,.... Analogously, for n =0,1,2,..., one can get
d(zn-1,TTn-1) = 2d(xn—1,Txn), and

Tn +Txn

5 )) =2(@n — Tnt1),

(2.6) 1
d(fcruTxnfl) = Ed(fcnflnycnfl) = d($n717$n)7

and by the triangle inequality
(2.7) d(xn, Txn) — d(@n, TTn-1) < d(TTp-1,Tzn).



214 T. Abdeljawad, E. Karapinar, K. Tag

When we substitute x = z,—1 and y = z, in the inequality (2.2), it implies that
(2.8) ad(Txp—1,Tan)+bld(@wn—1,TTn1)+d(@n, Ton)| +cd(Tn, Ton 1) < sd(@n—1,2n)
for all a,b, ¢, s that satisfy (2.1). Taking into account (2.5) and (2.6), one can observe
(2.9) ad(Tzn-1,Tzs)+ b[2d(xn,1, ZTn) +2d(zn, :an)] +cd(Tn—1,Tn) < sd(Trn-1,Zn),
which is equivalent to
(2.10) ad(Tzp—1,Txn) < sd(Tn—1,Tn) — 2b [d(:cnfl, ZTn) + d(xn, :an)] —cd(Tn—1,Tn).
By using (2.7), the statement (2.10) turns into

ald(xn, Txyn) — d(xn, TTn-1
(2.11) & ) < id(:cnhxn))] —2b[d(zn—1,%n) + d(Tn, Tn+1)] — cd(Tn_1,2n).
Regarding (2.5) and (2.6) again, simple calculations yield (2.11), that is

2(a +b)d(zn, Tnt1) < (s+a—2b—c)d(Tn—1,Tn).
Since a 4+ b # 0, we get

s+a—2b—c
d(Tn, Tn < =7 -
( 1) < 2(a + b)
Thus, the sequence {z,} is a Cauchy sequence that converges to some element of C, say
z.

d(Tn—1,Tn).

To show z is a fixed point of T, it is sufficient to substitute x = z and y = z,, in the
inequality (2.2). Indeed, due to the equation (2.3) and =, — z, we have T'z,, — z. Thus,

ad(Tz,Txy) + b[d(z,Tz) + d(@n, Tan)] + cd(zn, Tz) < sd(z,xn),
which implies ad(T'z,z) + bd(z,Tz) + cd(z,Tz) < 0 as n — oo. Thus, Tz = z as
a+b+c>0. a

2.2. Definition. [6] Let S, T be self-mappings on a CMS (X, d). A point z € X is called
a coincidence point of S, T if Sz = Tz, and it is called a common fized point of S, T if
Sz = z = Tz. Moreover, a pair of self-mappings (S,T) is called weakly compatible on X
if they commute at their coincidence points, in other words,

ze€X, Sz=Tz = STz=TS5=z.

2.3. Theorem. Let C be a closed and convex subset of a cone Banach space X with norm
| - lp, and let d : X x X — E with d(x,y) = ||z —pllp. If T and S are self-mappings on
C that satisfy the conditions
(2.12) T(C)C S(C)
(2.13) S(C) is a complete subspace
(2.14) ad(Tz, Ty) + bld(Sz, Tx) + d(Sy, Ty)| < rd(Sz, Sy),

' fora+b#0, 0<r<a+2b r<b a#r,

hold for all xz,y € C, then, S and T have a common coincidence point. Furthermore, if
S and T are weakly compatible, then they have a unique common fized point in C'.

Proof. Let zo € C be arbitrary. Regarding (2.12), we can find a point in C, say z1, such
that T'xo = Sxi1. Since S,T are self-mappings, there is a point in C, say yo, such that
yo = Txo = Sz1. Inductively we can define a sequence {y»} and a sequence {z,} C C
in the following way:

(2.15)  yn = Sxnt1 =Txn, n=0,1,2,....
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When we substitute x = z, and y = zp+1 in the inequality (2.14), it implies that
(2.16)  ad(Txn, TTns1) + b[d(STn, Txn) + d(STns1, TTnt1)] < rd(STn, Stni1),
which is equivalent to

(2.17)  ad(yn, yn+1) + b[d(Yn—1,Yn) + d(Yn,yn+1)] < 7d(Yn-1,Yn).
By simple calculations, (2.17) turns into
(2.18)  d(Yn,Ynt+1) < T—_bd(ynfuyn)‘
a+b
Analogously, one can observe that
(2.19)  d(yn—1,yn) < kd(yn—2,Yn-1),

where k = 222, Since 0 < r < a+2b, r < b, then 0 < k < 1. Combining (2.18) and

a+b’
(2.19), we have

(220) d(yn7yn+1) < kd(ynfh yn) < k2d(yn727 ynfl)-

By routine calculations,

(221)  d(yn,yn+1) < k"d(yo, y1).

To show {yx } is a Cauchy sequence, let n > m. Then by (2.21) and the triangle inequality,
one can obtain

d(Yns Ym) < d(Yn, Yn—1) + d(Yn-1,Yn—2) + - + d(Ym+1,Ym)
(2.92) < K" Md(yo, y1) + K" d(yo, 1) + - - + K" d(yo, y1)

km
< ——d
=1k (y07y1)7
which concludes the proof that {y,} is a Cauchy sequence. Since S(C) is complete, then
{yn = STnt+1 = Txn} converges to some point in S(C), say z. In other words, there is
a point p € C such that Sp = z. Now, by replacing = with p and y with xz,41 in the
inequality (2.14), we get
CLd(Tp,T:Z?n+1) + b[d(Sp7Tp) + d(an+17 Txn‘f’l)] S T’d(Sp, an+1)7
which is equivalent to
ad(Tp, yn+1) + b[d(z7 T'p) + d(yn, y7l+1)] < rd(z,yn).
As n — oo, it becomes
ad(Tp,z) +bd(z,Tp) < 0.
Since a + b # 0, then Tp = z. Hence Tp = z = Sp, in other words, p is a coincidence
point of S and 7.

If S and T are weakly compatible, then they commute at a coincidence point. There-
fore, Tp=2z= Sp = STp = TSp for some p € C, which implies Tz = Sz.

Claim: z is common fixed point of S and 7. To show this, substitute x = p and
y = Tp = z in the inequality (2.14) to give

ad(Tp, TTp) + b[d(Sp, Tp) + d(STp,TTp)] < rd(Sp, STp),
which is equivalent to

ad(z,Tz) + bld(z,z) + d(Sz,Tz)] < rd(Tp,TSp) = rd(z,Tz).
So we have (a — r)d(z,Tz) < 0. Since a # r, then z =Tz = Sz.
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We use reductio ad absurdum to prove uniqueness. Suppose the contrary, that w is
another common fixed point of S and T'. Substituting « by z and y by w in the inequality
(2.14), one can get

ad(Tz,Tw) + b[d(Sz,Tz) + d(Sw, Tw)] < rd(Sz, Sw),
which is equivalent to
ad(z,w) < rd(z,w) <= (a—r)d(z,w) <0,

which is a contradiction since a # r. Therefore, the common fixed point of S and T is
unique. O
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