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Abstract

Recently, E. Karapınar (Fixed Point Theorems in Cone Banach Spaces,
Fixed Point Theory Applications, Article ID 609281, 9 pages, 2009)
presented some fixed point theorems for self-mappings satisfying certain
contraction principles on a cone Banach space. Here we will give some
generalizations of this theorem.
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1. Introduction and Preliminaries

It is quite natural to consider generalization of the notion of metric d : X×X → [0,∞).
The question was, what must [0,∞) be replaced by. In 1980 Bogdan Rzepecki [17], in
1987 Shy-Der Lin [14] and in 2007 Huang and Zhang [5] gave the same answer: Replace
the real numbers with a Banach space ordered by a cone, resulting in the so called cone
metric. In this setting, Bogdan Rzepecki [17] generalized the fixed point theorems of Maia
type [15] and Shy-Der Lin [14] considered some results of Khan and Imdad [13]. Also,
Huang and Zhang [5] discussed some properties of convergence of sequences and proved a
fixed point theorem of contractive mapping for cone metric spaces: Any mapping T of a
complete cone metric space X into itself that satisfies, for some 0 ≤ k < 1, the inequality
d(Tx,Ty) ≤ kd(x, y) for all x, y ∈ X, has a unique fixed point.

Following Huang and Zhang [5], many results on fixed point theorems have been
extended from metric spaces to cone metric spaces (see e.g. [1, 2, 3, 5, 7, 8, 9, 10, 11, 12,
16, 18, 19, 20]).

∗Çankaya University, Department of Mathematics, 06530, Ankara, Turkey.
E-mail: (T. Abdeljawad) thabet@cankaya.edu.tr (K. Taş) kenan@cankaya.edu.tr
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Recently, E.Karapınar [7] presented some fixed point theorems for self-mappings satis-
fying some contraction principles on a cone Banach space. More precisely, he proved that
for a closed and convex subset C of a cone Banach space with the norm ‖·‖P , and letting
d : X × X → E with d(x, y) = ‖x − y‖P , if there exist a, b, s and T : C → C satisfies the
conditions 0 ≤ s + |a| − 2b < 2(a + b) and ad(Tx, Ty)+ b

(

d(x, Tx) + d(y, Ty)
)

≤ sd(x, y)
for all x, y ∈ C, then T has at least one fixed point.

Here we will give some generalization of this theorem. Throughout this paper E :=
(E, ‖ · ‖) stands for a real Banach space and P := PE will always denote a closed non-
empty subset of E. Then P is called a cone if ax + by ∈ P for all x, y ∈ P , and
non-negative real numbers a, b where P ∩ (−P ) = {0} and P 6= {0}.

For a given cone P , one can define a partial ordering (denoted by ≤ or ≤P ) with
respect to P by x ≤ y if and only if y − x ∈ P . The notation x < y indicates that x ≤ y

and x 6= y, while x ≪ y will denote y − x ∈ intP , where intP denotes the interior of P .
From now on, it is assumed that intP 6= ∅.

The cone P is called normal if there is a number K ≥ 1 such that for all x, y ∈ E:
0 ≤ x ≤ y =⇒ ‖x‖ ≤ K‖y‖. Here, the least positive integer K satisfying this equation
is called the normal constant of P . P is said to be regular if every increasing sequence
which is bounded from above is convergent. That is, if {xn}n≥1 is a sequence such that
x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E, then there is x ∈ E such that limn→∞ ‖xn − x‖ = 0.

1.1. Lemma. (see [4],[16])

(i) Every regular cone is normal.

(ii) For each k > 1, there is a normal cone with normal constant K > k.

(iii) The cone P is regular if every decreasing sequence which is bounded from below

is convergent. �

1.2. Definition. (see [5]) Let X be a non-empty set. Suppose the mapping d : X×X →
E satisfies:

(M1) 0 ≤ d(x, y) for all x, y ∈ X,
(M2) d(x, y) = 0 if and only if x = y,
(M3) d(x, y) ≤ d(x, z) + d(z, y), for all x, y ∈ X.
(M4) d(x, y) = d(y, x) for all x, y ∈ X

then d is called a cone metric on X, and the pair (X, d) is a cone metric space (CMS).

It is quite natural to consider cone normed spaces (CNS):

1.3. Definition. ([1, 21]) Let X be a vector space over R. Suppose the mapping ‖ · ‖P :
X → E satisfies:

(N1) ‖x‖P ≥ 0 for all x ∈ X,
(N2) ‖x‖P = 0 if and only if x = 0,
(N3) ‖x + y‖P ≤ ‖x‖P + ‖y‖P , for all x, y ∈ X.
(N4) ‖kx‖P = |k|‖x‖P for all k ∈ R,

then ‖ · ‖P is called a cone norm on X, and the pair (X, ‖ · ‖P ) a cone normed space

(CNS).

Note that each CNS is a CMS. Indeed, d(x, y) = ‖x − y‖P .

1.4. Definition. Let (X, ‖ · ‖P ) be a CNS, x ∈ X and {xn}n≥1 a sequence in X. Then:

(i) {xn}n≥1converges to x whenever for every c ∈ E with 0 ≪ c there is a natural
number N such that ‖xn−x‖P ≪ c for all n ≥ N . It is denoted by limn→∞ xn =
x, or xn → x.
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(ii) {xn}n≥1 is a Cauchy sequence whenever for every c ∈ E with 0 ≪ c there is a
natural number N such that ‖xn − x‖P ≪ c for all n, m ≥ N .

(iii) (X, ‖ · ‖P ) is a complete cone normed space if every Cauchy sequence is conver-
gent.

As expected, complete cone normed spaces will be called cone Banach spaces.

1.5. Lemma. (see [7]) Let (X, ‖ · ‖P ) be a CNS, P a normal cone with normal constant

K, and {xn} a sequence in X. Then,

(i) The sequence {xn} converges to x if and only if ‖xn − x‖P → 0, as n → ∞,

(ii) The sequence {xn} is Cauchy if and only if ‖xn − xm‖P → 0 as n, m → ∞,

(iii) If the sequence {xn} converges to x and the sequence {yn} converges to y then

‖xn − yn‖P → ‖x − y‖P .

Proof. Immediate by applying Lemma 1, Lemma 4 and Lemma 5 in [5] to the cone metric
space (X, d), where d(x, y) = ‖x − y‖P for all x, y ∈ X. �

1.6. Lemma. (see [19, 20, 7]) Let (X, ‖ · ‖P ) be a CNS over a cone P in E. Then

(1) int(P ) + int(P ) ⊆ int(P ) and λint(P ) ⊆ int(P ), λ > 0.
(2) If c ≫ 0 then there exists δ > 0 such that ‖b‖ < δ implies b ≪ c.

(3) For any given c ≫ 0 and c0 ≫ 0 there exists n0 ∈ N such that c0

n0
≪ c.

(4) If an, bn are sequences in E such that an → a, bn → b and an ≤ bn,∀n, then

a ≤ b. �

2. Main Results

From now on, X = (X, ‖ · ‖P ) will be a cone Banach space, P a normal cone with
normal constant K, and T a self-mapping operator defined on a subset C of X.

2.1. Theorem. Let C be a closed and convex subset of a cone Banach space X with

norm ‖x‖P , and let d : X × X → E be such that d(x, y) = ‖x − y‖P . If there exist

a, b, c, s and T : C → C satisfying the conditions

(2.1) 0 ≤
s + a − 2b − c

2(a + b)
< 1, a + b 6= 0, a + b + c > 0 and s ≥ 0,

(2.2) ad(Tx, Ty) + b
[

d(x, Tx) + d(y, Ty)
]

+ cd(y, Tx) ≤ sd(x, y)

hold for all x, y ∈ C. Then, T has at least one fixed point.

Proof. Let x0 ∈ C be arbitrary. Define a sequence {xn} in the following way:

(2.3) xn+1 :=
xn + Txn

2
, n = 0, 1, 2, . . . .

Notice that

(2.4) xn − Txn = 2
(

xn −
(

xn + Txn

2

))

= 2(xn − xn+1),

which yields that

(2.5) d(xn, Txn) = ‖xn − Txn‖P = 2‖xn − xn+1‖P = 2d(xn, xn+1)

for n = 0, 1, 2, . . .. Analogously, for n = 0, 1, 2, . . ., one can get

(2.6)

d(xn−1, Txn−1) = 2d(xn−1, xn), and

d(xn, Txn−1) =
1

2
d(xn−1, Txn−1) = d(xn−1, xn),

and by the triangle inequality

(2.7) d(xn, Txn) − d(xn, Txn−1) ≤ d(Txn−1, Txn).
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When we substitute x = xn−1 and y = xn in the inequality (2.2), it implies that

(2.8) ad(Txn−1, Txn)+b
[

d(xn−1, Txn−1)+d(xn, Txn)
]

+cd(xn, Txn−1) ≤ sd(xn−1, xn)

for all a, b, c, s that satisfy (2.1). Taking into account (2.5) and (2.6), one can observe

(2.9) ad(Txn−1, Txn)+ b
[

2d(xn−1, xn)+2d(xn, xn+1)
]

+ cd(xn−1, xn) ≤ sd(xn−1, xn),

which is equivalent to

(2.10) ad(Txn−1, Txn) ≤ sd(xn−1, xn)− 2b
[

d(xn−1, xn) + d(xn, xn+1)
]

− cd(xn−1, xn).

By using (2.7), the statement (2.10) turns into

(2.11)
a
[

d(xn, Txn) − d(xn, Txn−1)
]

≤ sd(xn−1, xn) − 2b
[

d(xn−1, xn) + d(xn, xn+1)
]

− cd(xn−1, xn).

Regarding (2.5) and (2.6) again, simple calculations yield (2.11), that is

2(a + b)d(xn, xn+1) ≤ (s + a − 2b − c)d(xn−1, xn).

Since a + b 6= 0, we get

d(xn, xn+1) ≤
s + a − 2b − c

2(a + b)
d(xn−1, xn).

Thus, the sequence {xn} is a Cauchy sequence that converges to some element of C, say
z.

To show z is a fixed point of T , it is sufficient to substitute x = z and y = xn in the
inequality (2.2). Indeed, due to the equation (2.3) and xn → z, we have Txn → z. Thus,

ad(Tz, Txn) + b
[

d(z, T z) + d(xn, Txn)
]

+ cd(xn, T z) ≤ sd(z, xn),

which implies ad(Tz, z) + bd(z, T z) + cd(z, T z) ≤ 0 as n → ∞. Thus, Tz = z as
a + b + c > 0. �

2.2. Definition. [6] Let S, T be self-mappings on a CMS (X, d). A point z ∈ X is called
a coincidence point of S, T if Sz = Tz, and it is called a common fixed point of S, T if
Sz = z = Tz. Moreover, a pair of self-mappings (S, T ) is called weakly compatible on X

if they commute at their coincidence points, in other words,

z ∈ X, Sz = Tz =⇒ STz = TSz.

2.3. Theorem. Let C be a closed and convex subset of a cone Banach space X with norm

‖ · ‖P , and let d : X ×X → E with d(x, y) = ‖x− p‖P . If T and S are self-mappings on

C that satisfy the conditions

T (C) ⊂ S(C)(2.12)

S(C) is a complete subspace(2.13)

ad(Tx, Ty) + b
[

d(Sx, Tx) + d(Sy, Ty)
]

≤ rd(Sx, Sy),

for a + b 6= 0, 0 ≤ r < a + 2b, r < b, a 6= r,
(2.14)

hold for all x, y ∈ C, then, S and T have a common coincidence point. Furthermore, if

S and T are weakly compatible, then they have a unique common fixed point in C.

Proof. Let x0 ∈ C be arbitrary. Regarding (2.12), we can find a point in C, say x1, such
that Tx0 = Sx1. Since S, T are self-mappings, there is a point in C, say y0, such that
y0 = Tx0 = Sx1. Inductively we can define a sequence {yn} and a sequence {xn} ⊂ C

in the following way:

(2.15) yn = Sxn+1 = Txn, n = 0, 1, 2, . . . .
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When we substitute x = xn and y = xn+1 in the inequality (2.14), it implies that

(2.16) ad(Txn, Txn+1) + b
[

d(Sxn, Txn) + d(Sxn+1, Txn+1)
]

≤ rd(Sxn, Sxn+1),

which is equivalent to

(2.17) ad(yn, yn+1) + b
[

d(yn−1, yn) + d(yn, yn+1)
]

≤ rd(yn−1, yn).

By simple calculations, (2.17) turns into

(2.18) d(yn, yn+1) ≤
r − b

a + b
d(yn−1, yn).

Analogously, one can observe that

(2.19) d(yn−1, yn) ≤ kd(yn−2, yn−1),

where k = r−b

a+b
. Since 0 ≤ r < a + 2b, r < b, then 0 ≤ k < 1. Combining (2.18) and

(2.19), we have

(2.20) d(yn, yn+1) ≤ kd(yn−1, yn) ≤ k
2
d(yn−2, yn−1).

By routine calculations,

(2.21) d(yn, yn+1) ≤ k
n
d(y0, y1).

To show {yn} is a Cauchy sequence, let n > m. Then by (2.21) and the triangle inequality,
one can obtain

(2.22)

d(yn, ym) ≤ d(yn, yn−1) + d(yn−1, yn−2) + · · · + d(ym+1, ym)

≤ k
n−1

d(y0, y1) + k
n−2

d(y0, y1) + · · · + k
m

d(y0, y1)

≤
km

1 − k
d(y0, y1),

which concludes the proof that {yn} is a Cauchy sequence. Since S(C) is complete, then
{yn = Sxn+1 = Txn} converges to some point in S(C), say z. In other words, there is
a point p ∈ C such that Sp = z. Now, by replacing x with p and y with xn+1 in the
inequality (2.14), we get

ad(Tp, Txn+1) + b
[

d(Sp, Tp) + d(Sxn+1, Txn+1)
]

≤ rd(Sp,Sxn+1),

which is equivalent to

ad(Tp, yn+1) + b
[

d(z, Tp) + d(yn, yn+1)
]

≤ rd(z, yn).

As n → ∞, it becomes

ad(Tp, z) + bd(z, Tp) ≤ 0.

Since a + b 6= 0, then Tp = z. Hence Tp = z = Sp, in other words, p is a coincidence
point of S and T .

If S and T are weakly compatible, then they commute at a coincidence point. There-
fore, Tp = z = Sp =⇒ STp = TSp for some p ∈ C, which implies Tz = Sz.

Claim: z is common fixed point of S and T . To show this, substitute x = p and
y = Tp = z in the inequality (2.14) to give

ad(Tp, TTp) + b
[

d(Sp, Tp) + d(STp, TTp)
]

≤ rd(Sp,STp),

which is equivalent to

ad(z, T z) + b
[

d(z, z) + d(Sz, T z)
]

≤ rd(Tp,TSp) = rd(z, T z).

So we have (a − r)d(z, T z) ≤ 0. Since a 6= r, then z = Tz = Sz.
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We use reductio ad absurdum to prove uniqueness. Suppose the contrary, that w is
another common fixed point of S and T . Substituting x by z and y by w in the inequality
(2.14), one can get

ad(Tz, Tw) + b
[

d(Sz, T z) + d(Sw, Tw)
]

≤ rd(Sz, Sw),

which is equivalent to

ad(z, w) ≤ rd(z, w) ⇐⇒ (a − r)d(z,w) ≤ 0,

which is a contradiction since a 6= r. Therefore, the common fixed point of S and T is
unique. �
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[12] Karapınar, E. and Yüksel, U. On common fixed point theorems without commuting condi-

tions in tvs-cone metric spaces, J. Comput. Anal. Appl. 13 (6), 1115–1122, 2011.
[13] Khan, M. S. and Imdad, M.A. A common fixed point theorem for a class of mappings,

Indian J. Pure Appl. Math. 14, 1220–1227, 1983.
[14] Lin, S.-D. A common fixed point theorem in abstract spaces, Indian J. Pure Appl. Math.

18 (8), 685–690, 1987.
[15] Maia, M.G. Un’ Osservazione sulle contrazioni metriche, Ren. Sem. Mat. Univ. Padova 40,

139–143, 1968.
[16] Rezapour, Sh. and Hamlbarani, R. Some notes on the paper ”Cone metric spaces and fixed

point theorems of contractive mappings”, J. Math. Anal. Appl. 347, 719–724, 2008.
[17] Rzepecki, B. On fixed point theorems of Maia type, Publications De L’institut Mathématique
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