SOME NEW HADAMARD TYPE INEQUALITIES FOR CO-ORDINATED m-CONVEX AND (α, m) -CONVEX FUNCTIONS

M. Emin Özdemir*†, Erhan Set‡ and Mehmet Zeki Sarıkaya*

Received 15:06:2010 : Accepted 21:11:2010

Abstract

In this paper, we establish some new Hermite-Hadamard type inequalities for m-convex and (α, m) -convex functions of 2-variables on the co-ordinates.

Keywords: m-convex function, (α, m) -convex function, co-ordinated convex mapping, Hermite-Hadamard inequality.

2010 AMS Classification: 26 A 51, 26 D 15.

Communicated by Alex Goncharov

1. Introduction

Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex mapping defined on the interval I of real numbers, and $a, b \in I$ with a < b. The following double inequality is well known in the literature as the Hermite-Hadamard inequality [5]:

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f\left(x\right) \, dx \leq \frac{f\left(a\right) + f\left(b\right)}{2}.$$

In [8], the notion of m-convexity was introduced by G.Toader as the following:

1.1. Definition. The function $f:[0,b]\to R,\ b>0$ is said to be m-convex, where $m\in[0,1],$ if we have

$$f(tx + m(1 - t)y) \le tf(x) + m(1 - t)f(y)$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$. We say that f is m-concave if -f is m-convex.

^{*}Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240 Campus, Erzurum, Turkey. E-mail: emos@atauni.edu.tr

[†]Corresponding Author.

[‡]Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey. E-mail: (E. Set) erhanset@yahoo.com (M. Z. Sarıkaya) sarıkayamz@gmail.com

Denote by $K_m(b)$ the class of all m-convex functions on [0,b] for which $f(0) \leq 0$. Obviously, if we choose m = 1, Definition 1.1 recaptures the concept of standard convex functions on [0,b].

In [6], S. S. Dragomir and G. Toader proved the following Hadamard type inequalities for *m*-convex functions.

1.2. Theorem. Let $f:[0,\infty)\to\mathbb{R}$ be an m-convex function with $m\in(0,1]$. If $0\leq a< b<\infty$ and $f\in L_1[a,b]$, then the following inequality holds:

$$(1.1) \qquad \frac{1}{b-a} \int_a^b f(x) \, dx \le \min \left\{ \frac{f(a) + mf\left(\frac{b}{m}\right)}{2}, \, \frac{f(b) + mf\left(\frac{a}{m}\right)}{2} \right\}.$$

Some generalizations of this result can be found in [2, 3].

1.3. Theorem. Let $f:[0,\infty)\to\mathbb{R}$ be an m-convex differentiable function with $m\in(0,1]$. Then for all $0\leq a< b$ the following inequality holds:

(1.2)
$$\frac{f(mb)}{m} - \frac{b-a}{2}f'(mb) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \\ \le \frac{(b-ma)f(b) - (a-mb)f(a)}{2(b-a)}.$$

Also, in [5], Dragomir and Pearce proved the following Hadamard type inequality for m-convex functions.

1.4. Theorem. Let $f:[0,\infty)\to\mathbb{R}$ be an m-convex function with $m\in(0,1]$ and $0\leq a < b$. If $f\in L_1[a,b]$, then one has the inequality:

$$(1.3) f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b \frac{f(x) + mf\left(\frac{x}{m}\right)}{2} dx. \Box$$

In [7], the definition of (α, m) -convexity was introduced by V.G. Miheşan as the following:

1.5. Definition. The function $f:[0,b]\to\mathbb{R},\ b>0$, is said to be (α,m) -convex, where $(\alpha,m)\in[0,1]^2$, if we have

$$f(tx + m(1-t)y) \le t^{\alpha} f(x) + m(1-t^{\alpha})f(y)$$

for all $x, y \in [0, b]$ and $t \in [0, 1]$.

Denote by $K_m^{\alpha}(b)$ the class of all (α, m) -convex functions on [0, b] for which $f(0) \leq 0$. If we take $(\alpha, m) = (1, m)$, it can be easily seen that (α, m) -convexity reduces to m-convexity, and for $(\alpha, m) = (1, 1)$, (α, m) -convexity reduces to the usual concept of convexity defined on [0, b], b > 0.

In [9], E. Set, M. Sardari, M. E. Ozdemir and J. Rooin proved the following Hadamard type inequalities for (α, m) -convex functions.

1.6. Theorem. Let $f:[0,\infty)\to\mathbb{R}$ be an (α,m) -convex function with $(\alpha,m)\in(0,1]^2$. If $0\leq a< b<\infty$ and $f\in L_1[a,b]\cap L_1\left[\frac{a}{m},\frac{b}{m}\right]$, then the following inequality holds:

$$(1.4) f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b \frac{f(x) + m(2^\alpha - 1)f\left(\frac{x}{m}\right)}{2^\alpha} dx. \Box$$

1.7. Theorem. Let $f:[0,\infty)\to\mathbb{R}$ be an (α,m) -convex function with $(\alpha,m)\in(0,1]^2$. If $0\leq a< b<\infty$ and $f\in L_1[a,b]$, then the following inequality holds:

$$(1.5) \qquad \frac{1}{b-a} \int_{a}^{b} f(x) dx \leq \min \left\{ \frac{f\left(a\right) + m\alpha f\left(\frac{b}{m}\right)}{\alpha + 1}, \frac{f\left(b\right) + m\alpha f\left(\frac{a}{m}\right)}{\alpha + 1} \right\}.$$

1.8. Theorem. Let $f:[0,\infty)\to\mathbb{R}$ be an (α,m) -convex function with $(\alpha,m)\in(0,1]^2$. If $0\leq a< b<\infty$ and $f\in L_1$ [a,b], then the following inequality holds:

$$(1.6) \qquad \frac{1}{b-a} \int_{a}^{b} f(x) dx \leq \frac{1}{2} \left[\frac{f(a) + f(b) + m\alpha f\left(\frac{a}{m}\right) + m\alpha f\left(\frac{b}{m}\right)}{\alpha + 1} \right].$$

Let us now consider a bidimensional interval $\Delta =: [a, b] \times [c, d]$ in \mathbb{R}^2 , with a < b and c < d. A function $f : \Delta \to \mathbb{R}$ is said to be *convex on* Δ if the following inequality:

$$f(tx + (1-t)z, ty + (1-t)w) \le tf(x,y) + (1-t)f(z,w)$$

holds, for all (x, y), $(z, w) \in \Delta$ and $t \in [0, 1]$. A function $f : \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if the partial mappings $f_y : [a, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [c, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are convex where defined for all $x \in [a, b]$ and $y \in [c, d]$ (see [5, p. 317]).

Also, in [4], Dragomir proved the following similar inequalities of Hadamard's type for a co-ordinated convex mapping on a rectangle in the plane \mathbb{R}^2 .

1.9. Theorem. Suppose that $f: \Delta \to \mathbb{R}$ is co-ordinated convex on Δ . Then one has the inequalities:

$$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\ \leq \frac{1}{2} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy\right] \\ \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(x, y\right) dx dy \\ \leq \frac{1}{4} \left[\frac{1}{b-a} \int_{a}^{b} f\left(x, c\right) dx + \frac{1}{b-a} \int_{a}^{b} f\left(x, d\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(b, y\right) dy\right] \\ \leq \frac{f\left(a, c\right) + f\left(a, d\right) + f\left(b, c\right) + f\left(b, d\right)}{A}$$

The above inequalities are sharp.

For co-ordinated s-convex functions, another version of this result can be found in [1].

The main purpose of this paper is to establish new Hadamard-type inequalities for functions of 2-variables which are m-convex or (α, m) -convex on the co-ordinates.

2. Inequalities for co-ordinated m-convex functions

Firstly, we can define co-ordinated m-convex functions as follows:

2.1. Definition. Consider the bidimensional interval $\Delta := [0, b] \times [0, d]$ in $[0, \infty)^2$. The mapping $f : \Delta \to \mathbb{R}$ is *m-convex on* Δ if

$$f(tx + (1-t)z, ty + m(1-t)w) \le tf(x,y) + m(1-t)f(z,w)$$

holds for all $(x,y),(z,w) \in \Delta$ with $t \in [0,1], b,d > 0$, and for some fixed $m \in [0,1]$.

A function $f: \Delta \to \mathbb{R}$ which is m-convex on Δ is called co-ordinated m-convex on Δ if the partial mappings

$$f_{y}:[0,b]\to\mathbb{R},\ f_{y}(u)=f(u,y)$$

and

$$f_x:[0,d]\to\mathbb{R},\ f_x(v)=f(x,v)$$

are m-convex for all $y \in [0, d]$ and $x \in [0, b]$ with b, d > 0, and for some fixed $m \in [0, 1]$.

We also need the following Lemma for our main results.

2.2. Lemma. Every m-convex mapping $f: \Delta \subset [0,\infty)^2 \to \mathbb{R}$ is m-convex on the coordinates, where $\Delta = [0,b] \times [0,d]$ and $m \in [0,1]$.

Proof. Suppose that $f: \Delta = [0,b] \times [0,d] \to \mathbb{R}$ is m-convex on Δ . Consider the function

$$f_x : [0, d] \to \mathbb{R}, \ f_x (v) = f (x, v), \ (x \in [0, b]).$$

Then for $t, m \in [0, 1]$ and $v_1, v_2 \in [0, d]$, we have

$$f_x(tv_1 + m(1-t)v_2) = f(x, tv_1 + m(1-t)v_2)$$

$$= f(tx + (1-t)x, tv_1 + m(1-t)v_2)$$

$$\leq tf(x, v_1) + m(1-t)f(x, v_2)$$

$$= tf_x(v_1) + m(1-t)f_x(v_2).$$

Therefore, $f_x(v) = f(x, v)$ is m-convex on [0, d]. The fact that $f_y : [0, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ is also m-convex on [0, b] for all $y \in [0, d]$ goes likewise, and we shall omit the details.

2.3. Theorem. Suppose that $f: \Delta = [0,b] \times [0,d] \to \mathbb{R}$ is an m-convex function on the co-ordinates on Δ . If $0 \le a < b < \infty$ and $0 \le c < d < \infty$ with $m \in (0,1]$, then one has the inequality:

(2.1)
$$\frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy \\ \leq \frac{1}{4(b-a)} \min \{v_{1}, v_{2}\} + \frac{1}{4(d-c)} \min \{v_{3}, v_{4}\},$$

where

$$v_1 = \int_a^b f(x,c) \, dx + m \int_a^b f\left(x, \frac{d}{m}\right) \, dx$$

$$v_2 = \int_a^b f(x,d) \, dx + m \int_a^b f\left(x, \frac{c}{m}\right) \, dx$$

$$v_3 = \int_c^d f(a,y) \, dy + m \int_c^d f\left(\frac{b}{m}, y\right) \, dy$$

$$v_4 = \int_c^d f(b,y) \, dy + m \int_c^d f\left(\frac{a}{m}, y\right) \, dy.$$

Proof. Since $f: \Delta \to \mathbb{R}$ is co-ordinated *m*-convex on Δ it follows that the mapping $g_x: [0,d] \to \mathbb{R}$, $g_x(y) = f(x,y)$ is *m*-convex on [0,d] for all $x \in [0,b]$. Then by the inequality (1.1) one has:

$$\frac{1}{d-c} \int_{c}^{d} g_{x}\left(y\right) dy \leq \min \left\{ \frac{g_{x}\left(c\right) + mg_{x}\left(\frac{d}{m}\right)}{2}, \frac{g_{x}\left(d\right) + mg_{x}\left(\frac{c}{m}\right)}{2} \right\},$$

or

$$\frac{1}{d-c}\int_{c}^{d}f\left(x,y\right)\,dy\leq\min\left\{\frac{f\left(x,c\right)+mf\left(x,\frac{d}{m}\right)}{2},\ \frac{f\left(x,d\right)+mf\left(x,\frac{c}{m}\right)}{2}\right\},$$

where $0 \le c < d < \infty$ and $m \in (0, 1]$.

Dividing both sides by (b-a) and integrating this inequality over [a,b] with respect to x, we have

$$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx \\
\leq \min \left\{ \frac{1}{2(b-a)} \int_{a}^{b} f(x,c) \, dx + \frac{m}{2(b-a)} \int_{a}^{b} f\left(x,\frac{d}{m}\right) \, dx, \\
\frac{1}{2(b-a)} \int_{a}^{b} f(x,d) \, dx + \frac{m}{2(b-a)} \int_{a}^{b} f\left(x,\frac{c}{m}\right) \, dx \right\} \\
= \frac{1}{2(b-a)} \min \left\{ \int_{a}^{b} f(x,c) \, dx + m \int_{a}^{b} f\left(x,\frac{d}{m}\right) \, dx, \\
\int_{a}^{b} f(x,d) \, dx + m \int_{a}^{b} f\left(x,\frac{c}{m}\right) \, dx \right\}$$

where $0 \le a < b < \infty$.

By a similar argument applied to the mapping $g_y:[0,b]\to\mathbb{R},\ g_y\left(x\right)=f\left(x,y\right)$ with $0\leq a< b<\infty,$ we get

$$\frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

$$\leq \frac{1}{2(d-c)} \min \left\{ \int_{c}^{d} f(a,y) dy + m \int_{c}^{d} f\left(\frac{b}{m},y\right) dy, \int_{c}^{d} f(b,y) dy + m \int_{c}^{d} f\left(\frac{a}{m},y\right) dy \right\}.$$

Summing the inequalities (2.2) and (2.3), we get the inequality (2.1).

2.4. Corollary. With the above assumptions, and provided that the partial mappings

$$f_{y}:[0,b]\to\mathbb{R},\ f_{y}(u)=f(u,y)$$

and

$$f_x:[0,d]\to\mathbb{R},\ f_x(v)=f(x,v)$$

are differentiable on (0,b) and (0,d), respectively, we have the inequalities

$$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

$$\leq \frac{1}{4(b-a)} \min \left\{ (b-ma) \left[f(b,c) + mf\left(b, \frac{d}{m}\right) \right] - (a-mb) \left[f(a,c) + mf\left(a, \frac{d}{m}\right) \right],$$

$$(b-ma) \left[f(b,d) + mf\left(b, \frac{c}{m}\right) \right] - (a-mb) \left[f(a,d) + mf\left(a, \frac{c}{m}\right) \right] \right\},$$

and

$$\frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy$$

$$\leq \frac{1}{4(d-c)} \min \left\{ (d-mc) \left[f(a,d) + mf \left(\frac{b}{m}, d \right) \right] - (c-md) \left[f(a,c) + mf \left(\frac{b}{m}, c \right) \right],$$

$$(d-mc) \left[f(b,d) + mf \left(\frac{a}{m}, d \right) \right] - (c-md) \left[f(b,c) + mf \left(\frac{a}{m}, c \right) \right] \right\}.$$

Proof. Since the partial mappings

$$f_x:[0,d]\to\mathbb{R},\ f_x(v)=f(x,v)$$

are differentiable on [0, d], by the inequality (1.2) we have

$$\frac{1}{(b-a)} \int_{a}^{b} f\left(x,c\right) \, dx \leq \frac{(b-ma) \, f(b,c) - (a-mb) \, f(a,c)}{2 \, (b-a)},$$

$$\frac{1}{(b-a)} \int_{a}^{b} f\left(x,\frac{d}{m}\right) \, dx \leq \frac{(b-ma) \, f(b,\frac{d}{m}) - (a-mb) \, f(a,\frac{d}{m})}{2 \, (b-a)},$$

$$\frac{1}{(b-a)} \int_{a}^{b} f\left(x,d\right) \, dx \leq \frac{(b-ma) \, f(b,d) - (a-mb) \, f(a,d)}{2 \, (b-a)}, \text{ and }$$

$$\frac{1}{(b-a)} \int_{a}^{b} f\left(x,\frac{c}{m}\right) \, dx \leq \frac{(b-ma) \, f(b,\frac{c}{m}) - (a-mb) \, f(a,\frac{c}{m})}{2 \, (b-a)}.$$

Hence, using (2.2), we get the inequality (2.4).

Analogously, Since the partial mappings

$$f_y:[0,b]\to\mathbb{R},\ f_y(u)=f(u,y)$$

are differentiable on [0, b], using the inequality (2.3), we get the inequality (2.5). The proof is completed.

- **2.5. Remark.** Choosing m = 1 in (2.4) or (2.5), we get the relationship between the third and fourth inequalities in (1.7).
- **2.6. Theorem.** Suppose that $f : \Delta = [0, b] \times [0, d] \to \mathbb{R}$ is an m-convex function on the co-ordinates on Δ . If $0 \le a < b < \infty$ and $0 \le c < d < \infty$, $m \in (0, 1]$ with $f_x \in L_1[0, d]$ and $f_y \in L_1[0, b]$, then one has the inequality:

$$\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy$$

$$\leq \frac{1}{(b-a)(d-c)} \left[\int_{a}^{b} \int_{c}^{d} \frac{f\left(x, y\right) + mf\left(x, \frac{y}{m}\right)}{2} dy dx + \int_{c}^{d} \int_{a}^{b} \frac{f\left(x, y\right) + mf\left(\frac{x}{m}, y\right)}{2} dx dy \right].$$

Proof. Since $f:\Delta\to\mathbb{R}$ is co-ordinated m-convex on Δ it follows that the mapping $g_x:[0,d]\to\mathbb{R},\ g_x(y)=f(x,y)$ is m-convex on [0,d] for all $x\in[0,b]$. Then by the

inequality (1.3) one has:

$$g_x\left(\frac{c+d}{2}\right) \le \frac{1}{d-c} \int_c^d \frac{g_x\left(y\right) + mg_x\left(\frac{y}{m}\right)}{2} dy,$$

or

$$f\left(x, \frac{c+d}{2}\right) \le \frac{1}{d-c} \int_{c}^{d} \frac{f\left(x, y\right) + mf\left(x, \frac{y}{m}\right)}{2} \, dy$$

for all $x \in [0, b]$. Integrating this inequality on [a, b], we have

$$(2.7) \qquad \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx$$

$$\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} \frac{f\left(x, y\right) + mf\left(x, \frac{y}{m}\right)}{2} dy dx.$$

By a similar argument applied to the mapping $g_{y}:[0,b]\to\mathbb{R},$ $g_{y}\left(x\right)=f\left(x,y\right),$ we get

$$(2.8) \qquad \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \\ \leq \frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} \frac{f\left(x, y\right) + mf\left(\frac{x}{m}, y\right)}{2} dx dy.$$

Summing the inequalities (2.7) and (2.8), we get the inequality (2.6).

2.7. Remark. Choosing m = 1 in (2.6), we get the second inequality of (1.7).

3. Inequalities for co-ordinated (α, m) -convex functions

3.1. Definition. Consider the bidimensional interval $\Delta := [0, b] \times [0, d]$ in $[0, \infty)^2$. The mapping $f : \Delta \to \mathbb{R}$ is (α, m) -convex on Δ if

$$(3.1) f(tx + (1-t)z, ty + m(1-t)w) < t^{\alpha} f(x,y) + m(1-t^{\alpha}) f(z,w)$$

holds for all $(x, y), (z, w) \in \Delta$ and $(\alpha, m) \in [0, 1]^2$, with $t \in [0, 1]$.

A function $f: \Delta \to \mathbb{R}$ which is (α, m) -convex on Δ is called *co-ordinated* (α, m) -convex on Δ if the partial mappings

$$f_{y}:[0,b]\rightarrow\mathbb{R},\ f_{y}(u)=f(u,y)$$

and

$$f_x: [0,d] \to \mathbb{R}, \ f_x(v) = f(x,v)$$

are (α, m) -convex for all $y \in [0, d]$ and $x \in [0, b]$ with some fixed $(\alpha, m) \in [0, 1]^2$.

Note that for $(\alpha, m) = (1, 1)$ and $(\alpha, m) = (1, m)$, one obtains the class of co-ordinated convex and of co-ordinated m-convex functions on Δ , respectively.

3.2. Lemma. Every (α, m) -convex mapping $f: \Delta \to \mathbb{R}$ is (α, m) -convex on the coordinates, where $\Delta = [0, b] \times [0, d]$ and $\alpha, m \in [0, 1]$.

Proof. Suppose that $f: \Delta \to \mathbb{R}$ is (α, m) -convex on Δ . Consider the function

$$f_x: [0, d] \to \mathbb{R}, \ f_x(v) = f(x, v), \ (x \in [0, b]).$$

Then for $t \in [0, 1], (\alpha, m) \in [0, 1]^2$ and $v_1, v_2 \in [0, d]$, one has

$$f_{x}(tv_{1} + m(1 - t)v_{2}) = f(x, tv_{1} + m(1 - t)v_{2})$$

$$= f(tx + (1 - t)x, tv_{1} + m(1 - t)v_{2})$$

$$\leq t^{\alpha} f(x, v_{1}) + m(1 - t^{\alpha}) f(x, v_{2})$$

$$= t^{\alpha} f_{x}(v_{1}) + m(1 - t^{\alpha}) f_{x}(v_{2}).$$

Therefore, $f_x(v) = f(x, v)$ is (α, m) -convex on [0, d]. The fact that $f_y : [0, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ is also (α, m) -convex on [0, b] for all $y \in [0, d]$ goes likewise, and we shall omit the details.

3.3. Theorem. Suppose that $f: \Delta = [0,b] \times [0,d] \to \mathbb{R}$ is an (α,m) -convex function on the co-ordinates on Δ , where $(\alpha,m) \in (0,1]^2$. If $0 \le a < b < \infty$, $0 \le c < d < \infty$ and $f_x \in L_1[0,d]$, $f_y \in L_1[0,b]$, then the following inequalities hold:

$$\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx + \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy$$

$$\leq \frac{1}{(d-c)(b-a)}$$

$$\times \int_{c}^{d} \int_{a}^{b} \frac{2f(x,y) + m(2^{\alpha}-1)\left(f\left(x, \frac{y}{m}\right) + f\left(\frac{x}{m}, y\right)\right)}{2^{\alpha}} dx dy,$$

and

(3.3)
$$\frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} f(x,y) dx dy \\ \leq \frac{1}{2(\alpha+1)(b-a)} \min\{w_{1}, w_{2}\} + \frac{1}{2(\alpha+1)(d-c)} \min\{w_{3}, w_{4}\},$$

where

$$w_1 = \int_a^b f(x,c) dx + \alpha m \int_a^b f\left(x, \frac{d}{m}\right) dx$$

$$w_2 = \int_a^b f(x,d) dx + \alpha m \int_a^b f\left(x, \frac{c}{m}\right) dx$$

$$w_3 = \int_c^d f(a,y) dy + \alpha m \int_c^d f\left(\frac{b}{m}, y\right) dy$$

$$w_4 = \int_c^d f(b,y) dy + \alpha m \int_c^d f\left(\frac{a}{m}, y\right) dy.$$

Proof. Since $f: \Delta \to \mathbb{R}$ is co-ordinated (α, m) -convex on Δ it follows that the mapping $g_x: [0, d] \to \mathbb{R}$, $g_x(y) = f(x, y)$ is (α, m) -convex on [0, d] for all $x \in [0, b]$. Then by the inequality (1.4) one has:

$$g_x\left(\frac{c+d}{2}\right) \le \frac{1}{d-c} \int_{-c}^{d} \frac{g_x(y) + m(2^{\alpha}-1)g_x\left(\frac{y}{m}\right)}{2^{\alpha}} dy,$$

that is

$$f\left(x, \frac{c+d}{2}\right) \le \frac{1}{d-c} \int_{c}^{d} \frac{f\left(x, y\right) + m(2^{\alpha} - 1)f\left(x, \frac{y}{m}\right)}{2^{\alpha}} \, dy,$$

where $0 \le c < d < \infty$ and $(\alpha, m) \in (0, 1]^2$. Integrating this inequality on [a, b], we have

$$(3.4) \qquad \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) dx$$

$$\leq \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} \frac{f(x,y) + m(2^{\alpha}-1)f\left(x, \frac{y}{m}\right)}{2^{\alpha}} dy dx,$$

where $0 \le a < b < \infty$.

By a similar argument applied for the mapping $g_y:[0,b]\to[0,\infty),\ g_y(x)=f(x,y)$ with $0\leq a< b<\infty,$ we get

$$(3.5) \qquad \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy \\ \leq \frac{1}{(d-c)(b-a)} \int_{a}^{b} \int_{c}^{d} \frac{f\left(x, y\right) + m(2^{\alpha} - 1)f\left(\frac{x}{m}, y\right)}{2^{\alpha}} dy dx.$$

Summing the inequalities (3.4) and (3.5), we get the inequality (3.2).

The inequality (3.3) can be obtained in a similar way to the proof of Theorem 2.3 by using (1.5).

- **3.4. Remark.** If we take $\alpha = 1$, (3.2) and (3.3) reduce to (2.6) and (2.1), respectively.
- **3.5. Theorem.** Suppose that $f: \Delta = [0,b] \times [0,d] \to \mathbb{R}$ is (α,m) -convex function on the co-ordinates on Δ , where $(\alpha,m) \in (0,1]^2$. If $0 \le a < b < \infty$, $0 \le c < d < \infty$ and $f_x \in L_1[0,d]$, $f_y \in L_1[0,b]$, then the following inequality holds:

$$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

$$\leq \frac{1}{4(\alpha+1)} \left[\frac{1}{b-a} \int_{a}^{b} f(x,c) \, dx + \frac{1}{b-a} \int_{a}^{b} f(x,d) \, dx
+ \frac{m\alpha}{b-a} \int_{a}^{b} f\left(x, \frac{c}{m}\right) \, dx + \frac{m\alpha}{b-a} \int_{a}^{b} f\left(x, \frac{d}{m}\right) \, dx
+ \frac{1}{d-c} \int_{c}^{d} f(a,y) \, dy + \frac{1}{d-c} \int_{c}^{d} f(b,y) \, dy
+ \frac{m\alpha}{d-c} \int_{c}^{d} f\left(\frac{a}{m}, y\right) \, dy + \frac{m\alpha}{d-c} \int_{c}^{d} f\left(\frac{b}{m}, y\right) \, dy \right].$$

Proof. Since $f: \Delta \to \mathbb{R}$ is co-ordinated (α, m) -convex on Δ it follows that the mapping $g_x: [0,d] \to \mathbb{R}$, $g_x(y) = f(x,y)$ is (α, m) -convex on [0,d] for all $x \in [0,b]$. Then by inequality (1.6) one has:

$$\frac{1}{d-c} \int_{c}^{d} g_{x}\left(y\right) \, dy \leq \frac{1}{2} \left[\frac{g_{x}\left(c\right) + g_{x}\left(d\right) + m\alpha\left(g_{x}\left(\frac{c}{m}\right) + g_{x}\left(\frac{d}{m}\right)\right)}{\alpha + 1} \right],$$

that is

$$\frac{1}{d-c} \int_{c}^{d} f\left(x,y\right) \, dy \leq \frac{1}{2} \left[\frac{f\left(x,c\right) + f\left(x,d\right) + m\alpha\left(f\left(x,\frac{c}{m}\right) + f\left(x,\frac{d}{m}\right)\right)}{\alpha + 1} \right],$$

where $0 \le c < d < \infty$ and $(\alpha, m) \in (0, 1]^2$. Integrating this inequality on [a, b], we have

$$(3.7) \qquad \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

$$\leq \frac{1}{2(\alpha+1)} \left[\frac{1}{b-a} \int_{a}^{b} f(x,c) \, dx + \frac{1}{b-a} \int_{a}^{b} f(x,d) \, dx + \frac{m\alpha}{b-a} \int_{a}^{b} f\left(x,\frac{d}{m}\right) \, dx \right]$$

where $0 \le a < b < \infty$.

By a similar argument applied to the mapping $g_y:[0,b]\to[0,\infty),\ g_y(x)=f(x,y)$ with $0\leq a< b<\infty$, we get

$$(3.8) \qquad \frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy$$

$$\leq \frac{1}{2(\alpha+1)} \left[\frac{1}{d-c} \int_{c}^{d} f(a,y) \, dy + \frac{1}{d-c} \int_{c}^{d} f(b,y) \, dy + \frac{m\alpha}{d-c} \int_{c}^{d} f\left(\frac{b}{m},y\right) \, dy + \frac{m\alpha}{d-c} \int_{c}^{d} f\left(\frac{b}{m},y\right) \, dy \right].$$

Summing the inequalities (3.7) and (3.8), we get the inequality (3.6).

3.6. Corollary. Choosing m=1 in Theorem 3.5, we get the following inequality

$$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx
\leq \frac{1}{4(\alpha+1)} \left[\frac{1}{b-a} \int_{a}^{b} f(x,c) \, dx + \frac{1}{b-a} \int_{a}^{b} f(x,d) \, dx \right]
+ \frac{\alpha}{b-a} \int_{a}^{b} f(x,c) \, dx + \frac{\alpha}{b-a} \int_{a}^{b} f(x,d) \, dx
+ \frac{1}{d-c} \int_{c}^{d} f(a,y) \, dy + \frac{1}{d-c} \int_{c}^{d} f(b,y) \, dy
+ \frac{\alpha}{d-c} \int_{a}^{d} f(a,y) \, dy + \frac{\alpha}{d-c} \int_{a}^{d} f(b,y) \, dy \right].$$

3.7. Remark. Choosing $(\alpha, m) = (1, 1)$ in (3.6), we get the third inequality of (1.7).

References

- [1] Alomari, M. and Darus, M. Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sciences 3 (32), 1557–1567, 2008.
- [2] Bakula, M. K. Ozdemir, M. E. and Pečarić, J. Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure and Appl. Math. 9 (4), Art. 96, 2008.
- [3] Bakula, M. K., Pečarić, J. and Ribičić, M. Companion inequalities to Jensen's inequality for m-convex and (α, m)-convex functions, J. Inequal. Pure and Appl. Math. 7 (5), Art. 194, 2006
- [4] Dragomir, S.S. On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics 4, 775–788, 2001.
- [5] Dragomir, S.S. and Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications (RGMIA Monographs, Victoria University, 2000). [Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html].
- [6] Dragomir, S. S. and Toader, G. Some inequalities for m-convex functions, Studia Univ. Babes-Bolyai, Mathematica 38 (1), 21–28, 1993.

- [7] Miheşan, V. G. A generalization of the convexity (Seminar on Functional Equations, Approx. and Convex., Cluj-Napoca, Romania, 1993).
- [8] Toader, G. Some generalizations of the convexity, Proc. Colloq. Approx. Opt. Cluj-Napoca, 329–338, 1984.
- [9] Set, E., Sardari, M., Ozdemir, M. E. and Rooin, J. On generalizations of the Hadamard inequality for (α, m) -convex functions, RGMIA Res. Rep. Coll. 12 (4), Article 4, 2009.