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1. Introduction

A function Φ is called a Young function if Φ is even, continuous, nonnegative in
R := (−∞, +∞), increasing on R

+ := (0,∞) and such that

Φ (0) = 0, lim
x→∞

Φ(x) = ∞.

A function ϕ : [0,∞) → [0,∞) is said to be quasiconvex if there exist a convex Young
function Φ and a constant c1 ≥ 1 such that

Φ (x) ≤ ϕ(x) ≤ Φ(c1x) ∀x ≥ 0.

Set T := [0, 2π] and let ϕ be a quasiconvex Young function. We denote by ϕ(L) the class
of complex valued Lebesgue measurable functions f : T → C satisfying the condition

∫

T

ϕ (|f (x)|) dx < ∞.

The class of functions f : T → C having the property
∫

T

ϕ (c2 |f (x)|) dx < ∞
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for some c2 ∈ R
+ is denoted by Lϕ (T). The set Lϕ (T) becomes a normed space with

the Orlicz norm

‖f‖ϕ := sup

{
∫

T

|f (x) g (x)| dx :

∫

T

ϕ̃ (|g|) dx ≤ 1

}

,

where ϕ̃ (y) := supx≥0 (xy − ϕ (x)), y ≥ 0, is the complementary function of ϕ.

For a quasiconvex function ϕ we define the index p (ϕ) of ϕ as

1

p (ϕ)
:= inf {p : p > 0, ϕp is quasiconvex}

and the conjugate index of ϕ as

p′ (ϕ) :=
p (ϕ)

p (ϕ) − 1
.

It can be easily seen that the functions in Lϕ (T) are summable on T, Lϕ (T) ⊂ L1 (T)
and Lϕ (T) becomes a Banach space with the Orlicz norm. The Banach space Lϕ (T) is
called the Orlicz space.

A Young function Φ is said to be satisfy the ∆2 condition if there is a constant c3 > 0
such that

Φ (2x) ≤ c3Φ (x)

for all x ∈ R.

We will denote by QCθ
2 (0, 1) the class of functions g satisfying the condition △2 such

that gθ is quasiconvex for some θ ∈ (0, 1).

In the present work we consider the trigonometric polynomial approximation problems
for functions and their fractional derivatives in the spaces Lϕ (T), where ϕ ∈ QCθ

2 (0, 1).
We prove a Jackson type direct theorem, and a converse theorem of trigonometric ap-
proximation with respect to the fractional order moduli of smoothness in Orlicz spaces.
As a particular case, we obtain a constructive description of the Lipschitz class in Orlicz
spaces. A direct theorem of one sided trigonometric approximation is also obtained.

Let

(1.1) f (x) ∽

∞
∑

k=−∞

ckeikx and f̃ (x) ∽

∞
∑

k=−∞

(−isignk) ckeikx

be the Fourier and the conjugate Fourier series of f ∈ L1 (T), respectively. We define

Sn (f) := Sn (x, f) :=
n
∑

k=−n

ckeikx, n = 0, 1, 2, . . . .

For a given f ∈ L1 (T), assuming c0 = 0 in (1.1), we define the αth fractional
(

α ∈ R
+
)

integral of f as in [7, v.2, p.134] by

Iα (x, f) :=
∑

k∈Z∗

ck (ik)−α eikx,

where Z is the set of integers, Z
∗ := {z ∈ Z : z 6= 0}, and

(ik)−α := |k|−α e(−1/2)πiαsignk

as principal value.

Let α ∈ R
+ be given. We define the fractional derivative of a function f ∈ L1 (T),

satisfying c0 = 0 in (1.1), as

f (α) (x) :=
d[α]+1

dx[α]+1
I1+α−[α] (x, f) ,
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provided the righthand side exists, where [x] denotes the integer part of the real number
x.

Setting h ∈ T, r ∈ R
+, ϕ ∈ QCθ

2 (0, 1) and f ∈ Lϕ (T), we define

∆r
hf (·) := (Th − I)r f (·) =

∞
∑

k=0

(−1)k
( r

k

)

f (· + (r − k) h) ,

where
( r

k

)

:=
r (r − 1) . . . (r − k + 1)

k!
for k > 1,

( r
1

)

:= r and
( r

0

)

:= 1 are the

binomial coefficients, Thf (x) := f (x + h) is the translation operator and I the identity
operator.

Since
∞
∑

k=0

∣

∣

∣

∣

( r
k

)

∣

∣

∣

∣

< ∞ we get

(1.2)
∥

∥∆r
hf
∥

∥

ϕ
≤ c
∥

∥f
∥

∥

ϕ
< ∞

under the condition f ∈ Lϕ (T), where ϕ ∈ QCθ
2 (0, 1).

Here and in the following we will denote by B a translation invariant Banach Function
Space. Also, the notation

∥

∥ ·
∥

∥

B
stands for the norm of B.

For r ∈ R
+, we define the fractional modulus of smoothness of order r for f ∈ B, as

ωr
B (f, δ) := sup

|h|≤δ

∥

∥∆r
hf
∥

∥

B
, δ ≥ 0.

If ϕ ∈ QCθ
2 (0, 1) and B = Lϕ (T), we will set ωr

B (f, ·) =: ωr
ϕ (f, ·). Hence for ϕ ∈

QCθ
2 (0, 1) and f ∈ Lϕ (T), we have by (1.2) that

ωr
ϕ (f, δ) ≤ c

∥

∥f
∥

∥

ϕ
,

where the constant c > 0 dependent only on r and ϕ.

Let Tn be the class of trigonometric polynomials of degree not greater than n. We
begin with the fractional Nikolski-Civin inequality:

1.1. Theorem. Suppose that α ∈ R
+, Tn ∈ Tn and 0 < h < 2π/n. Then

∥

∥T (α)
n

∥

∥

B
≤

(

n

2 sin (nh/2)

)α
∥

∥∆α
hTn

∥

∥

B
.

In particular, if h = π/n, then

(1.3)
∥

∥T (α)
n

∥

∥

B
≤ 2−αnα

∥

∥∆α
π/nTn

∥

∥

B
.

Proof. Let Tn (x) = a0

2
+
∑

ν∈Z∗

n

cνeiνx, where Z
∗
n := {z ∈ Z : z < n, z > −n, z 6= 0}. Then

T
(α)
n (x) =

∑

ν∈Z∗

n

(iν)α cνeiνx, and

∆α
hTn

(

x +
α

2
h
)

=
∑

ν∈Z∗

n

(

2i sin
h

2
ν

)α

cνeiνx.

We set

ϕ (t) :=

(

2i sin
h

2
t

)α

, g (t) :=

(

t

2 sin h
2
t

)α

for − n ≤ t ≤ n and g (0) := h−α.

Then for x ∈ R, h ∈ (0, 2π/n), we obtain

∆α
hTn

(

x +
α

2
h
)

=
∑

ν∈Z∗

n

ϕ (ν) cνeiνx
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and

T (α)
n (x) =

∑

ν∈Z∗

n

ϕ (ν) g (ν) cνeiνx.

The convergence

g (t) =
∞
∑

k=−∞

dkeikπt/n

is uniform for t ∈ [−n, n]. Since (−1)k dk ≥ 0, we find

T (α)
n (x) =

∑

ν∈Z∗

n

ϕ (ν)

∞
∑

k=−∞

dke
ikπν

n cνeiνx

=

∞
∑

k=−∞

dk

∑

ν∈Z∗

n

ϕ (ν) cνeiν(x+ kπ

n
)

=

∞
∑

k=−∞

dk∆α
hTn

(

x +
kπ

n
+

α

2
h

)

.

Hence we conclude

∥

∥T (α)
n

∥

∥

B
≤
∥

∥∆α
hTn

∥

∥

B

∞
∑

k=−∞

∣

∣

∣
dkeikπ

∣

∣

∣

=
∥

∥∆α
hTn

∥

∥

B

∞
∑

k=−∞

dkeikπ

=

(

n

2 sin (nh/2)

)α
∥

∥∆α
hTn

∥

∥

B
,

and Theorem 1.1 is proved. �

We denote by Bα, α > 0, the linear space of 2π-periodic complex valued functions
f ∈ B such that f (α−1) is absolutely continuous (AC ), and f (α) ∈ B. If ϕ ∈ QCθ

2 (0, 1)
and B = Lϕ (T) we will let Bα =: W α

ϕ (T).

We set L∞
0 :=

{

f ∈ L∞ : f is real valued and bounded on T
}

. If f ∈ L∞
0 we define

T
−
n (f) := {t ∈ Tn : t is real valued 2π periodic and t (x) ≤ f (x) for every x ∈ R},

T
+
n (f) := {T ∈ Tn : T is real valued 2π periodic and f (x) ≤ T (x) for every x ∈ R},

E−
n (f)ϕ := inf

t∈T
−

n (f)

∥

∥f − t
∥

∥

ϕ
, E+

n (f)ϕ := inf
T∈T

+
n (f)

∥

∥T − f
∥

∥

ϕ
.

The quantities E−
n (f)ϕ and E+

n (f)ϕ are, respectively, called the best lower (upper) one

sided approximation errors for f ∈ L∞
0 . Similarly, the best trigonometric approximation

error of f ∈ Lϕ (T) is defined as En (f)ϕ := inf
S∈Tn

∥

∥f − S
∥

∥

ϕ
. We note that En (f)ϕ ≤

E±
n (f)ϕ.

If ϕ ∈ QCθ
2 (0, 1), f ∈ Lϕ (T), g ∈ L1 (T), we introduce the convolution

(f ∗ g) (x) =
1

2π

∫

T

f (x − u) g (u) du.

This convolution exists for every x ∈ R and is a measurable function. Furthermore
∥

∥f ∗ g
∥

∥

ϕ
≤
∥

∥f
∥

∥

ϕ

∥

∥g
∥

∥

L1(T)
.

If f is continuous (AC) then f ∗ g is continuous (AC).
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1.2. Theorem. Let ϕ ∈ QCθ
2 (0, 1), 1 ≤ β < ∞ and f ∈ W β

ϕ (T). If 0 ≤ α ≤ β and

n = 1, 2, 3, . . ., then there exists a constant c > 0 depending only on α and β such that

(1.4) En

(

f (α))

ϕ
≤

c

nβ−α
En

(

f (β))

ϕ

holds. If f is real valued, 0 ≤ α ≤ β − 1 and n = 1, 2, 3, . . ., then

(1.5) E±
n

(

f (α)
)

ϕ
≤

c

nβ−α
En

(

f (β)
)

ϕ

holds.

Proof. 1◦ First we prove that f (α) is AC for 0 ≤ α ≤ β − 1 and f (α) ∈ Lϕ (T) for

β−1 ≤ α ≤ β. It is well known that the function Ψα (u) := lim
n→∞

∑

ν∈Z∗

n

eiνu

(iν)α =
∑

ν∈Z∗

eiνu

(iν)α ,

α ∈ R
+, is defined for every u ∈ R if 1 ≤ α < ∞ (for u 6= 2kπ, k ∈ Z if 0 < α < 1) and

Ψα is of class L1 (T). In this case

(1.6) f (x) =
(

f (β) ∗ Ψβ

)

(x) for every x ∈ R.

Furthermore,

(1.7) f (α) (x) =
(

f (β) ∗ Ψβ−α

)

(x)

is satisfied for every x ∈ R if 0 ≤ α < β − 1 (for almost every x ∈ R if β − 1 < α < β).
Now (1.6) implies that if β ≥ 1, then f is absolutely continuous, and (1.7) implies that

f (α) is AC for 0 ≤ α ≤ β − 1 and f (α) ∈ Lϕ (T) for β − 1 ≤ α ≤ β.

2◦ If α = β, then (1.4) is obvious. If α = 0, then (1.4) was proved in [3]. Let
0 ≤ α < β. We choose a Sα,n ∈ Tn with

∥

∥Sα,n − Ψβ−α

∥

∥

L1(T)
= En (Ψβ−α)L1(T). Let

Un,α [f ] = f (β) ∗ Sα,n, n = 1, 2, 3 . . .. Then

f (α) (x) − Un,α [f ] (x) =
1

2π

∫

T

f (β) (u) {Ψβ−α (x − u) − Sα,n (x − u)} du

holds a.e. Therefore,
∥

∥f (α) − Un,α [f ]
∥

∥

ϕ
≤
∥

∥Ψβ−α − Sα,n

∥

∥

L1(T)

∥

∥f (β)
∥

∥

ϕ
.

Since by [4]
∥

∥Ψβ−α − Sα,n

∥

∥

L1(T)
≤ cnα−β

we get (since Un,α [f ] ∈ Tn) that

En

(

f (α))

ϕ
≤ cnα−β

∥

∥f (β)
∥

∥

ϕ
.

Let Qn ∈ Tn be such that
∥

∥f (β) − Qn

∥

∥

ϕ
= En

(

f (β))

ϕ
, n = 1, 2, 3 . . . .

We suppose

φ (x) = f (x) − Iβ [Qn] (x) , x ∈ R.

Then

φ(β) (x) = f (β) (x) − Qn (x) ,

and hence
∥

∥φ(β)
∥

∥

ϕ
=
∥

∥f (β) − Qn

∥

∥

ϕ
= En

(

f (β)
)

ϕ
.

Therefore we find

En

(

φ(α)
)

ϕ
≤ cnα−β

∥

∥φ(β)
∥

∥

ϕ
≤ cnα−βEn

(

f (β)
)

ϕ
.
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Since

En

(

φ(α))

ϕ
= En

(

f (α))

ϕ
,

we conclude that (1.4) holds.

3◦ Let

f
(β)
+ (u) =

1

2

{

∣

∣f (β)(u)
∣

∣ + f (β) (u)
}

and f
(β)
− (u) =

1

2

{

∣

∣f (β) (u)
∣

∣ − f (β) (u)
}

for u ∈ R. Then

f (x) =
(

f
(β)
+ ∗ Ψβ

)

(x) −
(

f
(β)
− ∗ Ψβ

)

(x),

f (α) (x) =
(

f
(β)
+ ∗ Ψβ−α

)

(x) −
(

f
(β)
− ∗ Ψβ−α

)

(x)

for every 0 < α ≤ β − 1. Let tα,n ∈ T
−
n (Ψβ−α), Tα,n ∈ T

+
n (Ψβ−α) be such that

∥

∥f − tα,n

∥

∥

ϕ
= E−

n (Ψβ−α)L1(T) and
∥

∥Tα,n − f
∥

∥

ϕ
= E+

n (Ψβ−α)L1(T)

for n = 1, 2, 3 . . .. Let also

U+
0,n [f ] =

(

f
(β)
+ ∗ T0,n

)

−
(

f
(β)
− ∗ t0,n

)

, U−
0,n [f ] =

(

f
(β)
+ ∗ t0,n

)

−
(

f
(β)
− ∗ T0,n

)

,

and for 0 < α < β − 1 we set

U+
α,n [f ] =

(

f
(β)
+ ∗ Tα,n

)

−
(

f
(β)
− ∗ tα,n

)

, U−
α,n [f ] =

(

f
(β)
+ ∗ tα,n

)

−
(

f
(β)
− ∗ Tα,n

)

.

Hence,

U+
α,n [f ] (x) − f (α) (x) =

1

2π

∫

T

f
(β)
+ (u) {Tα,n (x − u) − Ψβ−α (x − u)} du

+
1

2π

∫

T

f
(β)
− (u) {Ψβ−α (x − u) − tα,n (x − u)} du

for every x ∈ R. Then

U+
α,n [f ] (x) ≥ f (α) (x)

for every x ∈ R. This implies that

U+
α,n [f ] ∈ T

+
n

(

f (α)
)

, 0 ≤ α ≤ β − 1.

Similarly,

U−
α,n [f ] ∈ T

−
n

(

f (β)
)

, 0 ≤ α ≤ β − 1.

We obtain
∥

∥U±
n,α [f ] − f (α)

∥

∥

ϕ
≤ cnα−β

∥

∥f (β)
∥

∥

ϕ
,

and hence
∥

∥U±
n,α [f ] − f (α)

∥

∥

ϕ
≤ cnα−βEn

(

f (β)
)

ϕ

for 0 ≤ α ≤ β − 1. Since

U−
α,n [φ] (x) ≤ φ(α) (x) ≤ U+

α,n [φ] (x)

and

φ(α) (x) = f (α) (x) − Q(α−β)
n (x)

we have

U−
α,n [φ] (x) + Q(α−β)

n (x) ≤ f (α) (x) ≤ U+
α,n [φ] (x) + Q(α−β)

n (x)
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for every x ∈ R. Therefore

E±
n

(

f (α)
)

ϕ
≤
∥

∥U±
n,α [φ] − Q(α−β)

n − f (α)
∥

∥

ϕ

=
∥

∥U±
n,α [φ] − φ(α)

∥

∥

ϕ

≤ cnα−βEn

(

f (β)
)

ϕ
,

and the required result holds. �

1.3. Theorem. Let ϕ ∈ QCθ
2 (0, 1). If 1 ≤ β < ∞, f ∈ W β

ϕ (T) and β ≥ α ≥ 0, then for

n = 1, 2, 3, . . . there is a constant c > 0 dependent only on α, β and ϕ such that

(1.8)
∥

∥f (α)( · ) − S(α)
n ( · , f)

∥

∥

ϕ
≤

c

nβ−α
En

(

f (β)
)

ϕ

holds. If f is real valued and there exist polynomials tn ∈ T
−
n (f), Tn ∈ T

+
n (f) such that

∥

∥f − tn

∥

∥

ϕ
≤ cE−

n (f)ϕ,
∥

∥Tn − f
∥

∥

ϕ
≤ cE+

n (f)ϕ, then for 0 ≤ α ≤ β and n = 1, 2, 3, . . .,

∥

∥f (α) − t(α)
n

∥

∥

ϕ
≤

c

nβ−α
En

(

f (β))

ϕ
, and(1.9)

∥

∥T (α)
n − f (α)

∥

∥

ϕ
≤

c

nβ−α
En

(

f (β)
)

ϕ
(1.10)

hold.

Proof. If α = 0, then the results follows from Theorem 1.2. If α = β, then it was proved
in [2] that

(1.11)
∥

∥f (α)( · ) − S(α)
n ( · , f)

∥

∥

ϕ
≤ cEn

(

f (α))

ϕ
.

From Theorem 1.2 and last inequality, (1.8) follows.

Now we prove (1.9) and (1.10) for 0 ≤ α ≤ β. Let

Wn(f) := Wn(x, f) :=
1

n + 1

2n
∑

ν=n

Sν(x, f), n = 0, 1, 2, . . . .

Suppose that u := u ( · , f) ∈ Tn satisfies
∥

∥f − u
∥

∥

ϕ
= En (f)ϕ. Since

Wn( · , f (α)) = W (α)
n ( · , f)

we have
∥

∥f (α) − t(α)
n

∥

∥

ϕ
≤
∥

∥f (α) − Wn( · , f (α))
∥

∥

ϕ
+
∥

∥u( · , Wn(f)) − t(α)
n

∥

∥

ϕ

+
∥

∥W (α)
n ( · , f) − u( · , Wn(f))

∥

∥

ϕ

:= I1 + I2 + I3.

Since
∥

∥Wn (f)
∥

∥

ϕ
≤ 4

∥

∥f
∥

∥

ϕ
, we get

I1 ≤
∥

∥f (α)( · ) − u( · , f (α))
∥

∥

ϕ
+
∥

∥u( · , f (α)) − Wn( · , f (α))
∥

∥

ϕ

= En

(

f (α)
)

ϕ
+
∥

∥Wn( · , u(f (α)) − f (α))
∥

∥

ϕ

≤ 5En

(

f (α)
)

ϕ
.

From Theorem 1.1, we get

I2 ≤ 2 (n − 1)α
∥

∥u( · , Wn(f)) − tn

∥

∥

ϕ

and

I3 ≤ 2 (2n − 2)α
∥

∥Wn( · , f) − u( · , Wn(f))
∥

∥

ϕ
≤ 2α+1nαEn (Wn(f))ϕ .
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Now we have
∥

∥u( · , Wn(f)) − tn

∥

∥

ϕ
≤
∥

∥u( · , Wn(f)) − Wn( · , f)
∥

∥

ϕ
+
∥

∥Wn( · , f) − f ( · )
∥

∥

ϕ

+
∥

∥f ( · ) − tn

∥

∥

ϕ

≤ En (Wn(f))ϕ + 5En (f)ϕ + cE−
n (f)ϕ .

Since

En (Wn(f))ϕ ≤
∥

∥Wn(f) − u
∥

∥

ϕ
=
∥

∥Wn(f − u)
∥

∥

ϕ
≤ 4En (f)ϕ ,

we get

(1.12)

∥

∥f (α) − t(α)
n

∥

∥

ϕ
≤ 5En

(

f (α)
)

ϕ
+ 2nαEn (Wn(f))ϕ + 10nαEn (f)ϕ

+ 2α+1nαEn (Wn(f))ϕ + c2nαE−
n (f)ϕ

≤ 5En

(

f (α)
)

ϕ
+
(

18 + 23+α)nαEn (f)ϕ + c2nαE−
n (f)ϕ .

Using Theorem 1.2 we get (1.9), and (1.10) can be proved using the same procedure. �

Direct theorem of trigonometric approximation:

1.4. Theorem. Let ϕ ∈ QCθ
2 (0, 1) and r ∈ R

+. If f ∈ Lϕ (T), then there is a constant

c > 0, dependent only on r and ϕ, such that the inequality

(1.13) En (f)ϕ ≤ cωr
ϕ

(

f,
1

n + 1

)

holds for n = 0, 1, 2, 3, . . ..

Proof. This is a consequence of [3, Theorem 2] and the property ωr
ϕ (f, · ) ≤ cωs

ϕ (f, · ),

(r ≥ s ∈ R
+), of the smoothness moduli. �

1.5. Theorem. If r, δ ∈ R
+ and f ∈ Bα, α ∈ R

+, then there exists a constant c > 0
depending only on r and B such that

(1.14) ωr
B (f, δ) ≤ cδr

∥

∥f (r)
∥

∥

B
, δ ≥ 0

holds.

Proof. For the function χr ( · , h) ∈ L1 (T) of [6, (20.15), p.376] we define

(Ar
hf) (x) := (f ∗ χr ( · , h)) (x) =

1

2π

∫

T

f (x − u) χr (u, h) du, x ∈ T, h ∈ R
+.

Then using Fubini’s theorem we get

(1.15)
∥

∥Ar
hf
∥

∥

B
≤
∥

∥χr ( · , h)
∥

∥

L1(T)

∥

∥f
∥

∥

B
≤ c
∥

∥f
∥

∥

B
.

Since

(∆r
hf) (x) = hr (Ar

hf)(r) (x) = hrAr
h

(

f (r)
)

(x)

we have from (1.15) that

sup
|h|≤δ

∥

∥∆r
hf
∥

∥

B
= sup

|h|≤δ

hr
∥

∥Ar
h

(

f (r)
)

∥

∥

B
≤ cδr

∥

∥f (r)
∥

∥

B
,

from which we obtain (1.14). �

The converse theorem of trigonometric approximation:
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1.6. Theorem. Let ϕ ∈ QCθ
2 (0, 1) and r ∈ R

+. If f ∈ Lϕ (T), then there is a constant

c > 0, dependent only on r and ϕ, such that for n = 0, 1, 2, 3, . . .

ωr
ϕ

(

f,
π

n + 1

)

≤
c

(n + 1)r

n
∑

ν=0

(ν + 1)r−1 Eν (f)ϕ

holds.

Proof. The proof goes similarly to that of the proof of [2, Theorem 3]. �

From Theorems 1.4 and 1.6 we have the following corollaries:

1.7. Corollary. Let ϕ ∈ QCθ
2 (0, 1) and r ∈ R

+. If f ∈ Lϕ (T) satisfies

En (f)ϕ = O
(

n−σ
)

, σ > 0, n = 1, 2, . . . ,

then

ωr
ϕ (f, δ) =











O (δσ) if r > σ,

O (δσ |log (1/δ)|) if r = σ,

O (δr) if r < σ,

holds. �

1.8. Definition. Let ϕ ∈ QCθ
2 (0, 1) and r ∈ R

+. If f ∈ Lϕ (T), then for 0 < σ < r we
set Lipσ (r,ϕ) :=

{

f ∈ Lϕ (T) : ωr
ϕ (f, δ) = O (δσ) , δ > 0

}

.

The following constructive characterization of the Lipschitz class holds:

1.9. Corollary. Let 0 < σ < r, M ∈ QCθ
2 (0, 1) and f ∈ Lϕ (T). Then the conditions

(a) f ∈ Lipσ (r,ϕ),
(b) En (f)ϕ = O

(

n−σ
)

, n = 1, 2, . . .,

are equivalent. �

1.10. Theorem. Let ϕ ∈ QCθ
2 (0, 1) and f ∈ Lϕ (T). If α ∈ R

+ and

∞
∑

ν=1

να−1Eν (f)ϕ < ∞,

then there exists a constant c > 0 dependent only on α and ϕ, such that

(1.16) En

(

f (α)
)

ϕ
≤ c

(

nαEn (f)ϕ +
∞
∑

ν=n+1

να−1Eν (f)ϕ

)

holds.

Proof. Since
∥

∥f (α) − Sn

(

f (α))
∥

∥

ϕ
≤
∥

∥S2m+2

(

f (α)) − Sn

(

f (α))
∥

∥

ϕ

+
∞
∑

k=m+2

∥

∥S2k+1

(

f (α)
)

− S2k

(

f (α))
∥

∥

ϕ

we have for 2m < n < 2m+1 that
∥

∥S2m+2

(

f (α)
)

− Sn

(

f (α)
)
∥

∥

ϕ
≤ c2(m+2)αEn(f)ϕ ≤ cnαEn(f)ϕ.
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On the other hand we find
∞
∑

k=m+2

∥

∥S2k+1

(

f (α)
)

− S2k

(

f (α)
)
∥

∥

ϕ

≤ c
∞
∑

k=m+2

2(k+1)αE2k (f)ϕ ≤ c
∞
∑

k=m+2

2k

∑

µ=2k−1+1

µα−1Eµ (f)ϕ

= c
∞
∑

ν=2m+1+1

να−1Eν (f)ϕ ≤ c
∞
∑

ν=n+1

να−1Eν(f)ϕ.

Therefore

En

(

f (α)
)

ϕ
≤ c

(

nαEn(f)ϕ +

∞
∑

ν=n+1

να−1Eν(f)ϕ

)

, �

As a corollary of Theorems 1.4, 1.6 and 1.10,

1.11. Theorem. Let f ∈ W α
ϕ (T), r ∈ (0,∞), and

∞
∑

ν=1

να−1Eν (f)ϕ < ∞

for some α > 0. In this case, for n = 0, 1, 2, . . . there exists a constant c > 0, dependent

only on α, r and ϕ such that

ωr
ϕ

(

f (α),
π

n + 1

)

≤ c

(

1

(n + 1)r

n
∑

ν=0

(ν + 1)α+r−1 Eν (f)ϕ+
∞
∑

ν=n+1

να−1Eν (f)ϕ

)

holds. �

As a corollary of Theorem 1.4,

1.12. Theorem. Let ϕ ∈ QCθ
2 (0, 1), r ∈ R

+ and 1 ≤ β < ∞. If f ∈ W β
ϕ (T) is real

valued and 0 ≤ α ≤ β − 1, then there is a constant c > 0, dependent only on r and ϕ,

such that the inequality

E±
n

(

f (α)
)

ϕ
≤

c

nβ−α
ωr

ϕ

(

f (β),
π

n

)

holds for n = 1, 2, 3, . . .. �
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