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Abstract

The main purpose of this paper is to obtain some properties of orthog-
onal matrix polynomials. We derive identities for power series satisfied
by Laguerre, Hermite and Gegenbauer matrix polynomials. Further-
more, for these matrix polynomials, we give raising operators.

Keywords: Laguerre matrix polynomials, Hermite matrix polynomials, Gegenbauer
matrix polynomials, Power series, Raising operator.

2010 AMS Classification: 33 C25, 15 A 60.
Communicated by Agacik Zafer

1. Introduction

“Orthogonal matrix polynomials” is a developing field whose development is attaining
significant results from both the theoretical and practical examples. The property of or-
thogonality [9, 10], Rodrigues formula [3, 5], a second-order Sturm-Liouville differential
equation [3], a three-term matrix recurrence [5, 6], a relation between different orthogo-
nal matrix polynomials [17] are theoretical examples for orthogonal matrix polynomials.
Beside, practical examples for matrix polynomials can be seen in statistics, group repre-
sentation theory [12], scattering theory [11], differential equations [14, 15], Fourier series
expansions [4], interpolation and quadrature [19, 20], splines [7] and medical imaging [2].

Some results in the theory of classical orthogonal polynomials have been extended to
orthogonal matrix polynomials, see [1, 5, 13, 14, 16]. In [18], these matrix polynomials are
orthogonal as examples of right orthogonal matrix polynomial sequences for appropriate
right matrix moment functionals of integral type. Hermite, Laguerre and Gegenbauer
matrix polynomials have been introduced and studied in [13, 14, 15] for matrices in C™*".
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Our main aim in this paper is to prove new properties for orthogonal matrix polynomials.
We calculate summations and derive raising operators for orthogonal matrix polynomials.

Throughout this paper, for a matrix A in C™*" its spectrum o(A) denotes the set of
all eigenvalues of A. If f(z) and g(z) are holomorphic functions of the complex variable z,
which are defined in an open set Q of the complex plane, and A is a matrix in C"*" with
o(A) C Q, then from the properties of the matrix functional calculus in [8], it follows
that: f(A)g(A) = g(A)f(A), Hence, if B € C™" is a matrix for which o(B) C Q and
AB = BA, then f(A)g(B) = g(B)f(A). We say that a matrix A in C™*" is positive
stable if R(A) > 0 for all A € o(A). Furthermore the identity matrix and the zero matrix
of C™" will be denoted by I and 0, respectively. From [16], for any matrix A in C™*",
one can see

(A)y = AA+ D) (A+20)- - (A+ (n—1)I); n>1; (A)o = 1.

For any matrix A in C™*", the authors exploited the following relation due to [16]

(1—z) "= Z (i?":c"7 lz| < 1.
n=0 :

2. Some identities for orthogonal matrix polynomials

Let A be a matrix in C"*" satisfying the spectral condition (—z) ¢ o(A) Vz € ZT,
and let A be a complex parameter with ®(\) > 0. Laguerre matrix polynomials L ()
are defined by

AT AN - (AN)/ Nm.
@21)  fltA)=(1-1) exp(l_t);m ()" 1t <1,

see [14].

2.1. Theorem. Letn and k be positive integers with k > 2, then we have the equation

(2.2) i(wmz(m): Y LAV@)- - LY ().

m!
m=0 ni+ng+--+np=n

Proof. Taking partial derivatives of f(zk,t, Ak) = (1—) 4% ex _1)\xkt

. ), and using

the generating matrix function for Laguerre matrix polynomials, we obtain

Of (zk,t, Ak)
ox

1 —Ak—2I —Axkt
= (-1 k) (1—t)* exp( 1_t)

0? f(zk, t, Ak)
Ox?
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%=V f(xk,t, Ak)

Ox(k—1)
— (_l)kfl (Atk)k71 (1 _ t)fAkka exp (#)
_ (_1)k71 (Atk)k71 (1 _ t)fA(kfl)f(kfl)I(l _ t)fA—I exp <_1Ailflzt)
(2.3) = (=D (Atk)* T (1 — )T ARTDEEDER L£;“v*>(kx)t”} .
n=0

Furthermore, we get

(24)  (1— ) AHDED _ Z [(k A+I)]mt7n'

Combining (2.3) and (2.4), and taking (n — m) instead of n, we can write

(2 SLEREAD oy gyt 3 3 (M D )

On the other hand, using (2.1), we also have

CAL_ —\xkt
(1-1) Ak kIexp( = )
k
(2.6) (Z L (@ )
-y ( Y ). --L%‘i’”(”>tn'
n=0

ni+ng+-+ng=n

Combining (2.3), (2.5) and (2.6) and comparing the coefficients of t", we have the desired
relation. d

2.2. Theorem. For any positive integers n and k with k > 2, the Laguerre matrix
polynomials satisfy the following equation:

oo

(2.7) > / LAY (@) LY (x) exp(—kAz) do =
ni+ng+-+np=n 0

1 [(Ak + (k= 1)I)],
Ak n!

Proof. Respectively, multiplying (2.6) by exp(—kAz), integrating with respect to = over
the interval (0, co) and using power series of (1 —¢)~4*~*+1 we may write

i ( Z /Lg;? A)( ) '~L£{2’A)(a¢) exp(—kAz) dx) t"

n=0 ni+ng+-+np=n 0

- 5 EX
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Comparing the coefficients of t", we complete the proof. d

2.3. Theorem. Let Ay, -+, A be matrices in C™*" satisfying the spectral condition
(—2) ¢ 0(A;) Vz € ZT, and let \; be a complex parameter with R(\;) > 0 fori=1,...,k.
For any positive integers n and k with k > 2, we have

- ([(A —A) + (k- V1], LS;“z;il“ﬁ"'*ka)

>

m=0
= > LA (k) - LR (ka); 0= 1,2, 0, k,

ni+ng+---+np=n

m!

where A = A1 + - - - + Ak, and the matrices A1,..., Ak, are assumed to be commutative.

Proof. Let

()\1+)\2+~~~+)\k)56t)

f(m7t7A):(1—t)7Afjexp<— ¢

then with the help of partial derivatives with respect to x and the generating matrix
function for Laguerre matrix polynomials, we can write

A +A2+~-~+Ak):ckt)

Flak,t, A) = (1— 1) Texp <_(

1—1t
W = (=) (A1 4 Ao+ -+ ) (th)
x (1— )2 exp (—(M + A21+_~ o Ak)rk:t>
2
O fak b, A) f(gi;t’ A) (L1200 4 A £+ A (tR)?

x (1— 1) A= exp (—01 + A21+ = Ak)xkt)

A=V f(xk,t, A - _ _
O TEIEA) (1 (0 da b A (1)

(2.8)

x (1 _t)*(A*Ai)*(kfl)I Z L’E;Ai»A1+A2+"‘+)\k)(kx)t”:| )

n=0

Using the power series of (1 — t)7(A*Ai)7(k71)l7 we can write

%Y f(xk,t, A)
Hx(k—1)
= (=D T+ Ao+ 4+ AT k)T

y (i (A= 49+ k-1, t)

m=0

Z L&Aia>\1+>\2+"'+Ak) (k:c)tn:|
n=0

= (=D O+ Aa e AT (k)
(2.9) y (i [Z": (A — Ai) + (k- 1)I]mL;Ai;ri1+kz+-..+>\k)(kx):| t”)

m!

n=0 Lm=0
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for 1 <4 < k. On the other hand, we get

(1 — )~ (ArbAzt b Ak o (—(M + A21+ . t + )\k)xkt)

(Z (A1 Al) ><Z L(A2 Az) nz)( Z Lg;?ck,)\k)(kx)tnk>
n1=0 no=0 ng=0
1) =3 ( > L () L ““’”) "

n=0 ni+no+--+ng=n

Combining (2.8), (2.9) and (2.10) and comparing the coefficients of ¢", we have desired
relation. d

2.4. Theorem. Let A1,...,Ar be matrices in C™*" satisfying the spectral condition
(—2) ¢ 0(A;) V2 € Z, and let \; be a complex parameter with R(A\;) > 0 fori=1,...,k.
For the Laguerre matrix polynomials, we have

> LA (k) - L) (k) exp(— (A + Az + -+ - + A )ka) do
7L1+7L2+---+7Lk:7lo
1 [(A+ (k—1)D)] .
= ~ for k,n € N with k > 2,
k()\l—‘r)\g-i-"'-i-)\k) n! J -

where A = A1 + - -+ + Ak, and the matrices A1, ..., Ak, are assumed to be commutative.

Proof. Multiplying (2.10) by exp(—(A1 + A2 + - -+ + Ax)kz), and then integrating with
respect to x over the interval (0, 00), it follows that

3 ( 3 /Lglfln,xl)(kx)...Lglx:k,m(kx)
n=0 ni+ng+-+np=n 0

(2.11)

x exp(—(A1 4+ A2 + - - + Ap) k) d:c) "

B R RS
0

1—-1

X exp(—(A1+ A2 + -+ + Ap)kx) dx

_A_ 1
(1 AR .
( ) E(A1 4+ A2+ -+ Ag)

) ATRIHT

By using the power series expansion of (1 the above is equal to

1 [(A+(k=1)D)], »
(2.12) kv + A2+ -+ M) (Z n! ¢ )

1=0

Comparing the coefficients of t™ in (2.11) and (2.12) completes the proof. O

The relation presented in the following theorem is also of interest.

2.5. Theorem. Let A1,..., A, be matrices in C™*" satisfying the spectral condition
(—2) ¢ o(A;) Yz € Z, and let \; be a complex parameter with R(A\;) > 0 fori=1,...,k.
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Let n and k be positive integers with k > 2, then we have

[(A _ Ai) + (k _ 1)I]mL£zA—irynAi) (A111+>\212+~--+)\k1k>

n
i
> o
m=0

= Y L) LM ) i = 1,2,k
ni+ng+--+np=n
where A = A1 + - -+ + Ak, and the matrices A1,..., Ak, are assumed to be commutative.

Proof. Let f(z1,...,zk,t,A) be defined as
f@r,. .zt A) = (1 —t) Azt ao

(—()\1561 + Xoxa 4+ -+ )\kfﬂk)t)
X exp T ¢ .

Then, differentiating f(z1,...,xk,t, A) with respect to x;, (i =1,2,...,k), we have

of(x1,..., Tk, t,A)
8131'

= (=)' (Nit)(1 — ¢) ATt 2T

(—()\1561 + Xoza + - + )\k$k)t)
X exp T3

(2.13)

O* =V f(xy, ...z, t, A)

k— k— —(A—Ay))—(k=1)I —A;—1I
5D = (=D ) T (1 TR )

(—()\1561 + Aoz + - + )\k$k)t)
X exp T .

On the other hand, we can write

8(k71)f(x17 s ,.’I)k,t, A)
81}(-k71)

i L(Ai»Ai) ()\11’1 + Aaxo + -+ - + )\kxk> tn:|

A.
n=0 v

(2.14) co [ o [(A = A + (k= D], LA (Armtdasgte i, )
tn

XZZ m! i

n=0 | m=0
Also, we get following relation

(1— t)*(A1+A2+‘“+Ak)*kI exp (—()\11’1 + Xoxa 4+ + )\kl’k)t)

1—-1t

( Z L(ALM) "1) ( Z Lglx;\zdz)(xﬂt"?) . Z Lglf:k%k)(m

n1=0 no=0 ng=0

(215 =3 S L @) L (@) |

n=0 ni+ng+-+np=n
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If we use (2.13), (2.14) and (2.15), we complete the proof. O

2.6. Theorem. Let A1,...,Ar be matrices in C™*" satisfying the spectral condition
(—2) ¢ o(A;) Yz € Z, and let \; be a complex parameter with R(A\;) > 0 fori=1,...,k.
Then the Laguerre matriz polynomials satisfy the following equation:

{/ / /Lg;‘lh A1) ~L5L‘2’“’A")(xk)
n1+n2+ +ngp=n

z1=0z2=0 )
X exp (_()‘lxl + XAoxo 4+ -+ )\k:ck)) dzy - - d!l?l}

(A
n!)\l)\g e )\k

where A = A1 + - - - + Ak, and the matrices A1,..., Ak, are assumed to be commutative.

Proof. Successively multiplying (2.15) by exp (—(A1z1 + A2z2 + - - - + A\pxx)), integrating
over the domain

Q={(z1,x2,...,28) : 0< z; <00, 1 =1,2,...,k},

and then using the power series of (1 —¢)™#, we may write

/ / / { “A—kI (—()\1$1+)\2£C2+~--+)\kxk)t>
exp -

©1=0x9=0 =
x exp (—(Mz1 + Aez2 + - + Apwr)) dag - ~dm1}
_(a-yn*
A1 A2 g
= )\1,)\21. W (; (i!)" t”) .
It is now enough to compare the coefficients of ¢™. d

Hermite matrix polynomials Hy(x, A) are defined by
2. Hp(z,A)
_ 2 _ ) n
(2.16)  f(z,t,A) = exp(V2Axt — t°1) = — =t
n=0
where A is a positive stable matrix in C™*" (see [13]).

2.7. Theorem. Hermite matriz polynomials satisfy

V2Akx) % (=k)* Hy (x,A)-- Hy, (z,A
: (ni)2s)! i' -~ 2 . m)!~~~nk!k( )fork:GN.

s=0 ni+ng+-+np=n

Proof. For f(zVk,tVk, A), we can find
f(@Vk, tVk, A) = exp(V2Akxt — kt*I)
= exp(V2Akzxt) exp(—kt>1).
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Using the power series and taking (n — 2s) instead of n, we have

FVE IVE, A) = (i 2kt )(i (—g?)ﬁ)

s=0

\/2Akx n 25( k)* m
(n—2s)!'s '

0
o S (

On the other hand, we get

exp(V2Akxt — kt’T) = [exp(\/ﬂxt - tZI)] g (i Mt”)

]
o n!
-\ ny (@A) Huy (2, 4) |
(2.18) =Y > T nk! "
n=0 ni+ng+-+np=n
If we combine (2.17) and (2.18), we complete the proof. O
2.8. Theorem. For k € N, we get the following relation
[5] [(\/2A1x1 R \/2Ak:ck)]n72s (—k)°
pord (n —2s)!s!
_ 3 Hn, (1, A1) - - - Hny (Tk, Ar)
l... | ’
gt dng=n ni: Nk
where Ax, ..., Ay are positive stable matrices in C™*" which commute with one another.

Proof. Let g(xl, cey Tyt Ar,y . Ag) = exp [(\/2Alxl + o+ \/2Ak:ck) t— tzl]. For

1 . . . .
AVE, A, . ) using the power series and taking (n — 2s) instead of
( vk \/_ ’

n, we can write

(\/_ \/_t\/_Ah.. )
:eXp[(\/Ex1+--~+\/mxk)t—t2kf]

B (i [(VEAit: + -+ /Ty ) (i )

0 n!

(2.19) £,

_ i (3] [(\/ﬂm Lt \/mfﬂk)]”*%‘ (—k)®

(n —2s)!'s!

On the other hand, we get

exp [(\/El’l 44 \/mxk) t— tzk‘I]
(2.20)

:i Z Hp, (21, A1) - Hpy (w8, Ak) s

77,1! e nk'
ni+ng+-+ng=n

Combining (2.19) and (2.20), the proof is complete. O
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Gegenbauer matrix polynomials C,f(m) are defined by
oo
fla,t, A) = (1 =2t + %)~ =" O (a)t",
n=0

where A is a matrix in C™*" satisfying (5£) ¢ o(A) Vz € Z* U {0} (see [15]).

2.9. Theorem. For any positive integer k we derive

(=1)* (Ak)n s (22)" 7>
sl (n — 2s)! '

> G (@) () =

nyi4+not-Fny=n s=0

Proof. Using the power series of (1 — 2zt + 152)7“%7 and making the necessary arrange-
ments, we have

(Ak)n

n!
~ (Ak)n(22)"* (=1)° ()"
sl(n—s)!

(2zt — t°)"

]2

(1 —2at + 3~ =

3
Il
o

o
™

3
Il
o

— ®

w3

= o

(=) (Ak)n—s(22)" 7> (1)"
sl (n — 2s)! '

M

(2.21)

3
Il
(=)
w
I
o

In addition to this, we can write

(2.22) (1 —2zt+¢3) 4" = i ( > i (x) - O (x))t".
n=0

nit+ng+-+np=n

From (2.21) and (2.22), we complete the proof. O

2.10. Theorem.

n n—np——Np_2

Z . Z O:Lqi(n1+n2+---+nk,1) (2)C22(x)- - C2x ()

n1=0 np—1=0
[

wf3

(=1)* (A1 + Ag + -+ Ag)n—s(22)" >
sl(n —2s)!

0

where Ay, ..., Ax, k € N, are matrices in C"*" satisfying (5£) ¢ o(Ai) Vz € ZT U{0},
which commute with one another.

s

Proof. Using the power series of (1 — 2xt + t2)~ (4142t +48) " and then taking (n — s)
instead of n, we obtain

(1—2xt+ t2)*(A1+A2+...+Ak)

i (A1 + As+ ... + Ap)n

n!

2zt — t*)"

3
Il
<)

z”: (A1 + As + -+ Ap)n (22)" (= 1)
sl(n —s)!

M

3
Il
o

— o

— 0
w3

(A1 + Az + -+ Ap)p—s(22)"7 2 (= 1)5¢"
sl (n — 2s)! '

M

(2.23)

3
Il
<)
w
Il
<)
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On the other hand, we get
(1 — 2wt + 7))~ (ArFaAzt+an)

= (i o (x)t’”) i Cik (z)t™

n1=0 ngE=0
[eS) n n—nyp—:r—Ng_3
A A A n
(2.24) => 5 - > Col iy gty (@)CR2 () - CRF (2)t".
n=0n1=0 np—1=0
It is enough now to use (2.23) and (2.24). a

3. Raising operators for matrix polynomials

3.1. Lemma. [14] Let A be a matriz in C™*" satisfying the spectral condition R(z) > —1
for every z € o(A), and let X be a complex parameter with R(\) > 0. Then it follows
that for any fized matriz polynomial P(t),

lim e Mt* P(t) = 0 and lim e Mt P(t) = 0,
t—0+ t—o0

where t* 1 = exp((A+1I)Int) fort > 0. O

3.2. Theorem. The raising operator for Laguerre matriz polynomials is

d e I e _
= LV @ate ] = 4 et e LN @),

where A is positive stable matriz in C™*" and R(\) > 0.

Proof. To prove the theorem, we start by taking the derivative of L,(lA'A)(:c):cAefm with
respect to x

a [LglA,A)(x)erfm]

dx
= di [L%A’A)(:c)] zhe™ ™ 4 LglA’A)(x) [AxAiIefAz - )\:cAefm}
x
e (B4 @) + (A - ) L)
d"lj n n

_ $A7167Ax6n+1($)7

where Oni1(z) = 24k <L£LA’/\)(£C)) + (A = xz)LSY(2). In addition to this, using
Lemma 3.1 we can write

oo

[d
/:cAiIefm@nH(:c):ck dz = / o [L;A”\)(x)x’qef’\”} 2 dr, k=0,1,...,n
0

= gF AN (x)erfAz

OO —/kLgLA’A)(x)erfAzxkfl dx
0
0
=0.
Therefore we should have
Ont1(z) = CLYT "M (@),

because the family of polynomials are orthogonal with respect to the weight function

z47Te™>® over the interval (0, 0), which is unique up to a constant. Comparing the

coefficients of ™!, we have C' = n + 1. Thus, the theorem is proved. d
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Let us consider the operator R = % [:cAef’\”]. Taking A + nl instead of A in this
operator and using L(()A+7LI'A)(:C) = I, we have
d _ _ _ n
a [xAJrnIe AacI] — pAt(-DI, AngAJr( l)I,A)(x)
dx
d2 nl —A\z n— — Az n—
= [ AtnT =) I] — 9 ATm=DI =) LéA+( 2)I,A)(x)
)

d” _ _
pr [J:AJr"Ie MI] = nlz?e ’\”L;A’M(m).
xn

Thus we obtain the Rodrigues formula for Laguerre matrix polynomials,

n! dxm

which is given in [14].

)

(AN) 1 A d" A+4nl _—Az
L,V (z) = =z e [x e ]

3.3. Lemma. [13] Let A be a matriz in C™*" satisfying the spectral condition R(z) > 0
for every z € o(A). Then it follows that for any fized matriz polynomial P(x),
A 2?
lim P(z) e 2 =0. O

z—Foo

3.4. Theorem. The raising operator for Hermite matriz polynomials is

d _A2 _A L2
i e 3] = 2 3 ),

where A is positive stable matriz in C™*7.

A2
Proof. To prove the theorem, we start by taking the derivative of H,(z, A)e” 2% with
respect to x,

g A)e 27| = e 27 L (2, A)] + Ho (2, A) | —Aze— 27
% n(% )6 =€ %[ n(x7 )]+ n(:& ) —Are
_A2ld
—e 2 {— (Hn(:c7A))—1:AHn(:c,A)}
dx
A 2

=e 2 N 9n+1(x)7

where ©p41(z) := di (Hn(xz,A)) — xAH,(xz, A). On the other hand, using Lemma 3.2,
x
we get

A 2
e 27 Opyi(z)Hy(x, A) dz

é\g

r d _A 2
- / d_ {Hn(va)e ? :|Hk(:r,A)dx7 k=0,1,...,n
x
_A 27| T _A2
= {Hk(:c,A)Hn(x,A)e 2 } — /Hn(:c,A)e 2 d—[Hk(x,A)] dx
— 00 . X

i A
= —kV2A / H7L(1:7A)675”2Hk,1(1:714) dx = 0.
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Therefore, we should have O,11(z) = CHpy1(z, A

~—

because the family of polynomials is

A 2
orthogonal with respect to the weight function e” 2% over the interval (—oo, 00), which
is unique up to a constant. Comparing the coefficients of z"*! we have C = — %.
Thus, the theorem is proved. O

A
Let us consider the operator R = % {675%2} . Applying this operator to Ho(x, A) =

I, we have

A A
L2 | = -\ [ae 7 Hy(w, 4)

dx |
a2 [ A2 ] d [ _A. _A
ez :—\@% {e 2 Hl(x,A)}:ge 2% Hy(z, A)

d" _A 2 " T\ A
e 2 = (- (\/;) e 2 H,(x, A).

Thus, by means of the raising operator the Rodrigues formula for Hermite matrix poly-
nomials is

A, gn A
Hn(x,A):(—l)"( g) e?“d_{e*?ﬂ,

dzx™

as given in [13].
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