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Abstract

This paper investigates the initial time difference equi-boundedness cri-
teria in terms of two measures, initial time difference boundedness and
Lagrange Stability in terms of two measures. These are unified with
Lyapunov-like functions to establish a variational comparison result.
We support our new results with analytic examples and numerical ap-
plications.
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1. Introduction

The problems of modern society are both complex and multidisciplinary [1, 2, 3, 4]. It
is now recognized that the concept of Lyapunov function [1, 4, 7, 9] can be employed to
investigate various qualitative and quantitative properties of dynamic systems. Lyapunov
functions serve as a vehicle to transform a given complicated differential system into a
relatively simpler system, and as a result it is enough to study the properties of solutions
of the simpler system. The application of Lyapunov’s second method in boundedness
theory [2, 3, 6, 10, 11] has the advantage of not requiring knowledge of the solutions. In
order to unify a variety of known concepts of stability and boundedness, it is beneficial
to employ two different measures [3, 6, 8, 10, 11] and obtain criteria in terms of these
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measures. In this paper we apply these effective and fruitful techniques with Lyapunov-
like functions [3, 4, 7, 9] to obtain boundedness and Lagrange stability criteria [2, 3,
4] for nonlinear differential systems with an initial time difference [5, 7, 8, 9, 10, 11].
We give boundedness and Lagrange stability criteria for a perturbed differential system
with respect to an unperturbed differential system that differs both in initial time and
initial position in terms of two measures [8, 10, 11] by applying an initial time difference
variational comparison result [1, 8, 10].

In Section 2, we give the definitions necessary for our analysis of a new notion of
initial time difference boundedness and Lagrange stability in terms of two measures. In
Section 3 we have investigated that initial time difference (h0, h)-boundedness and La-
grange Stability related to Comparison Equations. In Section 4, we present a variational
comparison result of boundedness and Lagrange Stability in terms of two measures for
vector Lyapunov-like functions. In Section 5 we give two examples that apply the main
results of Section 4. Finally, in Section 6, we have investigated and focused on numer-
ical methods that how could be applied to obtain an approximation to the solution of
perturbed system with respect to unperturbed system in terms of boundedness and La-
grange stability with initial time difference. In Figures 1, 2 and 3 we illustrate initial
time difference boundedness and Lagrange stability of perturbed systems with respect to
the unperturbed systems by giving the graphs of the approximate solutions of perturbed
and unperturbed systems provided by Runge-Kutta, Improved Euler and Euler methods
for h = 0.2, respectively. Moreover, in Figures 4, 5 and 6 we give the same graphs where
the step size is decreased to h = 0.01.

2. Preliminaries

Consider the differential systems

x
′ = f(t, x), x(t0) = x0 for t ≥ t0, t0 ∈ R+,(2.1)

x
′ = f(t, x), x(τ0) = y0 for t ≥ τ0 ≥ t0,(2.2)

and the perturbed systems

y
′ = F (t, y), y(τ0) = y0 for t ≥ τ0,(2.3)

ω
′ = H(t, ω), ω(τ0) = y0 − x0 for t ≥ τ0,(2.4)

where f, F,H ∈ C [R+ × R
n, R

n] satisfy a local Lipschitz condition on the set R+×S(ρ)
and S(ρ) is defined by

S(ρ) = {x ∈ R
n :‖ x ‖≤ ρ <∞}.

The above assumptions imply the existence and uniqueness of solutions on (t0, x0) and
(τ0, y0).

We introduce definitions for a variety of classes of functions that we use in Sections 3
and 4, and for generalized (Dini-like) derivatives and initial time difference boundedness
and Lagrange stability in terms of two measures. All inequalities between vectors are
componentwise.

2.1. Definition. A function φ(r) is said to belong to the class K if φ ∈ C[(0, ρ), R+], φ(0) =
0, and φ(r) is strictly monotone increasing in r.

2.2. Definition. A function a(t, u) is said to belong to the class CK if a ∈ C[R2
+, R+],

a(t, u) ∈ K for each t ∈ R+.

2.3. Definition. A function h(t, x) is said to belong to the class Γ if h ∈ C[R+×R
n, R+],

inf(t,x) h(t, x) = 0 for all (t, x) ∈ R+ × R
n.
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2.4. Definition. A function h(t, x) is said to belong to the class Γ0 if h ∈ Γ and
supt∈R+

h(t, x) exists for x ∈ R
n.

2.5. Definition. A real-valued function V (t, x) defined on R+ × S(ρ) with V (t, 0) = 0
for t > 0 is said to be positive definite if there exists a function φ(r) ∈ K such that the
relation

(2.5) φ (‖x‖) ≤ V (t, x), (V (t, x) ≤ −φ (‖x‖))

for (t, x) ∈ R+ × S(ρ). Also, V is called negative definite if −V is positive definite. A
function V (t, x) is called decrescent if there exists a function ψ ∈ K such that V (t, x) ≤
ψ (‖x‖) for (t, x) ∈ R+ × S(ρ).

2.6. Definition. For a real-valued function V ∈ C[R+ × R
n,R+], we define the gener-

alized derivatives (Dini-like derivatives) as follows

D
+
∗ V (t, s, x) = lim

h→0+
sup

1

h
[V (s+ h, y (t, s+ h, x+ hf(s, x))) − V (s, y (t, s, x))],(2.6)

D∗−V (t, s, x) = lim
h→0−

inf
1

h
[V (s+ h, y (t, s+ h, x+ hf(s, x))) − V (s, y (t, s, x))].(2.7)

2.7. Definition. The solution y(t, τ0, y0) of the system (2.3) is said to be initial time
difference (h0, h)-equibounded with respect to the solution x(t−η, t0, x0), where x(t, t0, x0)
is any solution of the system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+ and η = τ0 − t0 ∈ R+, if
and only if given any α > 0 and τ0 ∈ R+, there exists β = β (α, τ0) > 0 such that
h0 (τ0, y0 − x0) < α implies h (t, y(t, τ0, y0) − x(t− η, t0, x0)) < β for t ≥ τ0.

If β = β (α, τ0) > 0 is independent of τ0, then we have (h0, h)-uniform equi-boundedness.

Observe that if β = β (α, τ0) > 0 is such that β ( · , τ0) ∈ K, then (h0, h)-equi-
boundedness with initial time difference implies (h0, h)-stability with initial time dif-
ference. Indeed, given ǫ > 0 there exists a δ = δ (ǫ, τ0) > 0, which is continuous in τ0 for
each ǫ, such that β (α, τ0) < ǫ whenever α < δ.

2.8. Definition. The solution y(t, τ0, y0) of the system (2.3) is said to be initial time
difference (h0, h)-equi-attractive in the large with respect to the solution x(t − η, t0, x0),
where x(t, t0, x0) is any solution of the system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+ and η =
τ0−t0 ∈ R+, if and only if given any ǫ, α > 0 and τ0 ∈ R+, there exists a positive number
T = T (τ0, ǫ, α) such that h0 (τ0, y0 − x0) < α implies h (t, y(t, τ0, y0) − x(t− η, t0, x0)) <
ǫ for t ≥ τ0 + T (τ0, ǫ, α).

If T = T (τ0, ǫ, α) > 0 is independent of τ0, then we have (h0, h)-uniform equi-
attractiveness in the large.

2.9. Definition. If the solution y(t, τ0, y0) of system (2.3) satisfies Definitions 2.7 and
2.8, then it is said to be initial time difference (h0, h)-Lagrange stable with respect to the
solution x(t−η, t0, x0), where x(t, t0, x0) is any solution of the system (2.1) for t ≥ τ0 ≥ t0,
t0 ∈ R+.

If β = β (α, τ0) > 0 in Definition 2.7 and T = T (τ0, ǫ, α) > 0 in Definition 2.8 are
independent of τ0, then we have (h0, h)-uniform Lagrange Stability.

3. Initial time difference (h0, h)-boundedness and Lagrange sta-
bility related to comparison equations

In earlier work [3, 4, 5, 6], comparisons between the classical notion of boundedness
and Lagrange stability and ITD boundedness and Lagrange stability in terms of two
measures did not allow the use of the behavior of the null solution in ITD boundedness
and Lagrange stability in terms of two measures [2, 3, 4]. The main result presented
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in this section resolves those difficulties with a new approach that allows the use of
boundedness and Lagrange stability in terms of two measures of the null solution of
the comparison system to predict the boundedness properties and Lagrange stability in

terms of two measures of the solution of (2.3) with respect to
∼
x(t) = x (t− η, t0, x0),

where x (t, t0, x0) is any solution of the system (2.1).

In order to obtain this result we need the following two Lemmas from [9].

3.1. Lemma. (please see [9]) Let f, F ∈ C[R+ × R
n,Rn], and

(3.1) G(t, r) = max
x̃,y∈B̄(x0;r)

∥

∥

∥
F (t, y) − f̃(t, x̃

∥

∥

∥
,

where G(t, r) ∈ C[R+ × R
n,R+] and B̄ is the closed ball with center at x0 and radius r.

Assume that r∗(t, τ0, ‖y0 − x0‖) is the maximal solution of u′ = G(t, u), u(τ0) = ‖y0 − x0‖
on (τ0, ‖y0 − x0‖). Here, x̃(t, τ0, x0) = x(t − η, t0, x0), where x(t, t0, x0) is any solution
of the system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+, η = τ0 − t0 ∈ R+, and y(t, τ0, y0) is the
solution of (2.3). Then, for t ≥ τ0,

‖y(t, τ0, y0) − x(t− η, t0, x0)‖ ≤ r
∗(t, τ0, ‖y0 − x0‖).

holds. �

3.2. Lemma. (please see [9]) Let V (t, x̃) ∈ C[R+×R
n,R+] and V (t, x̃) be locally Lips-

chitzian in x̃. Assume that the function

(3.2) D
+
∗ V (t, y − x̃) = lim

h→0+
sup

1

h
[V (t+ h, y − x̃+ h(F (t, y)− f̃(t, x̃))) − V (t, y − x̃)]

satisfies D+
∗ V (t, y − x̃) ≤ G(t, V (t, y − x̃)) with (t, x̃), (t, y) ∈ R+ × R

n, where G(t, u) ∈
C[R+×R+, R]. Let r(t) = r(t, τ0, u0) be the maximal solution of the comparison equation

(3.3) u
′ = G(t, u), u(τ0) = u0 ≥ 0 for t ≥ τ0.

If x̃(t) = x(t−η, t0, x0), where x(t, t0, x0) is any solution of the system (2.1) for t ≥ τ0 ≥
t0, t0 ∈ R+, η = τ0 − t0 ∈ R+, and y(t) = y(t, τ0, y0) is any solution of (2.3) for t ≥ τ0
such that V (τ0, y0 − x0) ≤ u0, then V (t, y(t) − x(t)) ≤ r(t) for t ≥ τ0. �

3.3. Theorem. Assume that

(i) h0, h ∈ Γ, h(t, w) ≤ ϕ (h0(t, w)), for each (t, w) ∈ R+×R
n and ϕ ∈ K;

(ii) V (t, w) ∈ C[R+×R
n,R+] and V (t, w) is locally Lipschitzian in w, V is h-positive

definite and h0-decresent;
(iii) G ∈ C[R+×R,R+], G(t, 0) ≡ 0, (t, w) ∈ S(h, ρ), and

(3.4) D
+
V (t,w) ≤ G(t, V (t, w)) for t ≥ τ0.

Then the boundedness properties of the comparison equation imply the corresponding
initial time difference (h0, h)-equi-boundedness properties of the system y(t, τ0, y0) (2.3)
with respect to the solution x(t− η, t0, x0), where x(t, t0, x0) is any solution of the system
(2.1) for t ≥ τ0 ≥ t0, and η = τ0 − t0 ∈ R+.

Proof. Since V is h−positive definite, there exists a λ ∈ (0, ρ] and b ∈ K such that

(3.5) b (h (t, w)) ≤ V (t, w) , (t, w) ∈ S (h, λ) ,

V is h0-decresent and h0 is uniformly finer than h, there exists a λ0 = ϕ−1 (λ) > 0 and
a function a ∈ K such that for (τ0, y0 − x0) ∈ S (h0, λ0),

(3.6) h (τ0, y0 − x0) < λ and V (τ0, y0 − x0) ≤ a (h0 (τ0, y0 − x0)) ,

and it then follows from (3.4) and (3.5) that we have

(3.7) b (h (τ0, y0 − x0)) ≤ V (τ0, y0 − x0) ≤ a (h0 (τ0, y0 − x0))
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for (τ0, y0 − x0) ∈ S (h0, λ0).

Let 0 < α ≤ λ0. Set α1 = a (α), and suppose that the solution of the comparison
system (3.3) is equi-bounded. Then, given a (α) > 0 and τ0 ∈ R+, there exists a function
β1 = β1 (τ0, α) such that

(3.8) u0 < α1 implies that u(t, τ0, u0) < β1 for all t ≥ τ0,

where u(t, τ0, u0) is any solution of the comparison equation (3.3).

Choose β = β (τ0, α) such that β1 ≤ b (β), and let h0 (τ0, y0 − x0) < α. Then (3.7)
shows that h (τ0, y0 − x0) < β since α1 ≤ β1. We claim that, for t ≥ τ0,

h (t, y(t) − x̃(t)) < β whenever h0 (τ0, y(τ0) − x̃(τ0)) < α,

where y(t) − x̃(t) is any solution of (2.4) with h0 (τ0, y(τ0) − x̃(τ0)) < α. If this is not
true, then there exists a t1 > τ0 and a solution y(t) − x̃(t) of (2.4) such that

(3.9) h (t1, y(t1) − x̃(t1)) = β and h (t, y(t) − x̃(t)) < β,

for τ0 ≤ t ≤ t1, in view of the fact that h (τ0, y(τ0) − x̃(τ0)) < β whenever h0 (τ0, y0 − x0) <
α. Set u0 = V (τ0, y0 − x0). Then, by Lemma 3.2, we have

(3.10) V (t, y(t) − x̃(t)) ≤ r(t, τ0, u0), τ0 ≤ t ≤ t1,

where r(t) = r(t, τ0, u0) is the maximal solution of (3.3) for t ≥ τ0. Now the relations
(3.6), (3.8), (3.9) and (3.10) yield

b (β) ≤ V (t1, y(t1) −
∼
x(t1)) ≤ r(t1, τ0, u0) < β1 ≤ b (β) .

This is a contradiction, which establishes that for each α > 0 there exist β = β (τ0, α) > 0
such that h (t, y(t) − x̃(t)) < β provided that h0 (τ0, y0 − x0) ≤ α for all t ≥ τ0. Hence
y(t, τ0, y0) is (h0, h)-equi-bounded with respect to x(t− η, t0, x0) for t ≥ τ0. �

3.4. Theorem. Assume that the assumptions of Theorem 3.3 hold. Then the uniform
equi-boundedness properties of the comparison equation imply the corresponding initial
time difference (h0, h)-uniform equi-boundedness properties of the system y(t, τ0, y0) of
(2.3) with respect to the solution x(t− η, t0, x0), where x(t, t0, x0) is any solution of the
system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+ and η = τ0 − t0 ∈ R+.

Proof. The theorem can be proved using arguments similar to that used in the proof of the
Theorem 3.3. There exists a β1 = β1 (α), independent of τ0, by considering the uniform
equi-boundedness properties of the comparison equation (3.3). We can choose β = β (α)
to be independent of τ0, then considering Definition 2.7 the proof is complete. �

3.5. Theorem. Let the assumptions of Theorem 3.3 hold. Then the equi-attractiveness
in the large properties of the comparison equation imply the corresponding initial time
difference (h0, h)-equi-attractiveness in the large properties of the system y(t, τ0, y0) in
(2.3) with respect to the solution x(t− η, t0, x0), where x(t, t0, x0) is any solution of the
system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+ and η = τ0 − t0 ∈ R+.

Proof. By using the assumption (ii) in Theorem 3.3, the proof is very much similar to
the proof of Theorem 3.3. Since V is h-positive definite, there exists a λ ∈ (0, ρ] and
b ∈ K such that

(3.11) b (h (t, w)) ≤ V (t, w) , (t, w) ∈ S (h, λ) .

On the other hand, since V is h0-decresent and h0 is uniformly finer than h, there exists
a λ0 = ϕ−1 (λ) > 0 and a function a ∈ K such that for (τ0, y0 − x0) ∈ S (h0, λ0),

(3.12) h (τ0, y0 − x0) < λ and V (τ0, y0 − x0) ≤ a (h0 (τ0, y0 − x0)) ,
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and hence

(3.13) b (h (τ0, y0 − x0)) ≤ V (τ0, y0 − x0) ≤ a (h0 (τ0, y0 − x0))

for (τ0, y0 − x0) ∈ S (h0, λ0).

Let 0 < α ≤ λ0. Set α1 = a (α), and suppose that the solution of the comparison
system (3.3) is equi-attractive in the large. Then, given a (α) , b (ǫ) > 0 and τ0 ∈ R+,
there exists a number T = T (τ0, ǫ, α) > 0 such that

(3.14) u0 < α1 implies that u(t, τ0, u0) < b (ǫ) for all t ≥ τ0 + T,

where u(t, τ0, u0) is any solution of comparison equation (3.3). Set u0 = V (τ0, y0 − x0).
Then, by Lemma 3.2 we have

(3.15) V (t, y(t) − x̃(t)) ≤ r(t, τ0, u0), t ≥ τ0,

where r(t) = r(t, τ0, u0) is the maximal solution of (3.3) for t ≥ τ0.

Let h0 (τ0, y0 − x0) < α. Then (3.13) shows that

(3.16) h (τ0, y0 − x0) < ǫ

since α1 < b(ǫ). We claim that h(t, y(t) − x̃(t)) < ǫ for all t ≥ τ0 + T .

Suppose now that there exists a sequence {tk}, tk ≥ τ0 + T and tk → ∞ as k → ∞,
such that

(3.17) h(tk, y(tk) − x̃(tk)) ≥ ǫ,

where y(t) − x̃(t) is any solution of (2.4) such that h0 (τ0, y0 − x0) < ǫ. This leads to a
contradiction from (3.11), (3.14), (3.15) and (3.17). Hence,

b(ǫ) ≤ V (tk, y(tk) − x̃(tk)) ≤ r(tk, τ0, u0) < b(ǫ),

which establishes that h0 (τ0, y0 − x0) < α implies h(t, y(t) − x̃(t)) < ǫ for t ≥ τ0 +
T (τ0, ǫ, α). �

3.6. Theorem. Let the assumptions of the Theorem 3.3 hold. Then the uniform equi-
attractiveness in the large properties of the comparison equation imply the corresponding
initial time difference (h0, h)-uniform equi-attractiveness in the large properties of the
system y(t, τ0, y0) of (2.3) with respect to the solution x(t− η, t0, x0), where x(t, t0, x0) is
any solution of the system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+ and η = τ0 − t0 ∈ R+.

Proof. Theorem 3.6 can be proved using arguments similar to those used in the proof
of Theorem 3.5. There exists a T = T (ǫ, α), independent of τ0, by considering the
uniform equi-attractiveness in the large properties of the comparison equation (3.3).
Then, considering Definition 2.8 the proof is complete. �

3.7. Theorem. Let the assumptions of Theorem 3.3 hold, namely

(i) h0, h ∈ Γ, h(t, w) ≤ ϕ (h0(t, w)), for each (t, w) ∈ R+×R
n and ϕ ∈ K;

(ii) V (t, w) ∈ C[R+×R
n,R+] and V (t, w) is locally Lipschitzian in w, V is h-positive

definite and h0-decresent;
(iii) G ∈ C[R+×R,R+], G(t, 0) ≡ 0, (t, w) ∈ S(h, ρ), and

D
+
V (t,w) ≤ G(t, V (t, w)) for t ≥ τ0.

Then the equi-Lagrange stability of the comparison system assures the initial time dif-
ference (h0, h)-equi-Lagrange stability of the system y(t, τ0, y0) of (2.3) with respect to
the solution x(t − η, t0, x0), where x(t, t0, x0) is any solution of the system (2.1) for
t ≥ τ0 ≥ t0, t0 ∈ R+, and η = τ0 − t0 ∈ R+.
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Proof. By using Theorem 3.3 and Theorem 3.5 we have respectively the initial time
difference (h0, h)-equi-boundedness and initial time difference (h0, h)-equi-attractiveness
in the large of the system y(t, τ0, y0) of (2.3) with respect to the solution x(t− η, t0, x0).
Therefore, we have obtained initial time difference (h0, h)-equi-Lagrange stability. This
completes the proof. �

3.8. Theorem. Let the assumptions of the Theorem 3.3 hold. Then the uniform equi-
Lagrange stability properties of the comparison equation imply the corresponding is initial
time difference (h0, h)-uniformly equi-Lagrange stability properties of the system y(t, τ0, y0)
of (2.3) with respect to the solution x(t − η, t0, x0), where x(t, t0, x0) is any solution of
the system (2.1) for t ≥ τ0 ≥ t0, t0 ∈ R+ and η = τ0 − t0 ∈ R+.

Proof. By using Theorems 3.4 and 3.6, we have the initial time difference (h0, h)-uniform
equi-boundedness and initial time difference (h0, h)-uniform equi-attractiveness in the
large of the system y(t, τ0, y0) of (2.3) with respect to the solution x(t−η, t0, x0), respec-
tively. Therefore, we have obtained initial time difference (h0, h)-uniform equi-Lagrange
stability. This completes the proof. �

4. Boundedness and Lagrange stability in terms of two measures
with initial time difference

The main result in this section is a new initial time difference comparison result in
terms of Lyapunov-like functions [3, 4, 7, 9]. This is presented in Theorems 4.1, 4.2 and
4.3, that are used in the next section to obtain an initial time difference boundedness
and Lagrange stability result in terms of two measures.

4.1. Theorem. Assume that

(i) V ∈ C[R+ × R
n,RN

+ ], V (t, z) and ‖ω(t, s, z)‖ are locally Lipschitz in z for each
(t, s), where ω (t) = ω(t, τ0, y0 − x0) is the solution of (2.4) and for t ≥ s ≥ τ0

and
∼
x(t) = x (t− η, t0, x0), where x(t, t0, x0) is the solution of the system (2.1),

y(t) = y (t, τ0, y0) is the solution of (2.3), and z(t) = y(t) −
∼
x(t);

(ii) For

D∗−V (t, s, z) = lim
h→0−

inf
1

h
[T (t, s, h, ω, F − f)] ,

where T = V (s+h, ω(t, s+h, z+h(F (s, y)−
∼

f (s,
∼
x))))−V (s, ω (t, s, z)) we have

(4.1) D∗−V (t, s, z) ≤ g (t, s, V (s, ω (t, s, z))) ;

(iii) g ∈ C
[

R
2
+ × R

N
+ ,R

N
]

, g (t, s, u) is quasimonotone nondecreasing in u for each
(t, s) and r (t, s, τ0, y0) is the maximum solution of

(4.2)
du(s)

ds
= g (t, s, u (s)) , u(τ0) = u0 ≥ 0

existing for τ0 ≤ s ≤ t <∞.

Then

(4.3) V (t, z(t, τ0, y0 − x0)) ≤ r0 (t, τ0, V (τ0, ω(t, τ0, y0 − x0))) ,

whenever V (τ0, ω(t, τ0, y0 − x0)) = u0, where r0 (t, τ0, u0) = r (t, t, τ0, u0).

Proof. Let us set m(t, s) = V (s, ω (t, s, z(s))). Then by using the assumptions (i) and
(ii), we have the differential inequality

D∗−m(t, s) ≤ g (t, s,m (t, s)) for τ0 ≤ s ≤ t.
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This yields, by a comparison result in [2, Volume 1, Theorem 1.7.1],

m(t, s) ≤ r (t, s, τ0, V (τ0, ω(t, τ0, y0 − x0))) for τ0 ≤ s ≤ t.

If we choose s = t, then we get the desired estimate in (4.3) to complete the proof. �

4.2. Theorem. Under the assumptions of Theorem 4.1 for N = 1 and g (t, s, u) ≡ 0 we
have

(4.4) V (t, z(t, τ0, y0 − x0)) ≤ V (τ0, ω(t, τ0, y0 − x0)) , t ≥ τ0.

Proof. Integrating both sides of the inequality D∗−m(t, s) ≤ g (t, s,m (t, s)) for τ0 ≤ s ≤
t, obtained from the proof of Theorem 4.1, and using g (t, s, u) ≡ 0 we obtain

∫ t

τ0

D∗−m(t, s)ds = V (t, w(t, t, z(t))) − V (τ0, ω(t, τ0, z(τ0))) ≤ 0.

Therefore, we have

V (t, z(t, τ0, y0 − x0)) ≤ V (τ0, ω(t, τ0, y0 − x0)) for t ≥ τ0. �

4.3. Theorem. We assume

(i) D∗−V (t, s, z) ≤ −c (h1 (s, ω(t, s, z))) , τ0 ≤ s ≤ t <∞, where

c ∈ K = {φ ∈ C[R+,R+] such that φ(0) = 0 and φ(s) is increasing with s},

and h1 ∈ C[R+ × R
n,R+].

Then for t ≥ τ0,

(4.5) V (t, z(t, τ0, y0 − x0)) ≤ V (τ0, ω(t, τ0, y0 − x0)) −

∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds

for t ≥ s ≥ τ0.

Proof. Setting

W (s, ω(t, s, z(s))) ≡ V (s, ω(t, s, z(s))) +

∫ s

τ0

c (h1 (σ, ω(t, σ, z(σ)))) dσ,

taking the Dini derivative of both sides and using assumption (i), we have

D∗−W (t, s, z(s)) = D∗−V (t, s, z(s)) + c (h1 (s, ω(t, s, z(s))))

− c (h1 (τ0, ω(t, τ0, y0 − x0)))

≤ D∗−V (t, s, z(s)) + c (h1 (s, ω(t, s, z(s))))

≤ −c (h1 (s, ω(t, s, z(s)))) + c (h1 (s, ω(t, s, z(s))))

= 0.

Therefore, we obtain

D∗−W (t, s, z(s)) ≤ 0.

Then, from Theorem 4.2 we have

W (t, z(t)) ≤W (τ0, ω(t))

for t ≥ τ0, which implies, by the definition of W , that

V (t, z(t, τ0, y0 − x0)) +

∫ t

τ0

c (h1 (σ, ω(t, σ, z(σ)))) dσ ≤ V (τ0, ω(t, τ0, y0 − x0))

for t ≥ τ0, which is (4.5). That is complete the proof. �
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Our main result uses Theorems 4.1, 4.2 and 4.3 to establish a boundedness and La-
grange stability criteria with initial time difference in terms of two measures. We show
that if the solution y (t, τ0, y0) of the system (2.3) is initial time difference (h0, h0)-
bounded and Lagrange stable with respect to the solution x (t− η, t0, x0), then the solu-
tion y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h)-bounded and Lagrange
stable with respect to the solution x (t− η, t0, x0).

4.4. Theorem. Assume that

(i) V ∈ C[R+ × R
n,R+], V (t, z) and ‖ω (t, s, z) ‖ are locally Lipschitz in z for each

(t, s), where ω (t) = ω(t, τ0, y0−x0) is the solution of (2.4) and z(t, τ0, y0−x0) =

y(t) −
∼
x(t) for t ≥ τ0;

(ii)
D∗−V (t, s, z) = lim

h→0−
inf

1

h
[T (t, s, h, ω, F − f)]

≤ −c (h1 (s, ω(t, s, z(s))))

in S (h, ρ) = {(t, z) : h (t, z) < ρ for some h ∈ Γ and ρ > 0};

(iii) b (h (t, z)) +
∫ t

τ0
c (h1 (s, ω(t, s, z(s)))) ds ≤ V (t, z) in S (h, ρ) and V (t, z) ≤

a1 (t, h1 (t, z)) + a0 (t, h0 (t, z)) in S (h1, ρ) ∩ S(h2, ρ), where b ∈ K and a1, a0 ∈
CK;

(iv) h0 is finer than h1, that is, there exists a function φ ∈ K such that h1 (t, z) ≤
φ (h0 (t, z)) whenever h0 (t, z) ≤ ρ0, for some ρ0 with φ (ρ0) ≤ ρ;

(v) The solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h0)-
bounded with respect to the solution x (t− η, t0, x0).

Then the solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h)-bounded
with respect to the solution x (t− η, t0, x0).

Proof. Given 0 < α < ρ and the existence of ρ0 with φ (ρ0) ≤ ρ, let us choose ρ0 >

η (τ0, α) > 0, then

a0 (t, h0 (t, z (t))) <
b (α)

2
whenever h0 (t, z (t)) < η, t ≥ τ0.

By considering hypothesis (v), there exists a β1 = β1 (τ0, η) such that

h0 (t, z (t)) < η provided h0 (τ0, y0 − x0) < β1.

Thus, for t ≥ τ0,

(4.6) a0 (t, h0 (t, z (t))) <
b (α)

2
whenever h0 (τ0, y0 − x0) < β1.

Similarly, we may choose ρ0 > σ (τ0, α) > 0 such that

h1 (t, z (t)) < σ implies a1 (t, h1 (t, z(t))) <
b (α)

2

for t ≥ τ0. Since there exists a β2 = β2 (τ0, σ) such that h0 (t, z (t)) < φ−1 (σ) whenever
h0 (τ0, y0 − x0) < β2 for h0 finer than h1. We have h1 (t, z(t)) ≤ φ(h0 (t, z (t))) < σ.
Then, for t ≥ τ0,

(4.7) a1 (t, h1 (t, z (t))) <
b (α)

2
provided h0 (τ0, y0 − x0) < β2.

We want to show that the solution y(t, τ0, y0) of the system (2.3) is initial time difference
(h0, h)-bounded with respect to the solution x (t− η, t0, x0), that is

(4.8) h (t, z (t)) < α whenever h0 (τ0, y0 − x0) < β for t ≥ τ0,
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where β = min {β1, β2}. And, in view of Theorem 4.3, (4.6), (4.7) and the hypotheses
(ii) and (iii),

b (h (t, z (t))) +

∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds

≤ V (t, z (t))

≤ V (τ0, ω(t, τ0, y0 − x0)) −

∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds

≤ V (τ0, ω(t, τ0, y0 − x0)) +

∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds

≤ a1 (τ0, h1 (τ0, ω(t1, τ0, y0 − x0))) + a0 (τ0, h0 (τ0, ω(t1, τ0, y0 − x0)))

+

∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds

< b (α) +

∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds,

implying h (t, z (t)) < α whenever h0 (τ0, y0 − x0) < β for t ≥ τ0. Thus, the solu-
tion y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h)-bounded with re-
spect to the solution x (t− η, t0, x0). If (4.8) is not true, then there exist solutions
∼
x(t) = x (t− η, t0, x0), where x (t, t0, x0) is the solution of (2.1) and y(t) = y(t, τ0, y0) of
(2.3), and t1 > τ0 such that

h0 (τ0, y0 − x0) < β, h (t1, z (t1)) = α and h (t, z (t)) ≤ α

for all t ∈ [τ0, t1] where z(t) = y(t) −
∼
x (t) for t ≥ τ0. Applying Theorems 4.2 4.3 yields

V (t, z(t)) ≤ V (τ0, ω(t, τ0, y0 − x0)) −

∫ t

τ0

c (h1 (s, ω(t1, s, z(s)))) ds, t ∈ [τ0, t1] .

At t = t1,

b (α) +

∫ t

τ0

c (h1 (s, ω(t1, s, z(s)))) ds

≤ V (t1, z(t1))

≤ V (τ0, ω(t1, τ0, y0 − x0)) −

∫ t

τ0

c (h1 (s, ω(t1, s, z(s)))) ds

≤ a1 (τ0, h1 (τ0, ω(t1, τ0, y0 − x0))) + a0 (τ0, h0 (τ0, ω(t1, τ0, y0 − x0)))

+

∫ t

τ0

c (h1 (s, ω(t1, s, z(s)))) ds

< b (α) +

∫ t

τ0

c (h1 (s, ω(t1, s, z(s)))) ds

by assumption (iii), (4.6) and (4.7). This contradiction proves that the solution y(t, τ0, y0)
of the system (2.3) on (τ0, y0) is initial time difference (h0, h)-bounded with respect to
the solution x (t− η, t0, x0). �

4.5. Theorem. Assume that

(i) V ∈ C[R+ × R
n,R+], V (t, z) and ‖ω (t, s, z) ‖ are locally Lipschitz in z for each

(t, s), where ω (t) = ω(t, τ0, y0−x0) is the solution of (2.4) and z(t, τ0, y0−x0) =

y(t) −
∼
x(t) for t ≥ τ0;
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(ii)
D∗−V (t, s, z) = lim

h→0−
inf

1

h
[T (t, s, h, ω, F − f)] ,

D∗−V (t, s, z) ≤ −c (h1 (s, ω(t, s, z(s))))

in S (h, ρ) = {(t, z) : h (t, z) < ρ for some h ∈ Γ and ρ > 0};

(iii) b (h (t, z)) +
∫ t

τ0
c (h1 (s, ω(t, s, z(s)))) ds ≤ V (t, z) in S (h, ρ) and V (t, z) ≤

a1 (t, h1 (t, z)) + a0 (t, h0 (t, z)) in S (h1, ρ) ∩ S(h2, ρ), where b ∈ K and a1, a0 ∈
CK;

(iv) h0 is finer than h1, that is, there exists a function φ ∈ K such that h1 (t, z) ≤
φ (h0 (t, z)) whenever h0 (t, z) ≤ ρ0, for some ρ0 with φ (ρ0) ≤ ρ;

(v) The solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h0)-
equi-attractive in the large with respect to the solution x (t− η, t0, x0).

Then the solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h)-equi-
attractive in the large with respect to the solution x (t− η, t0, x0).

Proof. Given 0 < ǫ < ρ and the existence of a ρ0 with φ (ρ0) ≤ ρ, let us choose ρ0 >

η (τ0, ǫ) > 0. Then

a0 (t, h0 (t, z (t))) <
b (ǫ)

2
whenever h0 (t, z (t)) < η, t ≥ τ0.

By hypothesis (v), there exists a β1 and a positive number T1 = T1 (τ0, η, β1) such that

h0 (t, z (t)) < η provided h0 (τ0, y0 − x0) < β1, t ≥ τ0 + T1.

Thus, for t ≥ τ0 + T1,

(4.9) a0 (t, h0 (t, z (t))) <
b (ǫ)

2
whenever h0 (τ0, y0 − x0) < β1.

Similarly, we may choose ρ0 > σ (τ0, ǫ) > 0 such that

h1 (t, z (t)) < σ implies a1 (t, h1 (t, z(t))) <
b (ǫ)

2

for t ≥ τ0. Since there exists a β2 and a positive number T2 = T2 (τ0, σ, β2) such that
h0 (t, z (t)) < φ−1 (σ) = σ∗ whenever h0 (τ0, y0 − x0) < β2 for h0 finer than h1. We have
h1 (t, z(t)) ≤ φ(h0 (t, z (t))) < σ. Then, for t ≥ τ0 + T2,

(4.10) a1 (t, h1 (t, z (t))) <
b (ǫ)

2
provided h0 (τ0, y0 − x0) < β2.

We want to show that the solution y(t, τ0, y0) of the system (2.3) is initial time difference
(h0, h)-equi-attractive in the large with respect to the solution x (t− η, t0, x0), that is

(4.11) h (t, z (t)) < ǫ whenever h0 (τ0, y0 − x0) < β for t ≥ τ0 + T
⋆
,

where β = min {β1, β2} and T ⋆ = min {T1, T2}.

Suppose now that there exists a sequence {tk}, tk ≥ τ0 + T ⋆ and tk → ∞ as k → ∞
such that

(4.12) h(tk, z(tk)) ≥ ǫ,
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where z(t) = y(t)−
∼
x (t) is any solution of (2.4) for t ≥ τ0 such that h0 (τ0, y0 − x0) < β.

Now from the assumption (iii) in Theorem 4.3, (4.9), (4.10) and (4.12), we have

b(ǫ) +

∫ t

τ0

c (h1 (s, ω(tk, s, z(s)))) ds

≤ V (tk, z(tk))

≤ V (τ0, ω(t, τ0, y0 − x0)) −

∫ tk

τ0

c (h1 (s, ω(tk, s, z(s)))) ds

≤ a1 (τ0, h1 (τ0, ω(tk, τ0, y0 − x0))) + a0 (τ0, h0 (τ0, ω(tk, τ0, y0 − x0)))

+

∫ t

τ0

c (h1 (s, ω(tk, s, z(s)))) ds

< b(ǫ) +

∫ t

τ0

c (h1 (s, ω(tk, s, z(s)))) ds,

which is a contradiction that establishes h0 (τ0, y0 − x0) < β implies h(t, y(t)− x̃(t)) < ǫ

for t ≥ τ0 + T ∗ (τ0, ǫ, β). �

4.6. Theorem. Assume that

(i) V ∈ C[R+ × R
n,R+], V (t, z) and ‖ω (t, s, z) ‖ are locally Lipschitz in z for each

(t, s), where ω (t) = ω(t, τ0, y0−x0) is the solution of (2.4) and z(t, τ0, y0−x0) =

y(t) −
∼
x(t) for t ≥ τ0;

(ii)
D∗−V (t, s, z) = lim

h→0−
inf

1

h
[T (t, s, h, ω, F − f)] ,

D∗−V (t, s, z) ≤ −c (h1 (s, ω(t, s, z(s))))

in S (h, ρ) = {(t, z) : h (t, z) < ρ for some h ∈ Γ and ρ > 0};

(iii) b (h (t, z)) +
∫ t

τ0
c (h1 (s, ω(t, s, z(s)))) ds ≤ V (t, z) in S (h, ρ) and V (t, z) ≤

a1 (t, h1 (t, z)) + a0 (t, h0 (t, z)) in S (h1, ρ) ∩ S(h2, ρ), where b ∈ K and a1, a0 ∈
CK;

(iv) h0 is finer than h1, that is, there exists a function φ ∈ K such that h1 (t, z) ≤
φ (h0 (t, z)) whenever h0 (t, z) ≤ ρ0, for some ρ0 with φ (ρ0) ≤ ρ;

(v) The solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h0)-
equi-Lagrange stable with respect to the solution x (t− η, t0, x0).

Then the solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h)-equi-
Lagrange stable with respect to the solution x (t− η, t0, x0).

Proof. By (v) the solution y(t, τ0, y0) of the system (2.3) is initial time difference (h0, h0)-
equi-bounded and initial time difference (h0, h0)-equi-attractive in the large with respect
to the solution x(t−η, t0, x0), so by Theorem 4.4 and Theorem 4.5, respectively, it is initial
time difference (h0, h)-equi-bounded and initial time difference (h0, h)-equi-attractive in
the large with respect to the solution x(t−η, t0, x0). Thus, the solution y(t, τ0, y0) is initial
time difference (h0, h)-equi-Lagrange stable with respect to the solution x (t− η, t0, x0),
as required. �

5. Examples and applications

In this section, we give two examples to illustrate how the main results of Section 4
might be applied.
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5.1. Example. Let us consider the nonlinear vector differential system

x
′ =

[

x′
1

x′
2

]

=

[

−x1 − y2
1x1

−x2 exp (−3t) + x2 (2 cosh(t) − 1) − x2y
2
2

]

for t ≥ t0,

[

x1 (t0)
x2 (t0)

]

=

[

x01

x02

]

= x0, where

[

x1(t0)
x2(t0)

]

=

[

x1(t0, t0, x0)
x2(t0, t0, x0)

]

and its perturbed system

y
′ =

[

y′1
y′2

]

=

[

−y1 − y2
1y1 + (−1 + sin (t) − exp (−4t)) (y1 − x1)

−y2 (1 − 2 cosh(t)) − y2
(

exp (−4t) + y2
2

)

+
(

y4
2 exp (−3t) + t2

)

(x2 − y2)

]

for t ≥ τ0,
[

y1(τ0)
y2(τ0)

]

=

[

y01
y02

]

= y0 where

[

y1(τ0)
y2(τ0)

]

=

[

y1(τ0, τ0, y0)
y2(τ0, τ0, y0)

]

,

where the perturbation term R(t, x, y) is

R(t, x, y) =

[

(−1 + sin(t) − exp (−4t))(y1 − x1)
(y4

2 exp (−3t) + t2)(x2 − y2)

]

for t ≥ τ0.

Let us choose the Lyapunov function V (t, y − x̃) = (1 + 2 exp (t)) ‖ y − x̃ ‖2
2, where

‖ y − x̃ ‖2 is the norm defined by

‖ y − x̃ ‖2
2= (y − x̃) · (y − x̃) = |y1 − x̃1|

2 + |y2 − x̃2|
2
.

Let h0 (t, z) =‖ z ‖1, h1 (t, z) =‖ z ‖2 and h (t, z) =‖ z ‖2, and φ (h0 (t, z)) = h0 (t, z).
Let a1 (t, h1 (t, z)) = (2 exp (2t)) ‖ y − x̃ ‖2

2, and let b(h (t, z)), a0(t, h0 (t, z)) be defined
by

b(h (t, z)) = b(‖ y − x̃ ‖2) =‖ y − x̃ ‖2
2= |y1 − x̃1|

2 + |y2 − x̃2|
2
,

a0(t, h0 (t, z)) = a0(t, ‖ y − x̃ ‖1) = (1 + 2 exp (t)) ‖ y − x̃ ‖2
1

= (1 + 2 exp (t)) (|y1 − x̃1| + |y2 − x̃2|)
2
,

so that we have

b(‖ y − x̃ ‖2) ≤ V (t, y − x̃) ≤ a(‖ y − x̃ ‖2)

≤ a0(t, ‖ y − x̃ ‖1) + a1 (t, ‖ y − x̃ ‖2) ,

h1 (t, z) ≤ φ (h0 (t, z)) .

On the other hand
∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds ≤ V (t, z) − b(h (t, z))

≤
(

1 + 2et
)

‖ y − x̃ ‖2
2 − ‖ y − x̃ ‖2

2 .

In this example, we choose H (t, ω (t)) = 0. Then D∗−V = D−V = D+V = V ′. Thus, V
is positive definite and decrescent. The Dini-like derivative of V (t, y − x̃) is

D∗−V (t, y − x̃) = 2 (1 + 2 exp (t))
[

(y1 − x̃1)
(

y
′
1 − x̃

′
1

)

+ (y2 − x̃2)
(

y
′
2 − x̃

′
2

)]

+ 2 exp (t)
(

|y1 − x̃1|
2 + |y2 − x̃2|

2)

≤ 6 exp (t)
[

(y1 − x̃1)
(

y
′
1 − x̃

′
1

)

+ (y2 − x̃2)
(

y
′
2 − x̃

′
2

)]

+ 2 exp (t)
(

| y1 − x̃1 |2 + | y2 − x̃2 |2
)
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≤ −6 exp (t)
[

| y1 − x̃1 |2 + | y2 − x̃2 |2 (−1 + 2 cosh(t))
]

+ 2 exp (t)
(

|y1 − x̃1|
2 + |y2 − x̃2|

2)

≤ −6 exp (t)
(

‖ y − x̃ ‖2
2

)

+ 2 exp (t) (‖ y − x̃ ‖2
2)

= −4 exp (t)
(

‖ y − x̃ ‖2
2

)

= −c (h1 (s, ω(t, s, z(s)))) ,

and

D∗−V (t, y − x̃) = 2 (1 + 2 exp (t))
[

(y1 − x̃1)
(

y
′
1 − x̃

′
1

)

+ (y2 − x̃2)
(

y
′
2 − x̃

′
2

)]

+ 2 exp (t)
(

|y1 − x̃1|
2 + |y2 − x̃2|

2)

≤ −2 (1 + 2 exp (t))
[

(y1 − x̃1)
2 + (y2 − x̃2)

2 (−1 + 2 cosh(t))
]

+ (1 + 2 exp (t))
(

|y1 − x̃1|
2 + |y2 − x̃2|

2)

≤ −2 (1 + 2 exp (t)) ‖ y − x̃ ‖2
2 +(1 + 2 exp (t)) ‖ y − x̃ ‖2

2

= −V (t, y − x̃) ≤ 0.

And we have

D
+
∗ V (t, y − x̃) ≤ −V (t, y − x̃).

We use Theorem 3.7 to establish assumption (v). We apply Theorem 3.7 with the com-
parison equation (3.3), that is the differential equation

u
′ = −u, u(τ0) =‖ y0 − x̃0 ‖ for t ≥ τ0.

Then the solution y(t, τ0, y0) of system (2.3) is initial time difference (h0, h0)-Lagrange
stable with respect to the solution x(t− η, t0, x0), and the assumption (v) is satisfied in
Theorem 4.6. Applying Theorem 4.6 we have that the solution y(t, τ0, y0) of system (2.3)
is initial time difference (h0, h)-Lagrange stable with respect to the solution x(t−η, t0, x0).

In the following example we investigate the Boundedness and Lagrange stability of a
nonlinear vector differential system as in the previous example. Then we shall support
this idea with some numerical computation and graphics.

5.2. Example. Let us consider the nonlinear vector differential system

x
′ =

[

x′
1

x′
2

]

=

[

−x2 +
(

1 − x2
1 − x2

2

)

x1 exp (−t)
x1 +

(

1 − x2
1 − x2

2

)

x2 sin2(t)

]

for t ≥ t0,

[

x1 (t0)
x2 (t0)

]

=

[

x01

x02

]

= x0, where

[

x1(t0)
x2(t0)

]

=

[

x1

(

t0, t0, x0

)

x2(t0, t0, x0)

]

,

and its perturbed system

y
′ =

[

y′1
y′2

]

=

[

−y2 − (−y2
1 − y2

2 + 2x1y1 + 2x2y2) exp (−t) (x1 − y1) + (1 − x2
1−x

2
2)y1 exp (−t)

y1 − (−y2
1 − y2

2 + 2x1y1 + 2x2y2) (x2 − y2) sin2(t) + (1 − x2
2−x

2
1)y2 sin2(t)

]

for t ≥ τ0,
[

y1
(

τ0
)

y2(τ0)

]

=

[

y01
y02

]

= y0, where

[

y1
(

τ0
)

y2
(

τ0
)

]

=

[

y1
(

τ0, τ0, y0
)

y2
(

τ0, τ0, y0
)

]

,

where the perturbation term R(t, x, y) is

R(t, x, y) =

[

− exp(−t)
(

x1 − y1
)(

− y2
1 − y2

2 + 2x1y1 + 2x2y2
)

− (x2 − y2) sin2(t)
(

− y2
1 − y2

2 + 2x1y1 + 2x2y2
)

]
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for t ≥ τ0. Let us choose the Lyapunov function V (t, y − x̃) = (−1+ ‖ y − x̃ ‖2
2)

2, where
‖ y − x̃ ‖2 is the norm defined by

‖ y − x̃ ‖2
2= (y − x̃) · (y − x̃) = |y1 − x̃1|

2 + |y2 − x̃2|
2
.

Let h0 (t, z) =‖ z ‖1, h1 (t, z) = |−1+ ‖ y − x̃ ‖2|, h(t, z) =
(

− 1+ ‖ y − x̃ ‖2
2

)

and

φ (h0(t, z)) = h2
0(t, z). Let a1 (t, h1 (t, z)) = exp (t) (−1+ ‖ y − x̃ ‖2), and let b and a0 be

defined by

b(h (t, z)) = b
(

− 1+ ‖ y − x̃ ‖2

)

= (−1+ ‖ y − x̃ ‖2
2) = −1 + |y1 − x̃1|

2 + |y2 − x̃2|
2
,

a0

(

t, h0(t, z)
)

= a0

(

t, ‖ y − x̃ ‖1

)

=
(

exp (t)+ ‖ y − x̃ ‖2
1

)2
,

so that we have

b(‖ y − x̃ ‖2) ≤ V (t, y − x̃) ≤ a(‖ y − x̃ ‖2) ≤ a0(t, ‖ y − x̃ ‖1) + a1 (t, ‖ y − x̃ ‖2) ,

h1 (t, z) ≤ φ (h0 (t, z)) .

On the other hand
∫ t

τ0

c (h1 (s, ω(t, s, z(s)))) ds ≤ V (t, z) − b(h(t, z))

≤
[

(−1+ ‖ y − x̃ ‖2
2)

2 −
(

− 1+ ‖ y − x̃ ‖2
2

)]

In this example, we choose H (t, ω (t)) = 0, then D∗−V = D−V = D+V = V ′. Thus, V
is positive definite and decrescent. The Dini-like derivative of V (t, y − x̃) is

D∗−V (t, y − x̃)

= 2
[

−1 + |y1 − x1|
2 + |y2 − x2|

2
]

2
[

(y1 − x1)
(

y
′
1 − x

′
1

)

+ (y2 − x2)
(

y
′
2 − x

′
2

)]

= 2
[

−1 + |y1 − x1|
2 + |y2 − x2|

2
]

2 (x1 − y1)

×
{

−(x2 − y2) + (1 − (x1 − y1)
2 − (x̃2 − y2)

2)(x1 − y1) exp (−t)
}

+ (y2 − x2)
{

(x1 − y1) + (1 − (x1 − y1)
2 − (x2 − y2)

2)(x2 − y2) sin2(t)
}

= −4
[

−1+ ‖ y − x̃ ‖2
2

]2 [

(x1 − y1)
2 exp (−t) + (x2 − y2)

2 sin2(t)
]

≤ −4αV (t, y − x̃) ≤ 0,

α = max
t≥t0≥0

[

(x1 − y1)
2 exp (−t) + (x2 − y2)

2 sin2(t)
]

> 0. From this inequality,

D∗−V (t, y − x̃)

= −4
[

−1 + |y1 − x1|
2 + |y2 − x2|

2]2
[

(

x1 − y1
)2

exp(−t) +
(

x2 − y2
)2

sin2(t)
]

≤ −4
[

−1 + |y1 − x1|
2 + |y2 − x2|

2]2 [

exp(−t) + sin2(t)
]

= −c (h1 (s, ω(t, s, z(s)))) .

Choosing the function c (h1 (s, ω(t, s, z(s)))) to be 4
[

exp(−t) + sin2(t)
]

h2
1(t, z), where

h1(t, z) = −1 + ‖z‖2, we have

D
+
∗ V (t, y − x̃) ≤ −4αV (t, y − x̃) for α > 0.

Applying Theorem 3.7 with the comparison equation (3.3), u′ = −4αu, u(τ0) =‖ y0−x̃0 ‖
for t ≥ τ0, we see that the solution y(t, τ0, y0) of system (2.3) is initial time difference
(h0, h0)-Lagrange stable with respect to the solution x(t − η, t0, x0). Hence, by Theo-
rem 4.6 we have that y(t, τ0, y0) is initial time difference (h0, h)-Lagrange stable with
respect to the solution x(t− η, t0, x0).
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6. Numerical solution of a perturbed system with respect to an
unperturbed system with ITD

In this section we focus on numerical techniques that could be applied to obtain
an approximation to the solution of a perturbed system with respect to an unperturbed
system in terms of boundedness and Lagrange stability [2, 3, 4] with initial time difference
[8, 9, 10, 11]. Although one of these numerical techniques, namely Euler’s formula, is
attractive for its simplicity, it is seldom used in serious calculations. On the other hand,
the improved Euler method gives significantly greater accuracy than Euler’s method.
However, one of the most popular as well as the most accurate numerical procedure used
in obtaining approximate solutions to perturbed systems with respect to unperturbed
systems in terms of boundedness and Lagrange stability with initial time difference is
the fourth-order Runge-Kutta method. The main reason for resorting to computers is
the non-availability of explicit solutions for a large class of nonlinear coupled differential
systems started with different initial time and initial positions. It is impossible to use the
Mathematical software directly to obtain the approximate solutions of coupled perturbed
and unperturbed systems and their norms, respectively.

6.1. Example. Let us consider the fourth-order Runge-Kutta method with h = 0.2 used
to obtain a four-decimal-place approximation to the solutions of the nonlinear initial value
problem of the vector differential system of Example 5.2 given by

x
′ =

[

x′
1

x′
2

]

=

[

−x2 + (1 − x2
1−x

2
2)x1 exp (−t)

x1 + (1 − x2
1−x

2
2)x2 sin2(t)

]

for t ≥ 0.2,

[

x1 (t0)
x2 (t0)

]

=

[

x01

x02

]

= x0, where

[

x1(0.2)
x2(0.2)

]

=

[

x1(0.2, 0.2, 0.9801)
x2(0.2, 0.2, 0.1987)

]

=

[

0.9801
0.1987

]

,

and its nonlinear perturbed system

y
′ =

[

y′1
y′2

]

=

[

−y2 − (−y2
1 − y2

2 + 2x1y1 + 2x2y2) exp (−t) (x1 − y1) + (1 − x2
1−x

2
2)y1 exp (−t)

y1 − (−y2
1 − y2

2 + 2x1y1 + 2x2y2) (x2 − y2) sin2(t) + (1 − x2
2 − x2

1)y2 sin2(t)

]

for t ≥ 0.4,
[

y1(τ0)
y2(τ0)

]

=

[

y01
y02

]

= y0, where

[

y1(0.4)
y2(0.4)

]

=

[

y1(0.4, 0.4, 1.8421)
y2(0.4, 0.4, 0.7788)

]

=

[

1.8421
0.7788

]

,

and the nonlinear perturbation term R(t, x, y) is

R(t, x, y) =

[

− exp(−t)
(

x1 − y1
)(

− y2
1 − y2

2 + 2x1y1 + 2x2y2
)

− (x2 − y2) sin2(t)
(

− y2
1 − y2

2 + 2x1y1 + 2x2y2
)

]

for t ≥ 0.4. We compare the results obtained from using the fourth-order Runge-Kutta,
second-order Runge-Kutta (improved Euler) and Euler methods over the interval [0.2, 6]
with step sizes h = 0.2 and h = 0.01. We have used Mathematical Software to obtain
graphs of the approximate solutions on the interval [0.2, 6].
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Table 1. Unperturbed and Perturbed Systems using the

Runge-Kutta Method with Step Size h=0.2.

Time Unperturbed Unperturbed Unperturbed Unperturbed Exact sol.

Exact Sol. Runge-Kutta Sol. Abs. Error Rel. Error ITD

tn X1 X2 X1 X2 X1 X2 X1 X2 Norm(Y −X)

0.20 0.9801 0.1987 0.9801 0.1987 0.0000 0.0000 0.0000 0.0002 1.4422

0.40 0.9211 0.3894 0.9211 0.3894 0.0000 0.0000 0.0000 0.0000 0.0797

0.60 0.8253 0.5646 0.8253 0.5646 0.0000 0.0000 0.0000 0.0001 0.0797

0.80 0.6967 0.7174 0.6967 0.7174 0.0000 0.0000 0.0000 0.0001 0.0797

1.00 0.5403 0.8415 0.5403 0.8415 0.0000 0.0000 0.0000 0.0000 0.0797

1.20 0.3624 0.9320 0.3624 0.9320 0.0000 0.0000 0.0001 0.0000 0.0797

1.40 0.1700 0.9854 0.1700 0.9854 0.0000 0.0000 0.0002 0.0001 0.0797

1.60 -0.0292 0.9996 -0.0292 0.9995 0.0000 0.0001 0.0000 0.0001 0.0797

1.80 -0.2272 0.9738 -0.2272 0.9738 0.0000 0.0000 0.0000 0.0000 0.0797

2.00 -0.4161 0.9093 -0.4161 0.9093 0.0000 0.0000 0.0001 0.0000 0.0797

2.20 -0.5885 0.8085 -0.5885 0.8085 0.0000 0.0000 0.0000 0.0000 0.0797

2.40 -0.7374 0.6755 -0.7374 0.6755 0.0000 0.0000 0.0000 0.0001 0.0797

2.60 -0.8569 0.5155 -0.8569 0.5155 0.0000 0.0000 0.0000 0.0000 0.0797

2.80 -0.9422 0.3350 -0.9422 0.3350 0.0000 0.0000 0.0000 0.0000 0.0797

3.00 -0.9900 0.1411 -0.9900 0.1412 0.0000 0.0001 0.0000 0.0006 0.0797

3.20 -0.9983 -0.0584 -0.9983 -0.0583 0.0000 0.0001 0.0000 0.0013 0.0797

3.40 -0.9668 -0.2555 -0.9668 -0.2555 0.0000 0.0000 0.0000 0.0002 0.0797

3.60 -0.8968 -0.4425 -0.8968 -0.4425 0.0000 0.0000 0.0000 0.0000 0.0797

3.80 -0.7910 -0.6119 -0.7910 -0.6118 0.0000 0.0001 0.0000 0.0001 0.0797

4.00 -0.6536 -0.7568 -0.6537 -0.7568 0.0001 0.0000 0.0001 0.0000 0.0797

4.20 -0.4903 -0.8716 -0.4903 -0.8715 0.0000 0.0001 0.0001 0.0001 0.0797

4.40 -0.3073 -0.9516 -0.3074 -0.9516 0.0001 0.0000 0.0002 0.0000 0.0797

4.60 -0.1122 -0.9937 -0.1122 -0.9936 0.0000 0.0001 0.0004 0.0001 0.0797

4.80 0.0875 -0.9962 0.0875 -0.9961 0.0000 0.0001 0.0000 0.0001 0.0797

5.00 0.2837 -0.9589 0.2836 -0.9589 0.0001 0.0000 0.0002 0.0000 0.0797

5.20 0.4685 -0.8835 0.4685 -0.8835 0.0000 0.0000 0.0000 0.0001 0.0797

5.40 0.6347 -0.7728 0.6347 -0.7728 0.0000 0.0000 0.0000 0.0000 0.0797

5.60 0.7756 -0.6313 0.7755 -0.6313 0.0001 0.0000 0.0001 0.0001 0.0797

5.80 0.8855 -0.4646 0.8855 -0.4647 0.0000 0.0001 0.0000 0.0002 0.0797



322 C. Yakar, M Çiçek

Table 1. Continued

Time Perturbed Perturbed Perturbed Perturbed Exact sol.

Exact Sol. Runge-Kutta Sol. Abs. Error Rel. Error ITD

tn Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Norm(Y −X)

0.40 1.8421 0.7788 1.8421 0.7788 0.0000 0.0000 0.0000 0.0000 1.4421

0.60 1.6507 1.1293 1.6484 1.1282 0.0023 0.0011 0.0014 0.0010 0.0748

0.80 1.3934 1.4347 1.3903 1.4315 0.0031 0.0032 0.0022 0.0022 0.0707

1.00 1.0806 1.6829 1.0777 1.6770 0.0029 0.0059 0.0027 0.0035 0.0660

1.20 0.7247 1.8641 0.7229 1.8553 0.0018 0.0088 0.0025 0.0047 0.0611

1.40 0.3399 1.9709 0.3399 1.9599 0.0000 0.0110 0.0001 0.0056 0.0571

1.60 -0.0584 1.9991 -0.0563 1.9871 0.0021 0.0120 0.0359 0.0060 0.0546

1.80 -0.4544 1.9477 -0.4500 1.9357 0.0044 0.0120 0.0097 0.0062 0.0535

2.00 -0.8323 1.8186 -0.8257 1.8075 0.0066 0.0111 0.0079 0.0061 0.0533

2.20 -1.1770 1.6170 -1.1684 1.6076 0.0086 0.0094 0.0073 0.0058 0.0536

2.40 -1.4748 1.3509 -1.4646 1.3436 0.0102 0.0073 0.0069 0.0054 0.0539

2.60 -1.7138 1.0310 -1.7023 1.0260 0.0115 0.0050 0.0067 0.0049 0.0539

2.80 -1.8844 0.6700 -1.8722 0.6675 0.0122 0.0025 0.0065 0.0037 0.0539

3.00 -1.9800 0.2822 -1.9675 0.2822 0.0125 0.0000 0.0063 0.0001 0.0540

3.20 -1.9966 -0.1167 -1.9844 -0.1143 0.0122 0.0024 0.0061 0.0210 0.0541

3.40 -1.9336 -0.5111 -1.9221 -0.5062 0.0115 0.0049 0.0059 0.0096 0.0540

3.60 -1.7935 -0.8850 -1.7832 -0.8778 0.0103 0.0072 0.0058 0.0082 0.0538

3.80 -1.5819 -1.2237 -1.5733 -1.2142 0.0086 0.0095 0.0055 0.0078 0.0532

4.00 -1.3073 -1.5136 -1.3006 -1.5021 0.0067 0.0115 0.0051 0.0076 0.0523

4.20 -0.9805 -1.7432 -0.9762 -1.7300 0.0043 0.0132 0.0044 0.0075 0.0511

4.40 -0.6147 -1.9032 -0.6128 -1.8889 0.0019 0.0143 0.0030 0.0075 0.0501

4.60 -0.2243 -1.9874 -0.2251 -1.9727 0.0008 0.0147 0.0035 0.0074 0.0494

4.80 0.1750 -1.9923 0.1715 -1.9781 0.0035 0.0142 0.0200 0.0071 0.0497

5.00 0.5673 -1.9178 0.5614 -1.9048 0.0059 0.0130 0.0104 0.0068 0.0503

5.20 0.9370 -1.7669 0.9288 -1.7556 0.0082 0.0113 0.0088 0.0064 0.0510

5.40 1.2694 -1.5455 1.2593 -1.5365 0.0101 0.0090 0.0079 0.0058 0.0518

5.60 1.5511 -1.2625 1.5395 -1.2560 0.0116 0.0065 0.0075 0.0052 0.0521

5.80 1.7710 -0.9292 1.7584 -0.9253 0.0126 0.0039 0.0071 0.0042 0.0525

6.00 1.9203 -0.5588 1.9072 -0.5576 0.0131 0.0012 0.0068 0.0022 0.0525

Table 1 for the Runge-Kutta method with h = 0.2 shows exact solutions, approximate
solutions of the perturbed and unperturbed systems, absolute error, relative error and
(h0 − h)-approximate and exact norms for the initial time difference boundedness and
Lagrange stability of the perturbed system with respect to the unperturbed system.
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Table 2. Unperturbed and Perturbed Systems using the

Improved Euler Method with Step Size h=0.2

Time Unperturbed Unperturbed Unperturbed Unperturbed Exact sol.

Exact Sol. Impr. Euler Abs. Error Rel. Error ITD

tn X1 X2 X1 X2 X1 X2 X1 X2 Norm(Y −X)

0.20 0.9801 0.1987 0.9801 0.1987 0.0000 0.0000 0.0000 0.0002 1.4422

0.40 0.9211 0.3894 0.9182 0.3905 0.0029 0.0011 0.0031 0.0028 0.0797

0.60 0.8253 0.5646 0.8203 0.5657 0.0050 0.0011 0.0061 0.0019 0.0797

0.80 0.6967 0.7174 0.6900 0.7174 0.0067 0.0000 0.0096 0.0001 0.0797

1.00 0.5403 0.8415 0.5323 0.8395 0.0080 0.0020 0.0148 0.0023 0.0797

1.20 0.3624 0.9320 0.3535 0.9274 0.0089 0.0046 0.0244 0.0050 0.0797

1.40 0.1700 0.9854 0.1608 0.9779 0.0092 0.0075 0.0539 0.0077 0.0797

1.60 -0.0292 0.9996 -0.0383 0.9894 0.0091 0.0102 0.3117 0.0102 0.0797

1.80 -0.2272 0.9738 -0.2357 0.9613 0.0085 0.0125 0.0374 0.0129 0.0797

2.00 -0.4161 0.9093 -0.4235 0.8948 0.0074 0.0145 0.0177 0.0159 0.0797

2.20 -0.5885 0.8085 -0.5943 0.7924 0.0058 0.0161 0.0099 0.0199 0.0797

2.40 -0.7374 0.6755 -0.7410 0.6579 0.0036 0.0176 0.0049 0.0260 0.0797

2.60 -0.8569 0.5155 -0.8579 0.4968 0.0010 0.0187 0.0012 0.0363 0.0797

2.80 -0.9422 0.3350 -0.9401 0.3154 0.0021 0.0196 0.0023 0.0585 0.0797

3.00 -0.9900 0.1411 -0.9844 0.1211 0.0056 0.0200 0.0056 0.1419 0.0797

3.20 -0.9983 -0.0584 -0.9889 -0.0782 0.0094 0.0198 0.0094 0.3396 0.0797

3.40 -0.9668 -0.2555 -0.9534 -0.2744 0.0134 0.0189 0.0139 0.0738 0.0797

3.60 -0.8968 -0.4425 -0.8795 -0.4594 0.0173 0.0169 0.0192 0.0381 0.0797

3.80 -0.7910 -0.6119 -0.7700 -0.6257 0.0210 0.0138 0.0265 0.0226 0.0797

4.00 -0.6536 -0.7568 -0.6293 -0.7664 0.0243 0.0096 0.0372 0.0127 0.0797

4.20 -0.4903 -0.8716 -0.4633 -0.8760 0.0270 0.0044 0.0550 0.0051 0.0797

4.40 -0.3073 -0.9516 -0.2786 -0.9500 0.0287 0.0016 0.0935 0.0017 0.0797

4.60 -0.1122 -0.9937 -0.0827 -0.9859 0.0295 0.0078 0.2626 0.0078 0.0797

4.80 0.0875 -0.9962 0.1165 -0.9821 0.0290 0.0141 0.3314 0.0141 0.0797

5.00 0.2837 -0.9589 0.3110 -0.9391 0.0273 0.0198 0.0964 0.0207 0.0797

5.20 0.4685 -0.8835 0.4930 -0.8582 0.0245 0.0253 0.0523 0.0286 0.0797

5.40 0.6347 -0.7728 0.6551 -0.7428 0.0204 0.0300 0.0322 0.0388 0.0797

5.60 0.7756 -0.6313 0.7907 -0.5972 0.0151 0.0341 0.0195 0.0540 0.0797

5.80 0.8855 -0.4646 0.8944 -0.4274 0.0089 0.0372 0.0100 0.0801 0.0797
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Table 2. Continued

Time Perturbed Perturbed Perturbed Perturbed Exact sol.

Exact Sol. Impr. Euler Abs. Error Rel. Error ITD

tn Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Norm(Y −X)

0.40 1.8421 0.7788 1.8421 0.7788 0.0000 0.0000 0.0000 0.0000 1.4421

0.60 1.6507 1.1293 1.6428 1.1278 0.0079 0.0015 0.0048 0.0013 0.0687

0.80 1.3934 1.4347 1.3811 1.4274 0.0123 0.0073 0.0088 0.0051 0.0570

1.00 1.0806 1.6829 1.0667 1.6667 0.0139 0.0162 0.0129 0.0097 0.0431

1.20 0.7247 1.8641 0.7117 1.8379 0.0130 0.0262 0.0180 0.0140 0.0290

1.40 0.3399 1.9709 0.3297 1.9362 0.0102 0.0347 0.0301 0.0176 0.0182

1.60 -0.0584 1.9991 -0.0645 1.9589 0.0061 0.0402 0.1045 0.0201 0.0131

1.80 -0.4544 1.9477 -0.4558 1.9052 0.0014 0.0425 0.0031 0.0218 0.0130

2.00 -0.8323 1.8186 -0.8286 1.7764 0.0037 0.0422 0.0044 0.0232 0.0159

2.20 -1.1770 1.6170 -1.1681 1.5768 0.0089 0.0402 0.0076 0.0249 0.0196

2.40 -1.4748 1.3509 -1.4605 1.3134 0.0143 0.0375 0.0097 0.0278 0.0217

2.60 -1.7138 1.0310 -1.6942 0.9963 0.0196 0.0347 0.0114 0.0337 0.0231

2.80 -1.8844 0.6700 -1.8597 0.6383 0.0247 0.0317 0.0131 0.0473 0.0236

3.00 -1.9800 0.2822 -1.9501 0.2538 0.0299 0.0284 0.0151 0.1008 0.0239

3.20 -1.9966 -0.1167 -1.9618 -0.1414 0.0348 0.0247 0.0174 0.2112 0.0242

3.40 -1.9336 -0.5111 -1.8943 -0.5307 0.0393 0.0196 0.0203 0.0384 0.0245

3.60 -1.7935 -0.8850 -1.7503 -0.8979 0.0432 0.0129 0.0241 0.0145 0.0238

3.80 -1.5819 -1.2237 -1.5356 -1.2278 0.0463 0.0041 0.0293 0.0033 0.0209

4.00 -1.3073 -1.5136 -1.2591 -1.5070 0.0482 0.0066 0.0369 0.0044 0.0159

4.20 -0.9805 -1.7432 -0.9319 -1.7246 0.0486 0.0186 0.0496 0.0106 0.0097

4.40 -0.6147 -1.9032 -0.5674 -1.8727 0.0473 0.0305 0.0769 0.0160 0.0042

4.60 -0.2243 -1.9874 -0.1801 -1.9461 0.0442 0.0413 0.1971 0.0208 0.0019

4.80 0.1750 -1.9923 0.2144 -1.9424 0.0394 0.0499 0.2252 0.0251 0.0032

5.00 0.5673 -1.9178 0.6003 -1.8617 0.0330 0.0561 0.0581 0.0293 0.0078

5.20 0.9370 -1.7669 0.9621 -1.7065 0.0251 0.0604 0.0268 0.0342 0.0128

5.40 1.2694 -1.5455 1.2852 -1.4823 0.0158 0.0632 0.0125 0.0409 0.0171

5.60 1.5511 -1.2625 1.5566 -1.1976 0.0055 0.0649 0.0035 0.0514 0.0195

5.80 1.7710 -0.9292 1.7653 -0.8636 0.0057 0.0656 0.0032 0.0706 0.0208

6.00 1.9203 -0.5588 1.9028 -0.4939 0.0175 0.0649 0.0091 0.1162 0.0213

Table 2 for the Improved Euler method with h = 0.2 shows exact solutions, approximate
solutions of the perturbed and unperturbed systems, absolute error, relative error and
(h0 − h)-approximate and exact norms for the initial time difference boundedness and
Lagrange stability of the perturbed system with respect to the unperturbed system.
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Table 3. Unperturbed and Perturbed Systems using the Euler Method with

Step Size h=0.2.

Time Unperturbed Unperturbed Unperturbed Unperturbed Exact sol.

Exact Sol. Impr. Euler Abs. Error Rel. Error ITD

tn X1 X2 X1 X2 X1 X2 X1 X2 Norm(Y −X)

0.20 0.9801 0.1987 0.9801 0.1987 0.0000 0.0000 0.0000 0.0002 1.4422

0.40 0.9211 0.3894 0.9403 0.3947 0.0192 0.0053 0.0209 0.0136 0.0797

0.60 0.8253 0.5646 0.8564 0.5823 0.0311 0.0177 0.0376 0.0313 0.0797

0.80 0.6967 0.7174 0.7331 0.7509 0.0364 0.0335 0.0522 0.0468 0.0797

1.00 0.5403 0.8415 0.5763 0.8897 0.0360 0.0482 0.0666 0.0573 0.0797

1.20 0.3624 0.9320 0.3931 0.9893 0.0307 0.0573 0.0848 0.0614 0.0797

1.40 0.1700 0.9854 0.1921 1.0450 0.0221 0.0596 0.1302 0.0604 0.0797

1.60 -0.0292 0.9996 -0.0182 1.0573 0.0110 0.0577 0.3767 0.0578 0.0797

1.80 -0.2272 0.9738 -0.2295 1.0287 0.0023 0.0549 0.0101 0.0563 0.0797

2.00 -0.4161 0.9093 -0.4344 0.9611 0.0183 0.0518 0.0439 0.0570 0.0797

2.20 -0.5885 0.8085 -0.6253 0.8564 0.0368 0.0479 0.0625 0.0593 0.0797

2.40 -0.7374 0.6755 -0.7949 0.7174 0.0575 0.0419 0.0780 0.0621 0.0797

2.60 -0.8569 0.5155 -0.9362 0.5488 0.0793 0.0333 0.0926 0.0646 0.0797

2.80 -0.9422 0.3350 -1.0435 0.3564 0.1013 0.0214 0.1075 0.0639 0.0797

3.00 -0.9900 0.1411 -1.1121 0.1459 0.1221 0.0048 0.1233 0.0339 0.0797

3.20 -0.9983 -0.0584 -1.1384 -0.0766 0.1401 0.0182 0.1403 0.3122 0.0797

3.40 -0.9668 -0.2555 -1.1203 -0.3043 0.1535 0.0488 0.1588 0.1908 0.0797

3.60 -0.8968 -0.4425 -1.0568 -0.5270 0.1600 0.0845 0.1785 0.1909 0.0797

3.80 -0.7910 -0.6119 -0.9491 -0.7302 0.1581 0.1183 0.1999 0.1934 0.0797

4.00 -0.6536 -0.7568 -0.8013 -0.8963 0.1477 0.1395 0.2259 0.1843 0.0797

4.20 -0.4903 -0.8716 -0.6207 -1.0108 0.1304 0.1392 0.2661 0.1597 0.0797

4.40 -0.3073 -0.9516 -0.4178 -1.0724 0.1105 0.1208 0.3594 0.1269 0.0797

4.60 -0.1122 -0.9937 -0.2030 -1.0929 0.0908 0.0992 0.8100 0.0998 0.0797

4.80 0.0875 -0.9962 0.0157 -1.0827 0.0718 0.0865 0.8206 0.0869 0.0797

5.00 0.2837 -0.9589 0.2322 -1.0425 0.0515 0.0836 0.1814 0.0872 0.0797

5.20 0.4685 -0.8835 0.4407 -0.9691 0.0278 0.0856 0.0594 0.0969 0.0797

5.40 0.6347 -0.7728 0.6344 -0.8608 0.0003 0.0880 0.0005 0.1139 0.0797

5.60 0.7756 -0.6313 0.8065 -0.7191 0.0309 0.0878 0.0399 0.1391 0.0797

5.80 0.8855 -0.4646 0.9502 -0.5482 0.0647 0.0836 0.0730 0.1799 0.0797
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Table 3. Continued

Time Perturbed Perturbed Perturbed Perturbed Exact sol.

Exact Sol. Impr. Euler Abs. Error Rel. Error ITD

tn Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Norm(Y −X)

0.40 1.8421 0.7788 1.8421 0.7788 0.0000 0.0000 0.0000 0.0000 1.4421

0.60 1.6507 1.1293 1.6864 1.1473 0.0357 0.0180 0.0216 0.0160 0.1231

0.80 1.3934 1.4347 1.4495 1.4816 0.0561 0.0469 0.0403 0.0327 0.1605

1.00 1.0806 1.6829 1.1435 1.7602 0.0629 0.0773 0.0582 0.0459 0.1871

1.20 0.7247 1.8641 0.7829 1.9636 0.0582 0.0995 0.0803 0.0534 0.1959

1.40 0.3399 1.9709 0.3847 2.0802 0.0448 0.1093 0.1317 0.0555 0.1901

1.60 -0.0584 1.9991 -0.0336 2.1092 0.0248 0.1101 0.4246 0.0550 0.1835

1.80 -0.4544 1.9477 -0.4553 2.0551 0.0009 0.1074 0.0020 0.0551 0.1867

2.00 -0.8323 1.8186 -0.8647 1.9220 0.0324 0.1034 0.0389 0.0569 0.2015

2.20 -1.1770 1.6170 -1.2465 1.7140 0.0695 0.0970 0.0590 0.0600 0.2264

2.40 -1.4748 1.3509 -1.5859 1.4372 0.1111 0.0863 0.0753 0.0639 0.2601

2.60 -1.7138 1.0310 -1.8692 1.1010 0.1554 0.0700 0.0907 0.0679 0.3013

2.80 -1.8844 0.6700 -2.0844 0.7168 0.2000 0.0468 0.1061 0.0699 0.3466

3.00 -1.9800 0.2822 -2.2224 0.2965 0.2424 0.0143 0.1224 0.0505 0.3934

3.20 -1.9966 -0.1167 -2.2760 -0.1483 0.2794 0.0316 0.1399 0.2703 0.4412

3.40 -1.9336 -0.5111 -2.2407 -0.6035 0.3071 0.0924 0.1588 0.1808 0.4927

3.60 -1.7935 -0.8850 -2.1149 -1.0489 0.3214 0.1639 0.1792 0.1851 0.5437

3.80 -1.5819 -1.2237 -1.9005 -1.4557 0.3186 0.2320 0.2014 0.1896 0.5743

4.00 -1.3073 -1.5136 -1.6057 -1.7887 0.2984 0.2751 0.2283 0.1817 0.5515

4.20 -0.9805 -1.7432 -1.2454 -2.0187 0.2649 0.2755 0.2701 0.1581 0.4570

4.40 -0.6147 -1.9032 -0.8401 -2.1431 0.2254 0.2399 0.3668 0.1260 0.3302

4.60 -0.2243 -1.9874 -0.4108 -2.1851 0.1865 0.1977 0.8314 0.0995 0.2382

4.80 0.1750 -1.9923 0.0264 -2.1655 0.1486 0.1732 0.8491 0.0869 0.2031

5.00 0.5673 -1.9178 0.4595 -2.0861 0.1078 0.1683 0.1901 0.0877 0.2038

5.20 0.9370 -1.7669 0.8766 -1.9402 0.0604 0.1733 0.0645 0.0981 0.2211

5.40 1.2694 -1.5455 1.2645 -1.7245 0.0049 0.1790 0.0038 0.1158 0.2493

5.60 1.5511 -1.2625 1.6093 -1.4421 0.0582 0.1796 0.0375 0.1422 0.2883

5.80 1.7710 -0.9292 1.8975 -1.1010 0.1265 0.1718 0.0714 0.1849 0.3361

6.00 1.9203 -0.5588 2.1175 -0.7118 0.1972 0.1530 0.1027 0.2737 0.3894

Table 3 for the Euler method with h = 0.2 shows exact solutions, approximate solutions
of the perturbed and unperturbed systems, absolute error, relative error and (h0 − h)-
approximate and exact norm for the initial time difference boundedness and Lagrange
stability the of perturbed system with respect to the unperturbed system.
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Figure 1. Approximate Solutions provided by the

Runge-Kutta Method with h = 0.2

Figure 2. Approximate Solutions provided by the

Improved Euler Method with h = 0.2
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Figure 3. Approximate Solutions provided by the

Euler Method with h = 0.2

Figure 4. Approximate Solutions provided by the

Runge-Kutta Method with h = 0.01
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Figure 5. Approximate Solutions provided by the

Improved Euler Method with h = 0.01

Figure 6. Approximate Solutions provided by the

Euler Method with h = 0.01
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In Figures 1–3, the graphs of the approximate solutions of the perturbed and un-
perturbed system, and initial time difference boundedness and Lagrange stability of the
perturbed system with respect to the unperturbed system are given for h = 0.2 using the
Runge-Kutta, Improved Euler and Euler Methods, respectively.

In Figures 4–6, the corresponding graphs are given for h = 01.

Inspection of Tables 1–3, which give the results for the three methods when h = 0.2,
shows why the fourth-order Runge-Kutta method is so popular and fruitful and has
more accuracy than the others. However, from the point of view of the number of
calculations the Euler and improved Euler methods are faster than Runge-Kutta in real
time applications. If four-decimal-place accuracy is all that we desire, there is no need
to use a smaller step size.

At the expense of doubling the number of calculations, some important improvements
in accuracy; absolute error, relative error and initial time difference (h0−h)-boundedness
and Lagrange stability of a perturbed system with respect to the unperturbed system
are obtained by decreasing the step size to h = 0.01. It is apparent from Tables 4–6 and
Figures 4–6 that the approximations improve as the step size decreases.
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