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Abstract

In the present article some inequalities of trigonometric approximation
are proved in Orlicz spaces generated by a quasiconvex Young function.
Also, the main one-sided approximation problems are investigated.
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1. Introduction

A function @ is called a Young function if ® is even, continuous, nonnegative in
R := (—00, +-00), increasing on R" := (0, 00) and such that

®(0) =0, lim ®(z) = co.
Tr—00
A function ¢ : [0,00) — [0,00) is said to be quasiconvez if there exist a convex Young
function ® and a constant ¢; > 1 such that
O (z) < p(z) < ®(c1z) Vo > 0.

Set T := [0, 2] and let ¢ be a quasiconvex Young function. We denote by (L) the class
of complex valued Lebesgue measurable functions f : T — C satisfying the condition

/w(lf(r)l) dz < oo,

a
The class of functions f : T — C having the property

/ga(cz 1 (@)]) da < oo

T
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for some c2 € R* is denoted by L, (T). The set L, (T) becomes a normed space with
the Orlicz norm

1A, = sup{./u(x)g(xnd:c [ 2ol do < 1}7

where @ (y) := sup, >, (zy — ¢ (x)), y > 0, is the complementary function of .
For a quasiconvex function ¢ we define the index p (¢) of ¢ as
1

—— :=inf{p:p >0, ¢’ is quasiconvex

p(y) t )
and the conjugate index of ¢ as

p/( )= p(¢) )

plp) =1

It can be easily seen that the functions in L, (T) are summable on T, L, (T) ¢ L* (T)

and L, (T) becomes a Banach space with the Orlicz norm. The Banach space L, (T) is
called the Orlicz space.

A Young function ® is said to be satisfy the Ay condition if there is a constant ¢z > 0
such that
D (2z) < 3P ()
for all z € R.

We will denote by QCY (0,1) the class of functions g satisfying the condition A2 such
that g% is quasiconvex for some 6 € (0, 1).

In the present work we consider the trigonometric polynomial approximation problems
for functions and their fractional derivatives in the spaces L, (T), where p € QC% (0,1).
We prove a Jackson type direct theorem, and a converse theorem of trigonometric ap-
proximation with respect to the fractional order moduli of smoothness in Orlicz spaces.
As a particular case, we obtain a constructive description of the Lipschitz class in Orlicz
spaces. A direct theorem of one sided trigonometric approximation is also obtained.

Let

oo

(1.1)y  f(x) - f: cre™ and f(z) » Z (—isignk) cpe'™™

k=—oc k=—oc0
be the Fourier and the conjugate Fourier series of f € L* (T), respectively. We define
Sy (f) := Sn (z, f) := Z cke“m7 n=0,1,2,....
k=—n
For a given f € L' (T), assuming co = 0 in (1.1), we define the a'" fractional (o € RT)
integral of f as in [7, v.2, p.134] by

I, (z, f) = Z cx (k)™ etk

kez*
where Z is the set of integers, Z* := {z € Z : z # 0}, and
g
(ik)ia = |k|*(¥ e(—1/2)miasignk

as principal value.
Let o € R" be given. We define the fractional derivative of a function f € L' (T),
satisfying co = 0 in (1.1), as
o qlel+1
() = WIIJraf[a] (z, f),



Inequalities for one sided approximation in Orlicz spaces 233

provided the righthand side exists, where [z] denotes the integer part of the real number
T.

Setting h € T, r € RT, o € QCY (0,1) and f € L, (T), we define
ALF ()= D=1 f () =D (=1 (L) FC+ = R)R),

where <;> = r(r—l)..l;:!(r—k—i—l for £ > 1, (:) := r and (6) := 1 are the

binomial coefficients, Ty f (z) := f (x 4+ h) is the translation operator and I the identity

operator.
Since Y <T> < 0o we get
i=o|\FK

12)  [lars, < e fll, < oo
under the condition f € Ly, (T), where ¢ € QCY (0,1).

Here and in the following we will denote by B a translation invariant Banach Function
Space. Also, the notation H . stands for the norm of B.

~—

I
For r € R™, we define the fractional modulus of smoothness of order r for f € B, as

wp (f,8) := sup |ALf]| 5, 6 >0.
|h| <6

If ¢ € QCY(0,1) and B = L, (T), we will set wp (f,") =t wi (f,-). Hence for ¢ €
QCY(0,1) and f € Ly, (T), we have by (1.2) that

o (£,8) < | 1|
where the constant ¢ > 0 dependent only on r and ¢.

Let T, be the class of trigonometric polynomials of degree not greater than n. We
begin with the fractional Nikolski-Civin inequality:

1.1. Theorem. Suppose that o € R, T, € T, and 0 < h < 27/n. Then
«@ n ¢ «
17 < (gt ) 1457
In particular, if h = 7/n, then
(13) T < 27 0| AT Tl |5
Proof. Let Ty, (z) = L+ 3 c,e™”, where Zj, := {2 € Z: 2 <n, 2> —n, z # 0}. Then

veL,

T (z) = 32 (iv)® cpe™®, and

veLy

ART, (x + %h) = Z (2i sin gy) e e,

vELY

We set

p(t) = (Qisin gt) , g(t) = ( ! ) for —n <t<mnandg(0):=h""

2sin %t
Then for z € R, h € (0,27/n), we obtain

ART, <x + %h) = Z e (v) c, e’

vELY,
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and

T (1) = Y o) g () coe™.

veLy
The convergence
i .
g (t) — Z dkezkrrt/n
k=—oc0

is uniform for ¢ € [—n,n). Since (—=1)F di, > 0, we find

oo

T (z) = Z e (V) Z dre™ 7 e, e

veLy k=—o0

> Y et

k=—o0 veLy

— Z A AST), (1:—1— oy ‘;‘h)

k=—o00

Hence we conclude

oo
Ty < 80Ty D2 [dee™

k=—o0
oo
ngHB Z dkeik‘rr
k=—o0

= (st 18071

and Theorem 1.1 is proved.

O

We denote by B, a > 0, the linear space of 27-periodic complex valued functions
f € B such that £~V is absolutely continuous (AC), and f(* € B. If ¢ € QCY (0,1)

and B = L, (T) we will let B® =: W (T).
We set Lg° := {f € L : f is real valued and bounded on T}. If f € L§° we define
Tn (f) :={t € Ty : t is real valued 27 periodic and ¢ (x) < f (z) for every = € R},

T5(f) :={T € T : T is real valued 2 periodic and f (z) < T (z) for every = € R},

E;(f)¢3: inf ||f—t|| f)¢:=T61nf |T - f||

€Th (f)

The quantities E,, (f), and E} (),

are, respectively, called the best lower (upper) one

sided approzimation errors for f € Lg°. Similarly, the best trigonometric approximation

error of f € Ly (T) is defined as En (f), = Slnjf If - S|| We note that En (f),
€
Ei: (),
If o € QCY (0,1), f € Ly, (T), g € L* (T), we introduce the convolution

(f * /f xz—u)g(u) du.

This convolution exists for every z € R and is a measurable function. Furthermore

15+ gll, < 151 N9l 2r -
If f is continuous (AC) then f * g is continuous (AC).

<
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1.2. Theorem. Let ¢ € QCY(0,1),1 < B < 0o and f € Wf (M. If0 <o < B and

n=1,2,3,..., then there erists a constant ¢ > 0 depending only on o and B such that
(a) ¢ (8)
(14)  Ea(f), < 5= Ea(S7),

holds. If f is real valued, 0 < a < B—1andn=1,2,3,..., then
+( pla) ¢ ()

(15) B (), < 5= Eulf7),

holds.

Proof. 1° First we prove that f(* is AC for 0 < a < 8—1 and f® € L, (T) for
B—1<a <. Itis well known that the function ¥y (u) := lim 3 (:;; = Z (::)1; ,
veLy

n— oo

a € RT, is defined for every u € Rif 1 < a < oo (foru;é2k7r7k621f0<a<1) and
U, is of class L' (T). In this case

(1.6) f(z)= (f(ﬁ) * Wg) (z) for every z € R.

Furthermore,

WD) SO @) = (F9 W) (@)

is satisfied for every x € Rif 0 < o < 8 — 1 (for almost every z e Rif § —1 < a < ().

Now (1.6) implies that if 3 > 1, then f is absolutely continuous, and (1.7) implies that
f@is ACfor0<a<f—1land f® eL,(Tfor —1<a<p.

2° If & = B3, then (1.4) is obvious. If @ = 0, then (1.4) was proved in [3]. Let
0 < a < (. We choose a Sa,n € Ty, with HSa,n — \I/ﬁ*aHLl(T) = F, (\I/g,a)Ll(T). Let

Unalf] = P % Sam, n = 1,2,3.... Then

F (@) = Una [f] (@) = / FP @) {¥p-a (@ = u) = San (& — u)} du

o
holds a.e. Therefore,
157 = Una (711l < %80 = Sanl pa e 15,
Since by [4]

[¥5-a — Sa ””Ll(T) <en?

we get (since Uy,o [f] € Tn) that
En(f(a))w < cna’ﬁHf(ﬁ)Hw.
Let Q. € T, be such that

| £ - Qull, = En( En (£ ))w n=1,2,3....
We suppose

¢ (x) = f(z) =I5 [Qn](z), z €R.
Then

¢\ () = [P (@) = Qu (x),
and hence

621, = 172 = @ull, = B (7).,
Therefore we find
En((b(a))v < CnafﬁHqS(ﬁ)Hv < CnafﬁEn(f(ﬁ))(P'



236 R. Akgiin

Since

En(¢(a))¢ — En(f(a))w
we conclude that (1.4) holds.

3° Let

£9 () = % {,f(m(u), +§® (U)} and £ (u {’f(ﬁ) —§® (U)}

for u € R. Then
F @)= (117 W) (@) = (/2 % Ws) (@),

1 @) = (£ Wpa) (@) = (S % Vo) (@)
forevery 0 < a < B —1. Let tan € T, (¥s-a), Tan € Tr (Ug—a) be such that

Hf - ta,n”v =E, (‘I’ﬁfa)Ll(T) and HTa,n - fH(P =E; (\I’ﬁ*a)Ll(T)
forn=1,2,3.... Let also

Uitn [f) = (A7 5 Tom) = (57 s t0n), Usna [F] = (A7 5 ton) = (£ 4 Ton),
and for 0 < a < 8 — 1 we set

U lf] = (P % Tan) = (f % tam), Usn [f) = (f2 5 tam) = (f % Tarn).

Hence,
Uit 1) (@) — £ ( / £ () {Tam (@ — 0) = Up_a (& — w)} du

+ 50 [ 1 @ e @ =)~ to (o= )}

for every x € R. Then
Uan [f] (2) 2 [ (2)
for every x € R. This implies that
Udnlf1 €T (f), 0<a<p—1.

Similarly,
We obtain

Uz = £, < en 2|57,
and hence

(Uo7 - £, < en* 2B (59
for 0 < a < @ —1. Since
Ui 6] () < 6 (2) < UL (9] (2)

and

o () = f1 (2) — Q7 (x)

we have

U [6] (2) + Q27 (2) < 1 (2) UL, 6] (2) + Q77 ()
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for every € R. Therefore
+ ( p(a) + _ Na=p) _ pla)

EE(f), < |[Ufa 8] - Q™ — 1|

= |Uzalel - 6,
a—f (8)
<cn En(f )v’
and the required result holds. (]
1.3. Theorem. Let p € QCS(0,1). If 1< B < oo, f € Wf (T) and B > o > 0, then for

n=1,2,3,... there is a constant ¢ > 0 dependent only on «, 8 and ¢ such that

e a C
18)  [IFC) =S D, < B (1),

holds. If f is real valued and there exist polynomials tn € T, (f), Tn €
[f =tull, < cEx (N 1T = fIl, < B (f),,, then for 0 < a < B and

T (f) such that
n=1,23,...,

(L9)  [F = el < == Ea(s?),, and
(110) T8 = £, < == Ea(s7),
hold.

Proof. If a = 0, then the results follows from Theorem 1.2. If o = 3, then it was proved
in [2] that

(111) [[F ) = SN, < eBa(FY), -

From Theorem 1.2 and last inequality, (1.8) follows.
Now we prove (1.9) and (1.10) for 0 < a < 8. Let

2n
Wn(f) = Wn(xyf) = %HZSV(‘TLf)y n:O71727""

Suppose that u :=u (-, f) € T, satisfies ||f — u||v =F, (f)so‘ Since

W+, f) = Wi (-, f)
we have
179 =S| < @ = W, FON+ Jul W) = 627
+ WAL ) = ul W)

®

=10+ I+ Is.
Since |[Wa (£) |, < 4] 7] we get
L< [FC) =ul f), A+ Jul £ = Wa (- £
= En(f )+ [Wal- u(f) = 1)
< 5B, (f)

o
o
From Theorem 1.1, we get
I <200 = D° Ju(-, Walh) — ],
and

Is <220 = 2)% [[Wa (-, f) —ul- , Wa(f))|,, < 277 0" En (Wa(f)),, -

®
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Now we have

ful . Wal) = ta], < [l Wa(£) = Wal -, DI, + [Wal. )= £ ()]

+f ) —tall,
< En (Wa(f)), +5En (f), +cEy (), -

Since

En (Wn(f), < [[Wa(f) —ull, = [[Wa(f =), < 4En (f),
we get

179 =t < BE(F'V) ) + 20" En (Wa(f)),, + 100" En (f),,
(1.12) + 27 0 By (Wa(f)), + 20 Ey (),

< 5E. (f<a>) + (18427 n® B, (f), + 20 E; (f),, -

@

Using Theorem 1.2 we get (1.9), and (1.10) can be proved using the same procedure. O

Direct theorem of trigonometric approximation:

1.4. Theorem. Let ¢ € QCY (0,1) and r € RT. If f € L, (T), then there is a constant
¢ > 0, dependent only on r and ¢, such that the inequality

- 1
(1.13)  En(f), < cwg (ﬁ n——|—1)
holds forn =10,1,2,3,....

Proof. This is a consequence of [3, Theorem 2] and the property wg, (f, -) < cw;, (f, -),
(r > s € R"), of the smoothness moduli. O

1.5. Theorem. Ifr,§ € R" and f € B, a € RY, then there exists a constant ¢ > 0
depending only on r and B such that

(1.14)  wh (£,6) < ed”|[f7| 5, 6>0
holds.

Proof. For the function x, (-,h) € L' (T) of [6, (20.15), p.376] we define

(A3.0) @)= (430 (- W) @) = 5 [ o =) (wh) du, @ €T, heRY,

Then using Fubini’s theorem we get
(118) (AR5 < b Com) [ 1715 < €llF1] -
Since

(ALF) (@) = b (AN (@) = b 47 (1) (@)
we have from (1.15) that

sup 471 = sup 145 (1) 1 < 871

from which we obtain (1.14). O

The converse theorem of trigonometric approximation:
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1.6. Theorem. Let ¢ € QCY (0,1) and r € RT. If f € L, (T), then there is a constant
¢ > 0, dependent only on r and ¢, such that forn =0,1,2,3,...

w;<f’nj-1) < (n—il)T VZ:O(V_FDTAE" (f)so

holds.
Proof. The proof goes similarly to that of the proof of [2, Theorem 3]. g

From Theorems 1.4 and 1.6 we have the following corollaries:
1.7. Corollary. Let ¢ € QCS(0,1) and r € RY. If f € L, (T) satisfies
En(f), =0(n7),o>0,n=12,...,

then
0 (67) if v> o0,
wy (f,6) =< 0(87 |log (1/8)]) if r =0,
0 (6") if r<o,
holds. O

1.8. Definition. Let ¢ € QCY (0,1) and 7 € R*. If f € L, (T), then for 0 < ¢ < r we
set Lipo (r,¢) := {f € Ly (T) :wl (f,6) =0 (67), 6 > 0}.

The following constructive characterization of the Lipschitz class holds:

1.9. Corollary. Let 0 <o <r, M € QC4(0,1) and f € L, (T). Then the conditions

(a) f € Lipo (r,¢),
(b) En(f),=0(n"7),n=12..,

are equivalent. O

1.10. Theorem. Let ¢ € QCY (0,1) and f € Ly, (T). If a € RT and

Z VB, (f), < oo,
v=1

then there exists a constant ¢ > 0 dependent only on o and ¢, such that

(1.16) E, (f(“))w§c<n“En(f)¢+ i V'HEu(f)S,)

v=n+1
holds.

Proof. Since

1797 = S (£, < [Samez (£4) = Su (£,
+ D 8 () = S (S,
k=m-+2
we have for 2™ < n < 2™*1! that

[Sama (f ) = Su(F )], < 2 FDEL(f) < en®Ea(f)e.
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On the other hand we find

oo

Yo 1Saen (£) = Sax (£,
k=m-+2
oo e} 2k
<e Y 2B (), <e Y wTEL),
k=m+2 k=m+2 y=2k-141
=c Z v 'E, (fH,<c Z vV B (f) e
v=2m+tl4] v=n+1
Therefore
Ea (), < C(naEn(f)w + ) u“*IEu(f)¢), O
v=n+1
As a corollary of Theorems 1.4, 1.6 and 1.10,
1.11. Theorem. Let f € W5 (T), r € (0,00), and
oo
Zya*lEV (f), <oo
v=1
for some a > 0. In this case, for n =0,1,2,... there exists a constant ¢ > 0, dependent

only on o, r and ¢ such that

W (f“”,nil) gc((njl)r S+ B (), Y R (f)(,;)

v=0 v=n+1

holds. g
As a corollary of Theorem 1.4,

1.12. Theorem. Let ¢ € QCY(0,1), r e RY and 1 < B < oco. If f € Wg (T) is real
valued and 0 < o < B — 1, then there is a constant ¢ > 0, dependent only on r and @,
such that the inequality
+( p(a) c i B ™
E; (f )w < Wwv<f 7g)

holds formn =1,2,3,.... g
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