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Abstract

In this paper, we establish some new Hermite-Hadamard type inequal-
ities for m-convex and (a, m)-convex functions of 2-variables on the
co-ordinates.
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1. Introduction

Let f: I C R— R be a convex mapping defined on the interval I of real numbers,
and a,b € I with a < b. The following double inequality is well known in the literature
as the Hermite-Hadamard inequality [5]:

() 25ty om0

In [8], the notion of m-convexity was introduced by G.Toader as the following:

1.1. Definition. The function f : [0,b] — R, b > 0 is said to be m-convez, where
m € [0, 1], if we have

flz+m (1 —t)y) <tf(z)+m1—-1t)f(y)
for all z,y € [0,b] and ¢ € [0,1]. We say that f is m-concave if — f is m-convex.
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Denote by K., (b) the class of all m-convex functions on [0,b] for which f(0) < 0.
Obviously, if we choose m = 1, Definition 1.1 recaptures the concept of standard convex
functions on [0, b].

In [6], S.S. Dragomir and G. Toader proved the following Hadamard type inequalities
for m-convex functions.

1.2. Theorem. Let f :[0,00) — R be an m-convex function with m € (0,1]. If0 < a <
b< oo and f € L [a,b], then the following inequality holds:

b a)+mf (L mf (2
(1.1) ﬁ/ f(JL’)dJL’Smin{f()d‘_2f(m)7 f(b)+2f(m)}'

Some generalizations of this result can be found in [2, 3].

1.3. Theorem. Let f : [0,00) — R be an m-convex differentiable function with m €
(0,1]. Then for all 0 < a < b the following inequality holds:

L) 220f by < 1 [ (@) e
(1.2) m @ Ja
_ (b—ma)f (b) ~ (a—mb) f (@) .
- 2(b—a) '

Also, in [5], Dragomir and Pearce proved the following Hadamard type inequality for
m-~convex functions.

1.4. Theorem. Let f : [0,00) — R be an m-convex function with m € (0,1] and
0<a<b. If f € Li]a,b], then one has the inequality:

(1.3) f(a;b)ébia/abf(xH;nf(%)dx. 0

In [7], the definition of (&, m)-convexity was introduced by V.G. Mihesan as the
following;:

1.5. Definition. The function f : [0,b] — R, b > 0, is said to be (a, m)-convex, where
(a,m) € [0,1]?, if we have
[tz +m(1 —t)y) <t°f(z) +m(1 —1%)f(y)
for all z,y € [0,b] and ¢t € [0, 1].
Denote by K7 (b) the class of all (o, m)-convex functions on [0,b] for which f(0) < 0.
If we take (a,m) = (1,m), it can be easily seen that (o, m)-convexity reduces to m-

convexity, and for (a,m) = (1,1), (o, m)-convexity reduces to the usual concept of
convexity defined on [0,b], b > 0.

In [9], E. Set, M. Sardari, M. E. Ozdemir and J. Rooin proved the following Hadamard
type inequalities for (o, m)-convex functions.
1.6. Theorem. Let f : [0,00) — R be an (o, m)-convex function with (o, m) € (0,1]2.
If0<a<b<ooand f € Li[a,b]N Ly [ b |, then the following inequality holds:

m’m

) f<a+b>< ) ./bf(x)+m(2a—1)f(%)dx' .

2 “b—a 2«

1.7. Theorem. Let f : [0,00) — R be an (o, m)-convex function with (o, m) € (0,1]2.
If0<a<b< oo and f € L1 [a,b], then the following inequality holds:

b a mof (L maof (<
(1.5) ﬁ/ﬂx)dwgmm{ﬂw F () £ &)+ f(,n)}

, O
a+1 a—+1
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1.8. Theorem. Let f : [0,00) — R be an (o, m)-convex function with (o, m) € (0,1]%.
If0<a<b< oo and f € L1 [a,b], then the following inequality holds:

L[ f@+ ) +maf(3) +maf (5)
(1.6 b—a/f 5

a+1
Let us now consider a bidimensional interval A =: [a,b] x [¢,d] in R?, with a < b and
¢ < d. A function f: A — R is said to be convex on A if the following inequality:

f(tl’+ (1 —t)Z,ty—F (1 _t)w) < tf(x,y) + (1 _t)f(sz)
holds, for all (z,y),(z,w) € A and ¢t € [0,1]. A function f: A — R is said to be convex
on the co-ordinates on A if the partial mappings fy : [a,b] — R, fy (uv) = f (u,y) and
fz i le,d] = R, fz (v) = f(x,v) are convex where defined for all x € [a,b] and y € [c, d]
(see [5, p- 317)).
Also, in [4], Dragomir proved the following similar inequalities of Hadamard’s type
for a co-ordinated convex mapping on a rectangle in the plane RZ.

O

1.9. Theorem. Suppose that f : A — R is co-ordinated convex on A. Then one has the
inequalities:

a+b c+d
()

r b d
AL 1) st [ (2429
W (b—a =0 / / f(z,y) dedy

1 /f:ccd:c—&-—/fl’d

d
+m./c f(a7y)dy+m/c f(@y)dy}

fla,0)+ f(a,d)+ f(bc) + f(bd)
4

The above inequalities are sharp. O

[ /\

IN

<

For co-ordinated s-convex functions, another version of this result can be found in [1].

The main purpose of this paper is to establish new Hadamard-type inequalities for
functions of 2-variables which are m-convex or (a, m)-convex on the co-ordinates.

2. Inequalities for co-ordinated m-convex functions
Firstly, we can define co-ordinated m-convex functions as follows:

2.1. Definition. Consider the bidimensional interval A := [0, 5] x [0, d] in [0, 00)>. The
mapping f : A — R is m-conver on A if

fllz+ A =t)zty+m (1 —t)w) <tf(z,y)+m(l—1t)f(zw)
holds for all (x,y), (z,w) € A with ¢ € [0,1], b,d > 0, and for some fixed m € [0, 1].

A function f: A — R which is m-convex on A is called co-ordinated m-convex on A
if the partial mappings

Jy: [Ovb] =R, fy (v) = f(u,y)
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and
fz: [07d] =R, fa(v)=f(z,0)
are m~convex for all y € [0,d] and x € [0, b] with b,d > 0, and for some fixed m € [0, 1].

We also need the following Lemma for our main results.

2.2. Lemma. FEvery m-conver mapping f : A C [0700)2 — R s m-conver on the co-
ordinates, where A = [0,b] x [0,d] and m € [0,1].
Proof. Suppose that f: A =[0,b] x [0,d] — R is m-convex on A. Consider the function
fo 0 [0,d] = R, fa(v) = f(z,v), (x€0,b]).
Then for ¢,m € [0,1] and v1,v2 € [0,d], we have
fe(@vi+m (1 —1t)v2) = f(x,tvr + m (1 —t)v2)
=ftx+ (1 —t)z, tva +m (1l —t)v2)
< tf (:E,'Ul) +m (1 - t) f (:E,’Uz)
=tfz(v1) +m (1 —1t) fo (v2).

Therefore, f; (v) = f(z,v) is m-convex on [0,d]. The fact that f, : [0,b] — R, f, (u) =
f (u,y) is also m-convex on [0,b] for all y € [0,d] goes likewise, and we shall omit the
details. g

2.3. Theorem. Suppose that f : A =[0,b] x [0,d] — R is an m-convez function on the
co-ordinates on A. If0 < a<b<ooand0<c<d< oo withm € (0,1], then one has
the inequality:

(2.1) (d—c)(b—a) b—a / / flx,y) dzdy

< 7m1n{v17v2} +

ST0—a) min {vs, v4},

1
4(d—c)

vlz/bf(:c,c) d:c+m/bf(x,%) dx

where

Proof. Since f : A — R is co-ordinated m-convex on A it follows that the mapping
gz ¢ [0,d] — R, g-(y) = f(x,y) is m-convex on [0,d] for all z € [0,b]. Then by the
inequality (1.1) one has:

¢ c) + mg. (& - mag. (<
: /gw(y)dyﬁmin{gz()+ 9: (3) 9=(d) +mg (m)}7

d—c 2 ’ 2

or

d Y 7i 7d 7£
e [ iy < [ L0 0 8) S5

where 0 < ¢ < d < oo and m € (0, 1].
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Dividing both sides by (b — a) and integrating this inequality over [a,b] with respect
to x, we have

wmaag ), [ T
b m b
smn{sgy [ 10 e gy [0 (o) o0
(2.2) ﬁ/;f(:c,d) dm+ﬁ./abf(x7%) dm}
:ﬁmin{/ﬂbf(x,c) dx—!—m/abf(x,%) dx,

/abf(x,d) dx+m/abf(x,%) dx}

where 0 < a < b < c0.

By a similar argument applied to the mapping g, : [0,b] — R, gy (z) = f (z,y) with
0<a<b< oo, we get

Wl(b—a)/cd/abf(w,y) dx dy

1 a4 ¢ (b
2.3 < ———mi d — d
09 s [ s [ ()
d d
a
[ e duem [T () anf
Summing the inequalities (2.2) and (2.3), we get the inequality (2.1). ]

2.4. Corollary. With the above assumptions, and provided that the partial mappings

Jy: [Ovb] =R, fy(u) = f(u,y)

and

fac : [07d] — R, fﬂc (’U) = f(:C/U)

are differentiable on (0,b) and (0,d), respectively, we have the inequalities

Taaa ) [ e
< Wl_@ min{ (b— ma) {f(b, ¢) +mf (b, %)}
(24) ~@=m) @)+ mf (o 2)].
(b—ma) [£(b,d) + mf (b, )]
—(a—mb) [f(a,d) +mf (0, = )] }

and
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m/cd/abf(%y) dz dy
1

i @ [+ mr (2.0)]
(2:5) — (¢ — md) {f(a, c) +mf (%cﬂ :
(d=mo) [£(b,d) +mf (=,d)]
—(c—md) [f(b,c)+mf (%c)] }

Proof. Since the partial mappings

fo 2 [0,d] = R, fo(v) = f(z,v)
are differentiable on [0, d], by the inequality (1.2) we have
’ (b —ma) f(b,c) — (a —mb) f(a,c)
o= | e i< o ,

AT (b—ma) (b, &) — (a — mb) f(a, £)
(b—a)./af<‘”’_) dr = 20— a) ’

1

L de < (0= ma) f(b.d) — (a—mb) fla,d)
(b_a)/a f (@, d) dx < STy , and
Lo e (b—ma) (b, ) — (a — mb) f(a, 2)

(b—a)/a 7 () de < 2(b—a) :

Hence, using (2.2), we get the inequality (2.4).
Analogously, Since the partial mappings
fy : [07b] — R, fy (u) = f(uvy)
are differentiable on [0,b], using the inequality (2.3), we get the inequality (2.5). The
proof is completed. O

2.5. Remark. Choosing m = 1 in (2.4) or (2.5), we get the relationship between the
third and fourth inequalities in (1.7).

2.6. Theorem. Suppose that f : A =[0,b] x [0,d] — R is an m-convez function on the
co-ordinates on A. If 0 <a<b< oo and0<c<d< oo, me (0,1] with fo € L1[0,d]
and fy € L1]0,b], then one has the inequality:

1 b c+d 1 d a+b
d d
b_q/gf(x, 2)w+d_0/6f(27y Y

/b /df(fv7y)+;nf (z, L) dy de

ot flay) +mf (5 y)
+/c/a dedy| .

1
(2.6) S CEDICED)

2

Proof. Since f : A — R is co-ordinated m-convex on A it follows that the mapping
gz : [0,d] = R, g2 (y) = f(z,y) is m-convex on [0,d] for all z € [0,b]. Then by the
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inequality (1.3) one has:

c+d 1 4 g2 (y) + mga (£)
© < m )
g ( 2 )*d—c/c 2 dy

or

c+d 1 [ f(zy)+mf (e, L)
f<m72>§d—c/c 2 4

for all z € [0,b]. Integrating this inequality on [a, b], we have

1 b c+d
d
(=5 e

1 bt f(wy) +mf (z,2)
<voaal ) 2 e

(2.7)

By a similar argument applied to the mapping gy : [0,b8] — R, gy (z) = f (z,y), we get

1 d a+b
d_c/f< > ,y>dy

(2.8) N
< 1 /d/bf(x7y)+mf(ﬁ7y)dxd
S@-gt-al. 2 v

Summing the inequalities (2.7) and (2.8), we get the inequality (2.6). a

2.7. Remark. Choosing m =1 in (2.6), we get the second inequality of (1.7).

3. Inequalities for co-ordinated (o, m)-convex functions

3.1. Definition. Consider the bidimensional interval A := [0, 5] x [0, d] in [0, 00)>. The
mapping f : A — R is (a, m)-conver on A if

(3.1) flz+ (1 -t z,ty+m (1 —t)w) <t*f(z,y) + m (1 —t%) f (z,w)

holds for all (z,y), (z,w) € A and (a,m) € [0,1]%, with ¢ € [0,1].

A function f : A — R which is («, m)-convex on A is called co-ordinated (a, m)-convex
on A if the partial mappings

fy : [Ovb] HIR7 fy (U’) = f(uvy)
and
fo 0 [0,d] = R, fo(v) = f(z,v)
are (a, m)-convex for all y € [0,d] and z € [0, b] with some fixed (a, m) € [0, 1]%.

Note that for (o, m) = (1,1) and (a, m) = (1, m), one obtains the class of co-ordinated
convex and of co-ordinated m-convex functions on A, respectively.

3.2. Lemma. Every (a,m)-conver mapping f : A — R is (a, m)-convex on the co-
ordinates, where A =1[0,b] x [0,d] and a,m € [0, 1].

Proof. Suppose that f: A — Ris (a, m)-convex on A. Consider the function

fac : [07d] — R, fﬂc (U) If(SC7’l))7 (:C € [0761)‘
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Then for ¢ € [0,1], (o, m) € [0,1]* and v1,v2 € [0, d], one has

fe v+ m (1 —1t)v2) = f(x,tv1 + m (1 —t)v2)
=f(tx+ (1 —1t)z,tva + m (1l —t)v2)
< taf (:E,'Ul) +m (1 - ta) f (:E,’Uz)
1 fy (o) 1 (1~ 1) fu (02).
Therefore, f5 (v) = f(x,v) is (o, m)-convex on [0,d]. The fact that f, : [0,b] — R,

fy (w) = f (u,y) is also (o, m)-convex on [0, b] for all y € [0, d] goes likewise, and we shall
omit the details. d

3.3. Theorem. Suppose that f: A =10,b] x [0,d] — R is an (a, m)-convezx function on
the co-ordinates on A, where (c,m) € (0,1, If0<a <b< oo, 0<c¢<d< oo and
fe € L1[0,d], fy € L1[0,b], then the following inequalities hold:

1 b c+d 1 d a+b
b—a,/a f(% ) )d L f<T7y dy

1
(3.2) SWd-o9b-a

/ /b 2f (z,y) + m(2* - 1) <f <x’%)+f(%7y>) dzx dy

and

(33 @-90b-09 b—a / / f(x,y) dzdy

min {wi,wa} + min {ws, w4},

1
2(a +1)(b a) 2(a+1)(d—r¢)

o [ s san [ (e L)
wzz./abf(x,d)dx—kam/ (:1: )
L (2
wm [ 100aan [11(50)

Proof. Since f : A — R is co-ordinated (a, m)-convex on A it follows that the mapping
gz 1 [0,d] = R, gz (y) = f (x,y) is (o, m)-convex on [0,d] for all z € [0,b]. Then by the
inequality (1.4) one has:

g,(c+d)< 1 /dgx(y)+m(2 —1)g. (L)

2 ~—d-—c 2«

where

3o

dy,

that is

f<x7c+d>< 1 /df(:c,y)+m(2“—1)f(x7%)dy7

2 ~—d-c¢ 2a
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where 0 < ¢ < d < oo and (a,m) € (0,1]?. Integrating this inequality on [a, b], we have

1 b c+d
d
(=) e

IO

(3.4)

/b /d f (o) +mi@ - ®5) 4 de.

where 0 < a < b < o0.

By a similar argument applied for the mapping gy : [0,b] — [0,00), gy (z) = [ (z,y)
with 0 < a < b < 00, we get

1 d a+b
d_c/ f(TJ/) dy

SU=o0-a

(3.5)

‘/f/df<ay>+4n€2—»nf(%:w(@dm

Summing the inequalities (3.4) and (3.5), we get the inequality (3.2).

The inequality (3.3) can be obtained in a similar way to the proof of Theorem 2.3 by
using (1.5). a

3.4. Remark. If we take a = 1, (3.2) and (3.3) reduce to (2.6) and (2.1), respectively.

3.5. Theorem. Suppose that f : A = [0,b] x [0,d] — R is (o, m)-convez function on
the co-ordinates on A, where (c,m) € (0,1, If0<a <b< oo, 0<c¢<d< oo and
fe € L1[0,d], fy € L1[0,b], then the following inequality holds:

T [ | e v
i [ [ rea i b [ e
(3.6) +b"iaa/1bf(x,%) dx+%/abf(x,%) dz
to [rev a2 [rema
e [ G e 3% [ () ]

Proof. Since f : A — R is co-ordinated (o, m)-convex on A it follows that the mapping
ge @ [0,d] = R, gz (y) = f(z,y) is (o, m)-convex on [0,d] for all x € [0,b]. Then by
inequality (1.6) one has:

¢ c z ma (ge (= e (L
B

d—c Ja a+1

that is
1 L[ f @0+ f(z,d) +ma(f(z,5) + f (2 4))
dT Cf(x7y)dy§§ at1 )
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where 0 < ¢ < d < oo and (a,m) € (0,1]?. Integrating this inequality on [a, b], we have

= _C//fxy dy dx
§2(o¢—|—1 {b_a/f:cc da:—|——/fxd

+bn1aa./abf< )dm—k%/;f(x,%) dm}

By a similar argument applied to the mapping gy : [0,b] — [0,00), gy (z) = f (z,y)
with 0 < a < b < o0, we get

m/d/bf(%y)dmdy
(3.8) Sz(a+1 { / f(a,y) dy—|-_/ b

+dm_o‘c/c 7 (L) ay +dm_o‘c/cdf(:17 )dy}.

Summing the inequalities (3.7) and (3.8), we get the inequality (3.6). |

where 0 < a < b < o0.

3.6. Corollary. Choosing m = 1 in Theorem 8.5, we get the following inequality

b—a)( _C//fxy dy dx

§4(a+1 {b_a/fxc dx—!——/f:cd

—|—ﬁ/a f(z,0) d:c+ﬁ/a f(z,d) dx

d d
%C/ f(a,y) dy+ﬁ/ f(b,y) dy
d d
+ﬁ/c f(ayy)der%/c f(b7y)dy}

3.7. Remark. Choosing (a,m) = (1,1) in (3.6), we get the third inequality of (1.7).
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