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Yıldıray Çelik∗†, Canan Ekiz‡ and Sultan Yamak∗

Received 20 : 06 : 2010 : Accepted 17 : 01 : 2011

Abstract

In this paper we study soft rings and ideals. Firstly, we define a new
binary relation on soft sets using binary relations on the universe and
parameter sets. Then, we introduce the notion of soft ring and soft
ideal over a ring, and some examples are given. Also, we obtain some
new properties of soft rings and soft ideals. Lastly, we define extended
sum, restricted sum, extended product, and restricted product of soft
sets, and derive their basic properties.
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1. Introduction

Many complicated problems in economics, engineering, the environment, social sci-
ence, medical science and many other fields involve uncertain data. These problems which
one come face to face with in life cannot be solved using classical mathematic methods.
In classical mathematics, a mathematical model of an object is devised and the notion
of the exact solution of this model is determined. Because of that the mathematical
model is too complex, the exact solution cannot be found. There are several well-known
theories to describe uncertainty. For instance fuzzy set theory [31], rough set theory [26]
and other mathematical tools. But all of these theories have their inherit difficulties as
pointed out by Molodtsov [25]. To overcome these difficulties, Molodtsov introduced the
concept of soft set as a new mathematical tool for dealing with uncertainties that is free
from the difficulties affecting existing methods.

The theory of soft sets has rich potential for applications in several directions, few of
which had been demonstrated by Molodtsov in his pioneer work [25]. At present, works
on soft set theory are making progress rapidly. Maji et al. [22] described an application
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of soft set theory to solve a decision making problem and studied several operations on
the theory of soft sets. Pei and Miao [27] discussed the relationship between soft sets
and information systems. Maji et al. [21] studied several operations on soft sets. Ali et
al. [7] gave some new notions, such as restricted intersection, restricted union, restricted
difference and extended intersection of two soft sets. Majumdar and Samanta [23] gave
a notion of soft mappings, and some of their properties. Also they studied images and
inverse images of crisp sets and soft sets under soft mappings.

Some researches have studied algebraic properties of soft sets. Initially, Aktaş and
Çağman [2] introduced the basic concepts of soft set theory, and compared soft sets to
the related concepts of fuzzy sets and rough sets. They also discussed the notion of soft
groups and derived their basic properties using Molodtsov’s definition of the soft sets.
Chen et al. [5] defined the parameterization reduction of soft sets, and improved an
application of a soft set in a decision making problem. Jun and Park [16] discussed the
applications of soft sets in the ideal theory of BCK/BCI-algebras. Jun [12] applied the
notion of soft sets to the theory of BCK/BCI-algebras. He introduced the notion of soft
BCK/BCI-algebras and soft subalgebras. Feng et al. [8] introduced the notions of soft
semirings, soft ideals and idealistic soft semirings, and then investigated several related
properties. Jin-liang et al. [11] defined operations on fuzzy soft groups, and proved
some results about them. Sun et al. [28] presented the definition of soft modules, and
constructed some basic properties using modules. Yang et al. [30] combined interval-
valued fuzzy sets and soft sets, and then introduced the concept of the interval-valued
fuzzy soft set. Jun et al. [15] introduced the notions of soft p-ideals and p-idealistic soft
BCI-algebras, and then gave characterizations of p-ideals in BCI-algebras. Aygünoğlu
and Aygün [3] gave the concept of fuzzy soft group and defined fuzzy soft functions and
fuzzy soft homomorphisms. Jun et al. [13] defined the notions of soft d-algebras, soft
d∗-algebras, soft d-ideals, soft d♯-ideals, soft d∗ ideals, and d-idealistic soft d algebras, and
surveyed their properties. Jun and Song [17] introduced the notion of ∈-soft set and q-soft
set, based on a fuzzy set, and investigated conditions for ∈-soft sets and q-soft sets to be
idealistic soft BCK/BCI-algebras. Çağman and Enginoğlu [6] defined soft matrices and
their operations. They also constructed a soft max-min decision making method. Jun et
al. [14] derived the notion of fuzzy soft BCK/BCI algebras and investigated its properties.
Feng et al. [9] provided a framework to combine fuzzy sets, rough sets and soft sets all
together. Babitha and Sunil [4] introduced concepts of soft set relations, and discussed
many related concepts such as equivalent soft set relationss, partitions, composition,
function etc. Liu et al. [20] described some classes of soft rings and give the first, second
and third fuzzy isomorphism theorems for soft rings. Kazancı et al. [19] defined soft
BCH-algebras and gave the theorems of homomorphic image and homomorphic pre-
image of soft sets. Majumdar and Samanta [24] defined generalized fuzzy soft sets and
studied some of their properties. They also showed applications of generalized fuzzy soft
sets. Zhan and Jun [32] investigated soft BL-algebras based on fuzzy sets. Jun et al. [18]
investigated (∈,∈ ∨ q)-fuzzy p-ideals and fuzzy p-ideals with thresholds related to soft
set theory. Lastly, Acar et al. [1] defined soft rings and introduced basic notions of soft
rings.

From the beginning the majority of studies on soft sets for algebraic structures such
as, groups, rings, semirings, modules and BCK/BCI-algebras have concentrated on usual
binary operations [1, 2, 7, 8, 12, 16, 19, 28, 29]. However, this seems to restrict the
application of algebraic sets. To solve this problem, we define new binary relations and
soft functions on soft sets. From this point of view, in Section 2, we summarize some basic
concepts of soft sets which will be used throughout the paper. In Section 3, we recall
the concept of soft rings and soft ideals as introduced by Acar et al. [1], and its further
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properties are discussed. Also, we introduce the concept of soft ring homomorphism for
rings, and we examine some of its properties. Finally some new binary relations, named
extended sum, restricted sum, extended product, and restricted product are introduced
and some important results obtained for them.

2. Basic definitions on soft set theory

In this section, we will give some known and useful definitions and notations. The
definitions may be found in references [7, 8, 21, 25, 27].

Molodtsow [25] defined the notion of a soft set in the following way: Let U be an
initial universe set and E a set of parameters. The power set of U is denoted by P(U)
and A is a subset of E. A pair (F, A) is called a soft set over U , where F is a mapping
F : A → P(U). In other words, a soft set over U is a parameterized family of subsets of
the universe U . For x ∈ A, F (x) may be considered as the set of x-approximate elements
of the soft set (F, A).

2.1. Definition. [8] For a soft set (F, A), the set Supp(F, A) = {x ∈ A | F (x) 6= ∅} is
called the support of the soft set (F, A). If Supp(F, A) 6= ∅, then the soft set (F, A) is
called non-null.

2.2. Definition. [25] Let (F, A) and (G, B) be two soft sets over U . Then,

(i) (F, A) is said to be a soft subset of (G, B), denoted by (F, A) ⊆ (G, B), if A ⊆ B
and F (a) ⊆ G(a) for all a ∈ A,

(ii) (F, A) and (G, B) are said to be soft equal, denoted by (F, A) = (G, B), if
(F, A) ⊆ (G, B) and (G, B) ⊆ (F, A).

2.3. Definition. [7, 8] Let (F, A) and (G, B) be two soft sets over U . Then,

(1) The extended intersection (H,C) of soft sets (F, A) and (G, B), denoted by
(F, A) ∩ε (G, B), is defined as C = A ∪ B, and for all c ∈ C

H(c) =











F (c) if c ∈ A \ B,

G(c) if c ∈ B \ A,

F (c) ∩ G(c) if c ∈ A ∩ B.

(2) The restricted intersection (H,C) of soft sets (F, A) and (G, B), denoted by
(F, A)∩ (G, B), is defined as C = A ∩B, and for all c ∈ C, H(c) = F (c)∩G(c).

(3) The extended union (H,C) of soft sets (F, A) and (G, B), denoted by (F, A) ∪
(G, B), is defined as C = A ∪ B, and for all c ∈ C

H(c) =











F (c) if c ∈ A \ B,

G(c) if c ∈ B \ A,

F (c) ∪ G(c) if c ∈ A ∩ B.

(4) The restricted union (H, C) of soft sets (F, A) and (G, B), denoted by (F, A)∪ℜ

(G, B), is defined as C = A ∩ B, and for all c ∈ C, H(c) = F (c) ∪ G(c).

Note that restricted intersection was also known as bi-intersection in Feng et al. [8],
and extended union was first introduced and called union by Maji et al. [21].

Now, we define a binary operation on soft sets in the following way: Suppose that ⊕
is a binary operation on P(E), and ⊗ is a binary operation on P(U). Then for any two
soft sets (F, A) and (G, B) over U , (F, A) ⊕⊗ (G, B) is defined as the soft set (H,C),
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where C = A ⊕ B and

H(c) =



















F (c) if c ∈ A \ B,

G(c) if c ∈ B \ A,

F (c) ⊗ G(c) if ∈ A ∩ B

∅ if otherwise.

for all c ∈ C. Here we describe a general binary operation. However, many researchers
gave more specific binary relations [7, 21, 25]. As an example, the following binary
operations given in Definition 2.3 can be obtained a special case of above binary relation
in the following way:

(i) If ⊕ = ∪, and ⊗ = ∩, then (F, A) ⊕⊗ (G, B) is the extended intersection of
(F, A) and (G, B),

(ii) If ⊕ = ∩, and ⊗ = ∩, then (F, A) ⊕⊗ (G, B) is the restricted intersection of
(F, A) and (G, B),

(iii) If ⊕ = ∪, and ⊗ = ∪, then (F, A)⊕⊗ (G, B) is the extended union of (F, A) and
(G, B),

(iv) If ⊕ = ∩, and ⊗ = ∪, then (F, A)⊕⊗ (G, B) is the restricted union of (F, A) and
(G, B).

Molodtsov [25] also proposed a general way to define binary operations over soft sets.
Assume that we have a binary operation on P(U), which is denoted by ⊕. Let (F, A)
and (G, B) be soft sets over U . Then, the operation ⊕ for soft sets in defined by
(F, A) ⊕ (G, B) = (H,A × B), where H(a, b) = F (a) ⊕ G(b), a ∈ A, b ∈ B. Maji et
al. [21] introduced the following operations over soft sets, which can be seen as the im-
plementations of Molodtsovs idea above.

2.4. Definition. [8, 21] Let (F, A) and (G, B) be two soft sets over U . Then,

(1) The ∧-intersection of two soft sets (F, A) and (G, B) is defined as the soft set
(H, C) = (F, A) ∧ (G, B) over U , where C = A × B, and H(a, b) = F (a) ∩ G(b)
for all (a, b) ∈ A × B;

(2) The ∨-union of two soft sets (F, A) and (G, B) is defined as the soft set (H,C) =
(F, A) ∨ (G, B) over U , where C = A × B, and H(a, b) = F (a) ∪ G(b) for all
(a, b) ∈ A × B.

(3) Let (F, A) and (H,B) be two soft sets over G and K, respectively. The cartesian
product of the soft sets (F, A) and (H,B), denoted by (F, A)×(H,B), is defined as
(F, A)×(H,B) = (U,A×B), where U(x, y) = F (x)×H(y) for all (x, y) ∈ A×B.

The following definitions are generalizations of the above.

2.4. Definition. [7, 8, 19] Let {(Hi, Ai) | i ∈ Λ} be a family of soft sets over U . Then,

(1) The extended intersection of the family (Hi, Ai), denoted by (
⋂

ε)i∈Λ(Hi, Ai), is
the soft set (H,A) defined as:

A =
⋃

i∈Λ

Ai, H(a) =
⋂

i∈Λ(a)

Hi(a) ∀ a ∈ A,

(2) The restricted intersection of the family (Hi, Ai), denoted by
⋂

i∈Λ(Hi, Ai), is
the soft set (H,A) defined as:

A =
⋂

i∈Λ

Ai, H(a) =
⋂

i∈Λ

Hi(a) ∀ a ∈ A,
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(3) The extended union of the family (Hi, Ai), denoted by
⋃

i∈Λ(Hi, Ai), is the soft
set (H,A) defined as:

A =
⋃

i∈Λ

Ai, H(a) =
⋃

i∈Λ(a)

Hi(a) ∀ a ∈ A,

(4) The restricted union of the family (Hi, Ai), denoted by (
⋃

ℜ
)i∈Λ(Hi, Ai), is the

soft set (H,A) defined as:

A =
⋂

i∈Λ

Ai, H(a) =
⋃

i∈Λ

Hi(a) ∀ a ∈ A.

2.5. Definition. [8, 19, 21] Let {(Hi, Ai) | i ∈ Λ} be a family of soft sets over U . Then,

(1) The ∧-intersection of the family (Hi, Ai), denoted by
∧

i∈Λ(Hi, Ai), is the soft
set (H,A) defined as:

A =
∏

i∈Λ

Ai, H((ai)i∈Λ) =
⋂

i∈Λ

Hi(ai) ∀ (ai)i∈Λ ∈ A,

(2) The ∨-union of the family (Hi, Ai), denoted by
∨

i∈Λ(Hi, Ai), is the soft set
(H, A) defined as:

A =
∏

i∈Λ

Ai, H((ai)i∈Λ) =
⋃

i∈Λ

Hi(ai) ∀ (ai)i∈Λ ∈ A),

(3) The cartesian product of the family (Hi, Ai), denoted by
∏

i∈Λ(Hi, Ai), is the
soft set (H,A) defined as:

A =
∏

i∈Λ

Ai, H((ai)i∈Λ) =
∏

i∈Λ

Hi(ai) ∀ (ai)i∈Λ ∈ A.

2.6. Definition. [7] Let (F, A) be soft set over U . Then,

(i) (F, A) is said to be a relative null soft set, denoted by NA, if F (e) = ∅ for all
e ∈ A,

(ii) (F, A) is said to be a relative whole soft set, denoted by WA, if F (e) = U for all
e ∈ A.

2.7. Definition. [29] Let (F, A) and (G, B) be two soft sets over U and U ′ respectively,
f : U → U ′, g : A → B be two functions. Then we say that the pair (f, g) is a soft
function from (F, A) to (G, B), denoted by (f, g) : (F, A) → (G, B), if the following
condition is satisfied: f(F (x)) = G(g(x)) for all x ∈ A. If f and g are injective (resp.
surjective, bijective), then (f, g) is said to be injective (resp. surjective, bijective).

The concept of soft homomorphism on groups was at first introduced by Aktaş et al.
[2].

2.8. Lemma. [29] Let (F, A), (G, B) and (H,C) be soft sets over U , U ′ and U ′′, respec-
tively. Let (f, g) : (F, A) → (G, B) and (f ′, g′) : (G, B) → (H,C) be two soft functions.
Then (f ′ ◦ f, g′ ◦ g) : (F, A) → (H, C) is a soft function. �

2.9. Definition. [29] Let (F, A) and (G, B) be two soft sets over U and U ′ respectively,
(f, g) a soft function from (F, A) to (G, B).

The image of (F, A) under the soft function (f, g), denoted by (f, g)(F, A) = (f(F ),B),
is the soft set over U ′ defined by

f(F )(y) =

{

⋃

g(x)=y f(F (x)) if y ∈ Img,

∅ otherwise.

for all y ∈ B.
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The pre-image of (G, B) under the soft function (f, g), denoted by (f, g)−1(G, B) =
(f−1(G), A), is the soft set over U defined by f−1(G)(x) = f−1(G(g(x))) for all x ∈ A.

It is clear that (f, g)(F,A) is a soft subset of (G, B) and (F, A) is a soft subset of
(f, g)−1(G, B). In particular, if g is the identity function on A, the soft sets (f(F ), A)
and (f−1(G), A) are as given in [2, 19].

3. Soft rings and soft ideals

We begin by giving some known and useful definitions and notations of the theory of
rings from [10]. A ring R is a structure consisting of a non-empty set R together with two
binary operations on R, called addition and multiplication, denoted in the usual manner,
such that

• R together with addition is a commutative group,
• R together with multiplication is a semigroup, and
• a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ R.

If R contains an element 1R such that 1Ra = a1R for all a ∈ R, then R is said to be a
ring with identity. A zero element of a ring R is an element 0 (necessarily unique) such
that 0+x = x+0 = x for all x ∈ R. A non-empty subset I of a ring R is called a subring
if and only if a− b ∈ I and ab ∈ I for all a, b ∈ I . A non-empty subset I of R is called an
ideal, denoted by I ⊳ R, if and only if a − b ∈ I and ra, ar ∈ I for all a, b ∈ I and r ∈ R.
The subrings {0} and R are called trivial subrings of R.

Let R and S be rings. A mapping f : R → S is called a ring homomorphism if it
satisfies

f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b)

for all a, b ∈ R. That is, the mapping f preserves the ring operations. A ring homo-
morphism f : R → S is called a monomorphism [resp. epimorphism, isomorphism] if it
is an injective [resp. surjective, bijective] mapping. The kernel of a ring homomorphism
f : R → S is its kernel as a map of additive groups; that is, Kerf = {r ∈ R | f(r) = 0}.
Similarly the image of f , denoted Im f , is {s ∈ S | f(r) = s for some r ∈ R}.

If A and B are non-empty subsets of R, A + B denote the set of all sums {a + b | a ∈
A, b ∈ B} and A ·B denote the set of all finite sums of products {a1b1+a2b2 + · · ·+anbn |
n ∈ N, ai ∈ A, bi ∈ B}.

Let {Si | i ∈ I} be a family of subrings (ideals) of R, then their intersection
⋂

i∈I Si

is a subring (ideal) of R.

Let Si be a subring (ideal) of Ri (i ∈ I), then their cartesian product
∏

i∈I Si is
subring (ideal) of

∏

i∈I Ri.

3.1. Definition. Let (F, A) be a non-null soft set over a ring R. Then (F, A) is called
a soft ring over R if F (x) is a subring of R for all x ∈ Supp(F, A).

In Definition 3.1., F (x) is always a non-empty set for all x ∈ Supp(F, A). If F is
chosen such that F : A → P(R) \ {∅} or Supp(F, A) = A, then Definition 3.1. coincides
with [1, Definition 3.1].

3.2. Definition. Let (F, A) be a non-null soft set over a ring R. Then (F, A) is called a
soft ideal over R if F (x) is an ideal of R for all x ∈ Supp(F, A). This definition is similar
to that of idealistic soft ring [1, Definition 5.1].

It is clear that every soft ideal is a soft ring.

Let us illustrate these definitions using the following examples.
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3.3. Example. Let R be a ring and I a subring (ideal) of R. Let F : A → P(R) be a
mapping such that F (x) = I for all x ∈ A. Then (F, A) is a soft ring (ideal) over R.

In Example 3.3., If I = {0R}, then (F, A) is said to be a relative null soft ring (ideal)
over R. If I = R, then (F, A) is said to be a relative whole soft ring (ideal) over R.

3.4. Example. Let R be a ring and F : R → P(R) a mapping such that F (r) =< r >,
where < r > is the ideal generated by r ∈ R for all r ∈ R. Then (F, R) is a soft ideal
over R.

3.5. Example. Let (F, A) be a soft set over Z6, where A = {0, 1, 2} and F : A → P(Z6)
is a set-valued function defined by

F (x) = {y ∈ Z6 | x · y = 0}

for all x ∈ A. Since F (x) is an ideal of Z6 for all x ∈ Supp(F, A), then (F, A) is a soft
ideal over Z6.

3.6. Example. Let (F, A) be a soft set over Z, where A = Z and F : A → P(Z) is the
function defined by

F (x) =

{

xZ if 2 | x,

∅ otherwise,

for all x ∈ A. The support set of the soft set (F, A) is Supp(F, A) = {2n | n ∈ Z}. Since
F (x) is an ideal of Z for all x ∈ Supp(F, A), then (F, A) is a soft ideal over Z.

3.7. Example. Let R be a ring with identity element and F : R → P(R) a mapping
such that F (x) = {r | rx = xr} for all x ∈ R. Then (F, R) is a soft ring over R. On the
other hand, (F, R) is a soft ideal if and only if R is a commutative ring.

3.8. Example. Let Mn×n(R) be the set of all n × n matrices over R and (F, A) a soft
set over R, where R = A = Mn×n(R) and F : A → P(R) is the function defined by
F (B) = {C · B | C ∈ Mn×n(R)} for all B ∈ A. Then (F, A) is a soft ring over R, but
(F, A) is not a soft ideal over R.

3.9. Theorem. [1] Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft rings over R.
Then,

(1) The restricted intersection of the family {(Fi, Ai) | i ∈ Λ} is a soft ring over R
if it is non-null.

(2) If Ai ∩ Aj = ∅ for all i, j ∈ Λ, i 6= j, then the extended union of the family
{(Fi, Ai) | i ∈ Λ} is a soft ring over R. �

3.10. Theorem. Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft ideals over R.
Then,

(1) The restricted intersection of the family {(Fi, Ai) | i ∈ Λ} is a soft ideal over R
if it is non-null.

(2) If Ai ∩ Aj = ∅ for all i, j ∈ Λ, i 6= j, then the extended union of the family
{(Fi, Ai) | i ∈ Λ} is a soft ideal over R.

Proof. (1) The result is obvious since the intersection of an arbitrary non-empty family
of ideals of a ring is an ideal.

(2) Similar to the proof of Theorem 3.9 (2). �

3.11. Theorem. Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft rings (ideals) over
R. Then,
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(1) If Fi(x) ⊆ Fj(x) or Fj(x) ⊆ Fi(x) for all i, j ∈ Λ(x), x ∈
⋃

i∈Λ Ai, then the
extended union of the family {(Fi, Ai) | i ∈ Λ} is a soft ring (ideal) over R.

(2) The extended intersection of the family {(Fi, Ai) | i ∈ Λ} is a soft ring (ideal)
over R if it is non-null.

(3) If Fi(x) ⊆ Fj(x) or Fj(x) ⊆ Fi(x) for all i, j ∈ Λ, x ∈
⋂

i∈Λ Ai, then the
restricted union of the family {(Fi, Ai) | i ∈ Λ} is a soft ring (ideal) over R.

Proof. (1) We can write
⋃

i∈Λ(Fi, Ai) = (F, B). Then B =
⋃

i∈Λ Ai and for all x ∈ B,
F (x) =

⋃

i∈Λ(x) Fi(x). Note first that (F, B) is non-null since

Supp(F, B) =
⋃

i∈Λ

Supp(Fi, Ai) 6= ∅.

Let x ∈ Supp(F, B). Then F (x) =
⋃

i∈Λ(x) Fi(x) 6= ∅, and so we have Fi0(x) 6= ∅ for

some i0 ∈ Λ(x). By the hypothesis, we know that Fi(x) ⊆ Fj(x) or Fj(x) ⊆ Fi(x) for
all i, j ∈ Λ(x), x ∈

⋃

i∈Λ Ai. Hence
⋃

i∈Λ Fi(x) is a subring (ideal) of R. Moreover the
extended union

⋃

i∈Λ(Fi, Ai) is a soft ring (ideal) over R.

(2) We can write (
⋂

ε)i∈Λ(Fi, Ai) = (F, B). Then B =
⋃

i∈Λ Ai, and for all x ∈ B,
F (x) =

⋂

i∈Λ(x) Fi(x). Note first that (F, B) is non-null since

Supp(F, B) =
⋃

i∈Λ

Supp(Fi, Ai) 6= ∅.

Let x ∈ Supp(F, B). Then F (x) =
⋂

i∈Λ(x) Fi(x) 6= ∅, and so we have Fi(x) 6= ∅ for

all i ∈ Λ(x). By the hypothesis, we know that Fi(x) is subring (ideal) of R for all
i ∈ Λ(x), x ∈

⋃

i∈Λ Ai. Hence
⋂

i∈Λ Fi(x) is a subring (ideal) of R. Moreover the
extended intersection (

⋂

ε)i∈Λ(Fi, Ai) is a soft ring (ideal) over R.

(3) Similar to (1). �

We obtain following corollaries from Theorem 3.10 and Theorem 3.11.

3.12. Corollary. Let (F, A) and (G, B) be two soft ideals over R. Then the restricted
intersection of (F, A) and (G, B) is a soft ideal over R if it is non-null. �

3.13. Corollary. Let (F, A) and (G, B) be two soft rings (ideals) over R. Then,

(1) If F (x) ⊆ G(x) or G(x) ⊆ F (x) for all x ∈ A ∩ B, then the extended union of
(F, A) and (G, B) is a soft ring (ideal) over R.

(2) The extended intersection of (F, A) and (G, B) is a soft ring (ideal) over R if it
is non-null.

(3) If F (x) ⊆ G(x) or G(x) ⊆ F (x) for all x ∈ A ∩ B, then the restricted union of
(F, A) and (G, B) is a soft ring (ideal) over R. �

3.14. Theorem. [1] Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft rings over R.
Then the ∧-intersection

∧

i∈Λ(Fi, Ai) is a soft ring over R if it is non-null. �

3.15. Theorem. Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft ideals over R.
Then the ∧-intersection

∧

i∈Λ(Fi, Ai) is a soft ideal over R if it is non-null.

Proof. By Definition 2.6. (1), we can write
∧

i∈Λ(Fi, Ai) = (F, B). Let (xi)i∈Λ ∈ Supp(F, B).
Then F ((xi)i∈Λ) =

⋂

i∈Λ Fi(xi) 6= ∅. By the hypothesis, we know that Fi(xi) ideal of
R, we obtain

⋂

i∈Λ Fi(xi) is a ideal of R. Hence the ∧-intersection
∧

i∈Λ(Fi, Ai) is a soft
ideal over R. �

3.16. Theorem. Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft rings (ideals) over
R. If Fi(ai) ⊆ Fj(aj) or Fj(aj) ⊆ Fi(ai) for all i, j ∈ Λ, ai ∈ Ai, then the ∨-union
∨

i∈Λ(Fi, Ai) is a soft ring (ideal) over R.
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Proof. We can write
∨

i∈Λ(Fi, Ai) = (F, B). Let (xi)i∈Λ ∈ Supp(F, B). Then F ((xi)i∈Λ) =
⋃

i∈Λ Fi(xi) 6= ∅, and so we have Fi0(xi0) 6= ∅ for some i0 ∈ Λ. By the hypothesis, we
know that Fi(xi) ⊆ Fj(xj) or Fj(xj) ⊆ Fi(xi) for all i, j ∈ Λ, xi ∈ Ai, and Fi(xi) is a
subring (ideal) of R, we obtain

⋃

i∈Λ Fi(xi) is a subring (ideal) of R. Hence the ∨-union
∨

i∈Λ(Fi, Ai) is a soft ring (ideal) over R. �

We obtain following corollaries from Theorem 3.15 and Theorem 3.16.

3.17. Corollary. Let (F, A) and (G, B) be two soft ideals over R. Then the ∧-intersection
of the two soft set (F, A) and (G, B) is a soft ideal over R if it is non-null. �

3.18. Corollary. Let (F, A) and (G, B) be two soft rings (ideals) over R. If F (x) ⊆ G(y)
or G(y) ⊆ F (x) for all (x, y) ∈ A × B, then the ∨-union of the two soft set (F, A) and
(G, B) is a soft ring (ideal) over R. �

3.19. Theorem. Let (Fi, Ai) be soft ring (ideal) over Ri, (i ∈ Λ). Then the cartesian
product of the family {(Fi, Ai) | i ∈ Λ} is a soft ring (ideal) over

∏

i∈Λ Ri.

Proof. We can write
∏

i∈Λ(Fi, Ai) = (F, B). Let (xi)i∈Λ ∈ Supp(F, B). Then F ((xi)i∈Λ)
=

∏

i∈Λ Ri(xi) 6= ∅, and so we have Fi(xi) 6= ∅ for all i ∈ Λ. Since Fi(xi) subring (ideal)
of Ri, we obtain

∏

i∈Λ Ri(xi) is a subring (ideal) of
∏

i∈Λ Ri. Hence
∏

i∈Λ(Ri, Ai) is a
soft ring (ideal) over

∏

i∈Λ Ri. �

3.20. Corollary. Let (F, A) and (G, B) be two soft rings (ideals) over R1 and R2,
respectively. Then the cartesian product of the soft sets (F, A) and (G, B) is a soft ring
(ideal) over R1 × R2. �

3.21. Definition. Let (F, A) and (G, B) be two soft rings over R1 and R2, respectively.
Let (f, g) be a soft function from (F, A) to (G, B). If f is a ring homomorphism from
R1 to R2, then (f, g) is said to be a soft ring homomorphism, and that (F, A) is soft
homomorphic to (G, B). The latter is denoted by (F, A) ∼ (G, B).

If f is an epimorphism and g is surjective, then this definition is coincides with [1,
Definition 5.13].

In this definition, if f is an isomorphism from R1 to R2 and g is a bijective mapping
from A onto B, then we say that (f, g) is a soft ring isomorphism and that (F, A) is soft
isomorphic to (G, B). The latter is denoted by (F, A) ≃ (G, B).

3.22. Theorem. Let (F, A) and (G, B) be soft sets over R1 and R2. Let (f, g) be a soft
ring homomorphism from (F, A) to (G, B).

(i) If g is bijective mapping and (F, A) is a soft ring over R1, then (f(F ), B) is a
soft ring over R2.

(ii) If (G, B) is a soft ring over R2, then (f−1(G), A) is a soft ring over R1 if it is
non-null.

Proof. (i) Since (F, A) is a soft ring over R1, it is clear that (f(F ), B) is a non-null soft
set over R2. Let y ∈ Supp(f(F ), B). Then

⋃

g(x)=y f(F (x)) 6= ∅. Since g is bijective,

then there exist a unit x ∈ A such that g(x) = y and f(F (x)) 6= ∅. Because F (x) is
a subring of R1, and f is ring homomorphism, then f(F (x)) is a subring of R2. Since
g is injective mapping, then f(F )(y) = f(F (x)) is a subring over R2. Consequently,
(f(F ),B) is a soft ring over R2.

(ii) Let x ∈ Supp(f−1(G), A). Then f−1(G)(x) 6= ∅. We know that f−1(G)(x) =
f−1(G(g(x))). Since g(x) ∈ B and (G, B) is a soft ring over R2, then G(g(x)) is subring
of R2. Moreover the non-empty set G(g(x)) is a subring of R2 and its homomorphic
inverse image f−1(G(g(x))) is also a subring of R1. Hence (f−1(G),A) is a soft ring over
R1. �
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3.23. Theorem. Let (F, A) and (G, B) be soft sets over R1 and R2. Let (f, g) be a soft
ring homomorphism from (F, A) to (G, B).

(i) If g is bijective, f is a surjective mapping and (F, A) is a soft ideal over R1,
then (f(F ), B) is a soft ideal over R2.

(ii) If (G, B) is a soft ideal over R2, then (f−1(G), A) is a soft ideal over R1 if it is
non-null.

Proof. Similar to the proof of Theorem 3.22. �

In Theorem 3.22., If g = IA, then the following corollary is obtained.

3.24. Corollary.

(i) Let (F, A) be a soft ring over R1 and the function f : R1 → R2 be a ring
homomorphism. If F (a) = Kerf for all a ∈ A, then (f(F ), A) is a relative null
soft ring over R2.

(ii) Let (F, A) be a relative whole soft ring over R1, and the function f : R1 → R2

be an epimorphism of rings. Then (f(F ), A) is a relative whole soft ring over
R2. �

3.25. Theorem. Let (F, A), (G, B) and (H,C) be soft sets over R1, R2 and R3, re-
spectively. Let (f, g) : (F, A) → (G, B) and (f ′, g′) : (G, B) → (H,C) be two soft ring
homomorphisms. Then (f ′ ◦ f, g′ ◦ g) : (F, A) → (H,C) is a soft ring homomorphism.

Proof. Straightforward. �

We introduce the following new definitions for soft sets on a ring R.

3.26. Definition. Let (F, A) and (G, B) be two soft sets over a ring R. The extended sum
of (F, A) and (G, B) is denoted by (F, A)⊕∪ (G, B), and is defined as (F, A)⊕∪ (G, B) =
(H,C), where C = A ∪ B and

H(c) =











F (c) if c ∈ A \ B,

G(c) if c ∈ B \ A,

F (c) + G(c) if c ∈ A ∩ B,

for all c ∈ C.

3.27. Definition. Let (F, A) and (G, B) be two soft sets over a ring R such that A∩B 6=
∅. The restricted sum of (F, A) and (G, B) is denoted by (F, A)⊕∩ (G, B), and is defined
as (F, A) ⊕∩ (G, B) = (H,C), where C = A ∩ B and H(c) = F (c) + G(c) for all c ∈ C.

3.28. Definition. Let (F, A) and (G, B) be two soft sets over a ring R. The extended
product of (F, A) and (G, B) is denoted by (F, A) ⊙∪ (G, B), and is defined as (F, A)⊙∪

(G, B) = (H,C), where C = A ∪ B and

H(c) =











F (c) if c ∈ A \ B,

G(c) if c ∈ B \ A,

F (c) · G(c) if c ∈ A ∩ B,

for all c ∈ C.

3.29. Definition. Let (F, A) and (G, B) be two soft sets over a ring R such that A∩B 6=
∅. The restricted product of (F, A) and (G, B) is denoted by (F, A) ⊙∩ (G, B), and is
defined as (F, A) ⊙∩ (G, B) = (H,C), where C = A ∩ B and H(c) = F (c) · G(c) for all
c ∈ C.

3.30. Theorem. Let (F, A) and (G, B) be two soft ideals over R. Then the extended
sum of two soft set (F, A) and (G, B) is a soft ideal over R.
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Proof. From Definition 3.26 we can write (F, A)⊕∪ (G, B) = (H, A∪B). If c ∈ A \B or
c ∈ B \ A for all c ∈ A ∪ B, then it is obvious H(c) is an ideal of R. If c ∈ A ∩ B, then
H(c) = F (c)+G(c) is an ideal of R since the sum of two ideal is an ideal. Hence, we find
that the extended sum of two soft ideals (F, A) and (G, B) is a soft ideal over R. �

3.31. Theorem. Let (F, A) and (G, B) be two soft ideals over R. Then the restricted
sum of two soft set (F, A) and (G, B) is a soft ideal over R.

Proof. Similar to the proof of Theorem 3.30. �

3.32. Theorem. Let (F, A) and (G, B) be two soft ideals over R. Then the extended
product of two soft set (F, A) and (G, B) is a soft ideal over R.

Proof. From Definition 3.28, we can write (F, A) ⊙∪ (G, B) = (H,A ∪ B). If c ∈ A \ B
or c ∈ B \A for all c ∈ A∪B, then it is obvious that H(c) is an ideal of R. If c ∈ A∩B,
then H(c) = F (c) ·G(c) is an ideal of R since the product of two ideal is an ideal. Hence,
we find that the extended product of two soft ideals (F, A) and (G, B) is a soft ideal over
R. �

3.33. Theorem. Let (F, A) and (G, B) be two soft ideals over R. Then the restricted
product of two soft set (F, A) and (G, B) is a soft ideal over R.

Proof. Similar to the proof of Theorem 3.32. �

3.34. Example. Let R = Z, A = {2n | n ∈ Z}, B = {3n | n ∈ Z}. Consider the
functions F : A → P(Z) and G : B → P(Z) defined by

F (x) =

{

{0} if x = 0,

kZ if x ∈ 2kZ \ 2k+1Z,

and

G(x) =

{

{0} if x = 0,

2kZ if x ∈ 2kZ \ 2k+1Z,

which are ideals of R. Thus (F, A) and (G, B) are soft ideals over R. Let (F, A) ⊕∪

(G, B) = (H,C), where C = A ∪ B. Then, for all x ∈ C, we have

H(x) =











F (x) if 2 | x, 3 ∤ x,

G(x) if 3 | x, 2 ∤ x,

F (x) + G(x) if 6 | x,

=



















kZ if x ∈ 2kZ \ 2k+1Z, k ≥ 1, 3 ∤ x,

Z if 2 ∤ x, 3 | x,

kZ + 2kZ if x ∈ 2kZ \ 2k+1Z, k ≥ 1, 3 | x,

{0} if x = 0.

Let (F, A) ⊕∩ (G, B) = (K, D), where D = A ∩ B = {6n | n ∈ Z}. Then, for all x ∈ D,
we have

K(x) = F (x) + G(x) =

{

kZ + 2kZ if x ∈ 2kZ \ 2k+1Z, k ≥ 1, 3 | x,

{0} if x = 0.

It is clear that the extended sum and restricted sum of two soft ideal (F, A) and (G, B)
is a soft ideal over R.
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Let (F, A) ⊙∪ (G, B) = (H,C), where C = A ∪ B. Then, for all x ∈ C, we have

H(x) =











F (x) if 2 | x, 3 ∤ x,

G(x) if 3 | x, 2 ∤ x,

F (x) · G(x) if 6 | x,

=



















kZ if x ∈ 2kZ \ 2k+1Z, k ≥ 1, 3 ∤ x,

Z if 2 ∤ x, 3 | x,

k.2kZ if x ∈ 2kZ \ 2k+1Z, k ≥ 1, 3 | x,

{0} if x = 0.

Let (F, A) ⊙∩ (G, B) = (K, D), where D = A ∩ B = {6n | n ∈ Z}. Then, for all x ∈ D,
we have

K(x) = F (x) · G(x) =

{

k.2kZ if x ∈ 2kZ \ 2k+1Z, k ≥ 1, 3 | x,

{0} if x = 0.

It is clear that the extended product and restricted product of two soft ideal (F, A)
and (G, B) is a soft ideal over R.

3.35. Definition. [1] Let (F, A) and (G, B) be soft rings over R. Then the soft ring
(F, A) is called a soft subring of (G, B), denoted by (F, A) ≤ℜ (G, B), if it satisfies the
following conditions:

(i) A ⊆ B,
(ii) F (x) is a subring of G(x) for all x ∈ Supp(F, A).

3.36. Theorem. Let (F, A) be a soft ring over R and {(Fi, Ai) | i ∈ Λ} a non-empty
family of soft subrings of (F, A). Then,

(1) The restricted intersection of the family {(Fi, Ai) | i ∈ Λ} is a soft subring of
(F, A) if it is non-null.

(2) If Fi(x) ⊆ Fj(x) or Fj(x) ⊆ Fi(x) for all i, j ∈ Λ(x), x ∈
⋃

i∈Λ Ai, then the
extended union of the family {(Fi, Ai) | i ∈ Λ} is a soft subring of (F, A).

(3) The extended intersection of the family {(Fi, Ai) | i ∈ Λ}is a soft subring of
(F, A) if it is non-null.

(4) If Fi(x) ⊆ Fj(x) or Fj(x) ⊆ Fi(x) for all i, j ∈ Λ, x ∈
⋂

i∈Λ Ai, then the
restricted union of the family {(Fi, Ai) | i ∈ Λ} is a soft subring of (F, A).

Proof. Similar to the proofs of Theorem 3.10. and Theorem 3.11. �

3.37. Theorem. Let {(Fi, Ai) | i ∈ Λ} be a non-empty family of soft rings over R. Let
(Gi, Bi) be a soft subring of (Fi, Ai), (i ∈ Λ). Then:

(1) The ∧-intersection
∧

i∈Λ(Gi, Bi) is a soft subring of
∧

i∈Λ(Fi, Ai) if it is non-
null.

(2) If Gi(ai) ⊆ Gj(aj) or Gj(aj) ⊆ Gi(ai) for all i, j ∈ Λ, ai ∈ Bi, then the ∨-union
∨

i∈Λ(Gi, Bi) is a soft subring of
∨

i∈Λ(Fi, Ai)

Proof. Similar to the proofs of Theorem 3.15. and Theorem 3.16. �

4. Conclusion

The concept of soft set was first introduced by Molodtsov [25]. Following Molodtsov’s
approach, some basic algebraic structures on soft set were introduced in [1, 2, 7, 8, 12,
16, 19, 28, 29]. Acar et al. [1] applied the theory of soft sets to a ring. In this paper,
some new properties of soft rings are investigated. Also the extended sum, restricted
sum, extended product, restricted product of soft sets are established and their some
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basic properties are given. To extend this work, one could study the properties of soft
sets in other algebraic structures such as modules.
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