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Abstract

This paper deals with Moufang-Klingenberg planes M(A) defined over
a local alternative ring A of dual numbers. The cross-ratio of concur-
rent lines is defined in a special case, and extended to the whole plane
M(A). So, some results related to cross-ratios of points of M(A) are
carried over to lines of M(A). Namely, we show that four pairwise non-
neighbour lines passing through the point U are in harmonic position
if and only if they are harmonic.
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1. Introduction

Coordinatizing rings are constructed to benefit from algebra in the examination of
projective planes. There are very close relations between algebraic properties of the co-
ordinatizing ring and geometric properties of the associated plane. If projective plane
on which we study is a Pappian plane, a Desarguesian plane or a Moufang plane, then
the coordinatizing ring is a field, a division ring (skew field) or an alternative field (al-
ternative division ring), respectively [14, p. 154]. Besides, if the projective plane is a
Moufang-Klingenberg (MK) plane then the coordinatizing ring is a local alternative ring
[2, Theorem 3.10 and Theorem 4.1].

In the case of projective planes, numerical equations written in the Euclidean plane
are not valid since metric concepts are not available. The only exception to this situation
is the equation related to the cross-ratio. The cross-ratio of four collinear points A, B,
C, D in Euclidean geometry is the number defined to be

(A, B; C, D) =
AC

BC
:

AD

BD
.
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In the Euclidean plane, Desargues established the fundamental fact that the cross-ratio
(a concept originally introduced by Pappus of Alexandria c.300 B.C) is invariant under
projection [3, p. 133]. This states that the cross-ratio is a projective concept, that
is unchanged under projective transformations. The concept of cross-ratio (expressed
as a ratio of ratios in [15, p. 122] or an hormanic ratio in [13, p. 150]) has great
importance since it is the only numerical result which is a projective invariant. But,
since the coordinatizing ring of a projective plane has different algebraic properties, a
general definition of cross-ratio which is valid in all of projective planes could not be
given. The closest one to the definition of the cross-ratio given in the Euclidean plane is
that given for the Pappus plane, whose coordinatizing ring is a field: the cross-ratio of
four collinear points A = (a1, a2), B = (b1, b2), C = (c1, c2), D = (d1, d2) is then given
by

(A, B; C, D) =
(a1c2 − a2c1) (b1d2 − b2d1)

(a1d2 − a2d1) (b1c2 − b2c1)
.

If we take non-homogenous coordinates a = a1

a2

, b = b1
b2

, c = c1
c2

, d = d1

d2

instead of

A = (a1, a2), B = (b1, b2), C = (c1, c2), D = (d1, d2), respectively, then the above
definition of cross-ratio can be stated as follows [13, p. 151]:

(A, B; C, D) =
(a− c) (b− d)

(a− d) (b− c)
= (a, b; c, d) .

(Note that if any one of the points A, B, C, D is∞, the factors involving∞ are cancelled
[12, p. 81]). As for the Moufang (or Desarguesian) planes, which form a more general
class than the Pappian planes, Ferrar [11] gives the following algebraic definition of the
cross-ratio for the points on the line [0, 0],

(A, B; C, D) = (a, b; c, d) :=
〈(

(a− d)−1(b− d))
(

(b− c)−1 (a− c)
) 〉

where A = (a, 0), B = (b, 0), C = (c, 0), D = (d, 0). Here, 〈x〉 =
{

y−1xy
∣

∣ y ∈ R
}

,
where R is the coordinatizing ring. According to the definition, if any one of the points
A, B, C, D is ∞, the factors involving ∞ are cancelled. The definition of the cross-ratio
given for the points on the line [0, 0] is extended to the whole plane, by considering the
fact that perspectivities preserve cross-ratio [9, p. 25]. For more information about some
well-known properties of cross-ratio in the case of Moufang planes, the reader can refer
to the papers [11, 4, 8, 10].

One of the aims of this paper is to give the definition of the cross-ratio of concurrent
lines (on the special point) in a certain class (which we will denote by M(A)) of MK-
planes, coordinatized by a local alternative ring A := A (ε) = A+Aε (an alternative field
A, ε /∈ A and ε2 = 0) introduced by Blunck in [7], and then is to extend this definition
to the whole plane M(A). Some properties of the cross-ratios obtained in [1] for points
of M(A) are investigated for lines of M(A), and so a relation between the harmonicity
(which is an algebraic property of A) and the harmonic position (which is a geometric
property of M(A)) is established, which is the other aim of this paper.

Section 2 includes some basic definitions and results from the literature.

In Section 3, the concept of cross-ratio in M(A) is mentioned. First, some results
related to the cross-ratio of points of M(A) are given. Second, the cross-ratio of the lines
passing through the point U = (1, 0, 0) is defined in M(A). Third, using this definition,
the cross-ratio of concurrent lines is extended to the whole plane M(A). Next, a simple
way for the calculation of the cross-ratio of lines passing through the point P , according
to the type of P , is given. This paper is concluded by constructing the relation between
the harmonicity and the harmonic position, for lines passing through the point U .
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2. Preliminaries

Let M = (P,L,∈,∼) consist of an incidence structure (P,L,∈) (points, lines, inci-
dence), and an equivalence relation ‘∼’ (neighbour relation) on P and on L, respectively.
Then M is called a projective Klingenberg plane (PK-plane), if it satisfies the following
axioms:

(PK1): If P, Q are non-neighbour points, then there is a unique line PQ through
P and Q.

(PK2): If k, h are non-neighbour lines, then there is a unique point k∩h on both
k and h.

(PK3): There is a projective plane M∗ = (P∗,L∗,∈) and an incidence structure
epimorphism Ψ : M→M∗, such that the conditions

Ψ(P ) = Ψ(Q)⇔ P ∼ Q, Ψ(k) = Ψ(h) ⇐⇒ k ∼ h

hold for all P, Q ∈ P; k,h ∈ L.

A point P ∈ P is called near a line k ∈ L iff there exists a line h ∼ k such that P ∈ h.

Let h, k ∈ L, C ∈ P with C not near to h, k. Then the well-defined bijection
σ := σC (k,h) mapping h to k, by the rule σC (X) = XC ∩ k is called a perspectivity
from h to k with center C. Dually, let P, Q ∈ P, e ∈ L with e not near to P, Q. Then
the well-defined bijection σ := σe (Q,P ) which maps the lines passing through P to the
lines passing through Q, by the rule σe (x) = xe ∪Q is called a perspectivity from P to
Q with axis e. A product of a finite number of perspectivities is called a projectivity.

A PK-plane M = (P,L,∈,∼) is called a Moufang-Klingenberg plane (MK-plane), if
it is (C,a)-transitive for all C ∈ P, a ∈ L with C ∈ a, i.e. if all possible relations exist.
For every MK-plane the canonical image M∗ is a Moufang plane [7].

An alternative ring R is a not necessarily associative ring that satisfies the alternative
laws a (ab) = a2b, (ba)a = ba2, ∀ a, b ∈ R. An alternative ring R with identity element
1 is called local if the set I of its non-unit elements is an ideal.

We are now ready to give a lemma related to alternative rings, which is used in many
calculations throughout this paper.

2.1. Lemma. [17, Theorem 3.1] The subring generated by any two elements of an alter-
native ring is associative. �

We summarize some basic concepts about the coordinatization of MK-planes from [5].

Let R be a local alternative ring. Then M(R) = (P, L,∈,∼) is the incidence structure
with neighbour relation defined as follows:

P = {(x, y, 1)| x, y ∈ R}∪{(1, y, z)| y ∈ R, z ∈ I}∪{(w, 1, z)| w, z ∈ I},

L = {[m, 1, p] | m, p ∈ R}∪{[1, n, p] | p ∈ R, n ∈ I}∪{[q, n, 1] | q, n ∈ I},

[m,1, p] = { (x, xm + p, 1)|x ∈ R} ∪ { (1, zp + m, z)| z ∈ I} ,

[1, n, p] = { (yn + p, y, 1)| y ∈ R} ∪ { (zp + n, 1, z)| z ∈ I} ,

[q, n, 1] = { (1, y, yn + q)| y ∈ R} ∪ { (w, 1, wq + n)|w ∈ I} .

P = (x1, x2, x3) ∼ (y1, y2, y3) = Q ⇐⇒ xi − yi ∈ I (i = 1, 2, 3)),∀P, Q ∈ P;

k = [x1, x2, x3] ∼ [y1, y2, y3] = h⇔ xi − yi ∈ I (i = 1, 2, 3)),∀k,h ∈ L.

For more detailed information about the coordinatization, see the papers [2, 5].

Now it is time to give the following lemma from [2].
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2.2. Lemma. M(R) is a MK-plane, and each MK-plane is isomorphic to some M(R).
�

Let A be an alternative field and ε 6∈ A. Consider A := A (ε) = A + Aε, with
componentwise addition and multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε, (ai, bi ∈ A, i = 1, 2) .

Then A is a local alternative ring with the ideal I = Aε of non-units. The set of formal
inverses of the non-units of A is denoted by I−1. Calculations with the elements of I−1

are defined as follows [6]:

(aε)−1 + t := (aε)−1 := t + (aε)−1 , q (aε)−1 :=
(

aq−1ε
)−1

,

(aε)−1 q :=
(

q−1aε
)−1

,
(

(aε)−1)−1
:= aε,

where (aε)−1 ∈ I−1, t ∈ A, q ∈ A \ I. (Other terms are not defined). For more
information about A and its relation to MK-planes, the reader is referred to the papers
[6, 7]. In [7], the centre Z (A) is defined to be the (commutative, associative) subring of A

which is commuting and associating with all elements of A. It is Z (A) := Z (ε) = Z+Zε,
where Z = {z ∈ A|za = az, ∀ a ∈ A} is the centre of A. If A is not associative, then
A is a Cayley division algebra over its centre Z, see [16] or [18]. Throughout we assume
charA 6= 2, and also we restrict ourselves to the MK-planes M(A).

Blunck [7] gives the following algebraic definition of the cross-ratio for points on the
line g := [1, 0, 0] in M(A)

(A, B; C, D) := (a, b; c, d) = 〈
(

(a− d)−1 (b− d)
) (

(b− c)−1 (a− c)
)

〉,

(K−1, B; C, D) :=
(

k−1, b; c, d
)

= 〈
(

(1− dk)−1 (b− d)
) (

(b− c)−1 (1− ck)
)

〉,

(A, K−1; C, D) :=
(

a, k−1; c, d
)

= 〈
(

(a− d)−1 (1− dk)
) (

(1− ck)−1 (a− c)
)

〉,

(A, B; K−1, D) :=
(

a, b; k−1, d
)

= 〈
(

(a− d)−1 (b− d)
) (

(1− kb)−1 (1− ka)
)

〉,

(A, B;C, K−1) :=
(

a, b; c, k−1) = 〈
(

(1− ka)−1 (1− kb)
) (

(b− c)−1 (a− c)
)

〉,

where A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d, 1), K−1 = (0, 1, k) are pairwise
non-neighbour points. Here, k ∈ I and 〈x〉 = {y−1xy | y ∈ A}.

By this definition, the following important result about the cross-ratio of points on
any line in M(A) is obtained [1, Theorem 8].

2.3. Lemma. Let {O, U, V, E} be the basis of M(A) where O = (0, 0, 1) , U = (1, 0, 0) , V =
(0, 1, 0) , E = (1, 1, 1) (see [2, Section 4]). Then, according to types of lines, the cross-
ratio of points on the line l can be calculated as follows:

If A, B, C, D and K−1 are pairwise non-neighbour points:

(a) Of the line l = [m, 1, p], where A = (a, am + p, 1), B = (b, bm + p, 1), C =
(c, cm + p, 1), D = (d, dm + p, 1) are not near to the line UV = [0, 0, 1] and
K−1 = (1, m + kp, k) is near to UV ,

(b) Of the line l = [1, n, p], where A = (an + p, a, 1), B = (bn + p, b, 1), C =
(cn + p, c, 1), D = (dn + p, d, 1) are not neighbour to V and K−1 = (n + kp, 1, k) ∼
V ,

(c) Of the line l = [q, n, 1], where A = (1, a, q + an), B = (1, b, q + bn), C =
(1, c, q + cn), D = (1, d, q + dn) are not neighbour to V and K−1 = (k, 1, kq + n) ∼
V ,
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then

(A, B; C, D) = (a, b; c, d) ,
(

K−1, B; C, D
)

=
(

k−1, b; c, d
)

,
(

A,K−1; C, D
)

=
(

a, k−1; c, d
)

,
(

A, B; K−1, D
)

=
(

a, b; k−1, d
)

,
(

A, B; C, K−1) =
(

a, b; c, k−1) . �

Moreover, we also know the following result from [1, Theorem 9]:

2.4. Lemma. In M(A), perspectivities preserve cross-ratios.

3. Cross-ratio of concurrent lines in M(A)

We denote by LU the set of lines passing through the point U = (1, 0, 0) in M(A).
Also, we identify LU with A∪I−1, where x = [0, 1, x]←→ x and k−1 = [0, k, 1]←→ k−1.
So, on A ∪ I−1, we have a neighbour relation “∼”defined algebraically by x ∼ y : ⇐⇒
(x, y ∈ A and x− y ∈ I) or (x, y ∈ I−1), which coincides with our neighbour relation on
LU .

Let a = [0, 1, a], b = [0, 1, b], c = [0, 1, c], d = [0, 1, d], k−1 = [0, k, 1] ∈ LU be pairwise
non-neighbour lines, where a, b, c, d ∈ A and k ∈ I. Then the definition of the cross-ratio
for the lines can be given, in the same way as in the above definition, as follows:

⌊a,b; c, d⌋ := (a, b; c, d) ,
⌊

k−1,b; c,d
⌋

:=
(

k−1, b; c, d
)

,
⌊

a,k−1; c,d
⌋

:=
(

a, k−1; c, d
) ⌊

a,b;k−1,d
⌋

:=
(

a, b; k−1, d
)

,
⌊

a,b; c,k−1
⌋

:=
(

a, b; c, k−1
)

.

Calculations with the elements of I−1 have been given in Section 2.

3.1. Theorem. The cross-ratio of four pairwise non-neighbour lines of LU equals the
cross-ratio of the intersection points of these lines and the line g.

Proof. Let a = [0, 1, a], b = [0, 1, b], c = [0, 1, c], d = [0, 1, d], k−1 = [0, k, 1] ∈ LU

be pairwise non-neighbour lines. Then a ∩ g = (0, a, 1) = A, b ∩ g = (0, b, 1) = B,
c ∩ g = (0, c, 1) = C, d ∩ g = (0, d, 1) = D, k−1 ∩ g = (0, 1, k) = K−1. We immediately
have:

⌊a,b; c,d⌋ = (a, b; c, d) = (A, B; C, D)
⌊

k−1,b; c,d
⌋

=
(

k−1, b; c, d
)

=
(

K−1, B; C, D
)

⌊

a, k−1; c,d
⌋

=
(

a, k−1; c, d
)

=
(

A, K−1; C, D
)

⌊

a,b;k−1,d
⌋

=
(

a, b; k−1, d
)

=
(

A,B; K−1, D
)

⌊

a, b; c,k−1
⌋

=
(

a, b; c, k−1
)

=
(

A, B; C, K−1
)

. �

As a result of this theorem, by adapting the needed results from those obtained for
the cross-ratio of the points on the line g in [6] to the elements of LU , we can give
consecutively the following results without proof.

The first result, analogous to [6, Lemma 7], gives another statement of the definition
of the cross-ratio.

3.2. Corollary. Let a = [0, 1, a], b = [0, 1, b], c = [0, 1, c], d = [0, 1, d] ∈ LU be pairwise
non-neighbour lines. Then

⌊a, b; c,d⌋ = 〈
(

(a− b)−1 − (a− d)−1) (

(a− b)−1 − (a− c)−1)−1
〉.

The second result, a fact given as a statement in [6, p. 251], gives an important result
about the cross-ratio of the elements of LU .
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3.3. Corollary. Every cross-ratio consists only of elements of A\({0, 1}+I). Conversely,
the conjugacy class of any such element appears as a cross-ratio; given three pairwise non-
neighbour lines a,b, c ∈ LU and an element r ∈ A \ ({0, 1}+ I), then there is a (unique
if r ∈ Z (ε)) line d ∈ LU , d ≁ a,b, c, with ⌊a,b; c, d⌋ = 〈r〉. �

The third result, analogous to [6, Theorem 2], is the following

3.4. Corollary. The transformations

tu (x) = x + u where u ∈ A, ru (x) = xu where u ∈ A \ I,

i (x) = x−1, lu (x) = ux =
(

ir−1
u i

)

(x) where u ∈ A \ I,

which are defined on LU , preserve cross-ratios. �

Moreover, we can state another result analogous to [5, Corollary (iii)].

3.5. Corollary. The group Λ generated by the above transformations coincides with the
group of projectivities of a point in M(A). �

As a result of Lemma 2.4 and Theorem 3.1 we can also give the following result.

3.6. Corollary. Let x, y, z, t be four pairwise non-neighbour lines of LU . Then

⌊x,y, z, t⌋ = (x ∩ l,y ∩ l, z ∩ l, t ∩ l) ,

where l is not near to U . �

By the last corollary, it is possible to extend the definition of the cross-ratio of the
lines of LU to the whole plane M(A). By Lemma 2.4 we can state this extension as the
following definition.

3.7. Definition. Let x, y, z, t be four pairwise non-neighbour lines passing through
any point P of M(A). Take any line l, where l is not near to P and U . Then

⌊x,y, z, t⌋ := ⌊(x ∩ l)U, (y ∩ l)U, (z ∩ l) U, (t ∩ l) U⌋ .

Consequently, we have constructed the relation between cross-ratios of points and
lines. For the relation in Moufang planes, see [8, 10].

Although we have constructed the relation between cross-ratios of points and lines
above, we would like to find a simpler way to calculate the cross-ratio of lines passing
through any point P . To obtain this we need the following two lemmas.

3.8. Lemma. Let {O, U, V, E} be a basis of M(A), where O = (0, 0, 1) , U = (1, 0, 0) , V =
(0, 1, 0) , E = (1, 1, 1) (see [2, Section 4]). Then

(a) If P = (x, y, 1) and a, b, c, d are pairwise non-neighbour lines passing through
P , then

(i) If P is not near to g, then x /∈ I. In this case, the cross-ratio is ⌊a,b; c,d⌋ =
⌊σ (a) , σ (b) ; σ (c) , σ (d)⌋, where σ = σg (U, P ).

(ii) If P is near to g, then x ∈ I. In this case, the cross-ratio is ⌊a,b; c,d⌋ =
⌊σ (a) , σ (b) ; σ (c) , σ (d)⌋, where σ = σ[1,0,1] (U, P ).

(b) If P = (1, y, z), then the cross-ratio is ⌊a,b; c,d⌋ = ⌊σ (a) , σ (b) ; σ (c) , σ (d)⌋,
where σ = σg (U, P ).

(c) If P = (w, 1, z), then the cross-ratio is ⌊a,b; c, d⌋ = ⌊σ (a) , σ (b) ; σ (c) , σ (d)⌋,
where σ = σ[1,1,0] (U, P ). �

Thus we have the following lemma.

3.9. Lemma. Let σ be the perspectivity in Lemma 3.8. Then,

(a) Let P = (x, y, 1) and a = [a, 1, y − xa], k−1 = [1, k, x− yk] be the lines passing
through P .
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(i) If x /∈ I, then σ (a) = [0, 1, y − xa], σ
(

k−1
)

=
[

0, k (yk − x)−1 , 1
]

,
(ii) If x ∈ I then σ (a) = [0, 1, (1− x)a + y].

Also, σ
(

k−1
)

=
[

0, k (1− x + yk)−1 , 1
]

.

(b) Let P = (1, y, z) and a = [y − za, 1, a], k−1 = [z − yk, k, 1] be the lines passing
through P . Then σ (a) = [0, 1, a], σ

(

k−1
)

= [0, k, 1].

(c) Let P = (w, 1, z) and a = [1, w − za, a], k−1 = [k, z − wk, 1] be the lines passing

through P . Then σ (a) =
[

0, 1, a (1−w + za)−1
]

.

Also, σ
(

k−1
)

= [0, (1− w) k + z, 1].

Proof. We give a detailed proof for the case (i) only, since the method for the others is
the same. Immediately,

σ (a) = (a ∩ g) ∪ U

= ([a, 1, y − xa] ∩ [1, 0, 0]) ∪ (1, 0, 0)

= (0, y − xa, 1) ∪ (1, 0, 0)

= [0, 1, y − xa]

and

σ
(

k−1) =
(

k−1 ∩ g
)

∪ U

= ([1, k, x− yk] ∩ [1, 0, 0]) ∪ (1, 0, 0)

=
(

0, 1, k (yk − x)−1) ∪ (1, 0, 0)

=
[

0, k (yk − x)−1 , 1
]

. �

This lemma enables us to make easily some calculations in the proof of the next
theorem.

Now we are ready to give the simple way for calculating the cross-ratio of concurrent
lines in M(A).

3.10. Theorem. According to type of common point, the cross-ratio of the concurrent
lines can be calculated as follows:

If a, b, c, d and k−1 are pairwise non-neighbour lines

(a) Passing through P = (x, y, 1), where a = [a, 1, y − xa], b = [b, 1, y − xb], c =
[c, 1, y − xc], d = [d, 1, y − xd] are not near to V and k−1 = [1, k, x− yk] is near
to V ;

(b) Passing through P = (1, y, z), where a = [y − za, 1, a], b = [y − zb, 1, b], c =
[y − zc, 1, c], d = [y − zd, 1, d] are not near to V and k−1 = [z − yk, k, 1] ∼
UV = [0, 0, 1];

(c) Passing through P = (w, 1, z), where a = [1, w − za, a], b = [1, w − zb, b], c =
[1, w − zc, c], d = [1, w − zd, d] are near to V and k−1 = [k, z − wk, 1] ∼ UV ;

then

⌊a,b; c,d⌋ = (a, b; c, d)
⌊

k−1,b; c,d
⌋

=
(

k−1, b; c, d
)

⌊

a, k−1; c,d
⌋

=
(

a, k−1; c, d
)

⌊

a,b;k−1,d
⌋

=
(

a, b; k−1, d
)

⌊

a, b; c,k−1⌋ =
(

a, b; c, k−1)
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Proof. We separate the proof into three cases, as given in the statement of the theorem.

Case (a). There are two cases where x /∈ I and x ∈ I.

(a.1). If x /∈ I, then under the perspectivity σ = σg (U, P ), the lines a, b, c, d and k−1

transform to a1 = [0, 1, y − xa], b1 = [0, 1, y − xb], c1 = [0, 1, y − xc], d1 = [0, 1, y − xd]

and k−1
1 =

[

0, k (yk − x)−1 , 1
]

, respectively. Therefore, with γ = l(−x)−1 ◦ t−y ∈ Λ, we
get

⌊a, b; c,d⌋ = ⌊a1,b1; c1, d1⌋ = (y − xa, y − xb; y − xc, y − xd)

= (γ (y − xa) , γ (y − xb) ; γ (y − xc) , γ (y − xd))

= (a, b; c, d),

and
⌊

k−1,b; c, d
⌋

=
⌊

k−1
1 ,b1; c1,d1

⌋

= ((yk − x) k−1, y − xb; y − xc, y − xd)

= (
(

y − xk−1) , (y − xb) ; (y − xc) , (y − xd))

= (γ
(

y − xk−1
)

, γ (y − xb) ; γ (y − xc) , γ (y − xd))

= (k−1, b; c, d).

Similarly,
⌊

a, k−1; c,d
⌋

=
(

a, k−1; c, d
)

,
⌊

a,b;k−1,d
⌋

=
(

a, b; k−1, d
)

,
⌊

a, b; c,k−1⌋ =
(

a, b; c, k−1) .

(a.2). If x ∈ I, then under the perspectivity σ = σ[1,0,1] (U, P ), the lines a, b,

c, d and k−1 transform to a1 = [0, 1, (1− x)a + y], b1 = [0, 1, (1− x) b + y], c1 =

[0, 1, (1− x) c + y], d1 = [0, 1, (1− x) d + y] and k−1
1 =

[

0, k (1− x + yk)−1 , 1
]

, respec-
tively. Therefore, with γ = l(1−x)−1 ◦ t−y ∈ Λ, we have

⌊a, b; c,d⌋ = ⌊a1,b1; c1, d1⌋

= ((1− x)a + y, (1− x) b + y; (1− x) c + y, (1− x) d + y)

=
(

γ ((1− x)a + y) , γ ((1− x) b + y) ; γ ((1− x) c + y) ,

γ ((1− x) d + y)
)

= (a, b; c, d),

and
⌊

k−1,b; c, d
⌋

=
⌊

k−1
1 ,b1; c1,d1

⌋

=
(

(1− x + yk) k−1, (1− x) b + y; (1− x) c + y, (1− x) d + y
)

=
(

(1− x) k−1 + y, (1− x) b + y; (1− x) c + y, (1− x) d + y
)

=
(

γ
(

(1− x) k−1 + y
)

, γ ((1− x) b + y) ; γ ((1− x) c + y) ,

γ ((1− x) d + y)
)

= (k−1, b; c, d).

Similarly,
⌊

a, k−1; c,d
⌋

=
(

a, k−1; c, d
)

,
⌊

a,b;k−1,d
⌋

=
(

a, b; k−1, d
)

,
⌊

a, b; c,k−1⌋ =
(

a, b; c, k−1) .
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Case (b). Let a = [y − za, 1, a], b = [y − zb, 1, b], c = [y − zc, 1, c], d = [y − zd, 1, d] and
k−1 = [z − yk, k, 1] be pairwise non-neighbour lines passing through P = (1, y, z). Then
the perspectivity σ = σg (U, P ) transforms the lines a, b, c, d and k−1 to a1 = [0, 1, a],
b1 = [0, 1, b], c1 = [0, 1, c], d1 = [0, 1, d] and k−1

1 = [0, k, 1], respectively. Therefore,

⌊a,b; c, d⌋ = ⌊a1,b1; c1,d1⌋ = (a, b; c, d) ,
⌊

k−1,b; c, d
⌋

=
⌊

k−1
1 ,b1; c1,d1

⌋

= (k−1, b; c, d),

and similarly,
⌊

a, k−1; c,d
⌋

=
(

a, k−1; c, d
)

,
⌊

a,b;k−1,d
⌋

=
(

a, b; k−1, d
)

,
⌊

a, b; c,k−1⌋ =
(

a, b; c, k−1) .

Case (c). Let a = [1, w − za, a], b = [1, w − zb, b], c = [1, w − zc, c], d = [1, w − zd, d]
and k−1 = [k, z − wk, 1] be pairwise non-neighbour lines passing through P = (w, 1, z).
Then the perspectivity σ = σ[1,1,0] (U, P ) transforms the lines a, b, c, d and k−1 to

a1 =
[

0, 1, a (1−w + za)−1
]

, b1 =
[

0, 1, b (1− w + zb)−1
]

, c1 =
[

0, 1, c (1− w + zc)−1
]

,

d1 =
[

0, 1, d (1− w + zd)−1
]

and k−1
1 = [0, (1− w) k + z, 1], respectively. Therefore,

with γ = i ◦ l(1−w)−1 ◦ t−z ◦ i ∈ Λ, we have

⌊a, b; c,d⌋ = ⌊a1,b1; c1, d1⌋

=
(

a (1− w + za)−1 , b (1−w + zb)−1 ; c (1− w + zc)−1 ,

d (1− w + zd)−1
)

=
(

γ
(

a (1− w + za)−1) , γ
(

b (1−w + zb)−1) ; γ
(

c (1− w + zc)−1)

, γ
(

d (1− w + zd)−1) )

= (a, b; c, d),

and
⌊

k−1,b; c, d
⌋

=
⌊

k−1
1 ,b1; c1,d1

⌋

=
(

((1−w) k + z)−1 , b (1− w + zb)−1 ; c (1− w + zc)−1 ,

d (1− w + zd)−1 )

=
(

γ
(

((1− w) k + z)−1) , γ
(

b (1− w + zb)−1) ;

γ
(

c (1− w + zc)−1
)

, γ
(

d (1− w + zd)−1
) )

= (k−1, b; c, d),

and similarly
⌊

a, k−1; c,d
⌋

=
(

a, k−1; c, d
)

⌊

a,b;k−1,d
⌋

=
(

a, b; k−1, d
)

⌊

a, b; c,k−1⌋ =
(

a, b; c, k−1) . �

As a result of this theorem, one can easily compute the cross-ratio of any four pairwise
non-neighbour concurrent lines because of the following facts:

(i) By the results of Case (a), the cross-ratio of the lines passing through the point
P = (x, y, 1) can be calculated by using the first coordinates of the lines not
near to V and the inverse of the second coordinate of the line near to V .
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(ii) By the results of Case (b), the cross-ratio the lines passing through the point
P = (1, y, z) can be calculated by using the last coordinates of the lines not near
to V and the inverse of the second coordinate of the line neighbour to UV .

(iii) By the results of Case (c), the cross-ratio of the lines passing through the point
P = (w, 1, z) can be calculated by using the last coordinates of the lines near to
V and the inverse of the first coordinate of the line neighbour to UV .

We now give an important theorem, the analogue of Lemma 2.4.

3.11. Theorem. In M(A), perspectivities preserve cross-ratios.

Proof. Let a, b, c, d be pairwise non-neighbour lines passing through a point P in M(A),
σe (U, P ) be the perspectivity given in Lemma 3.8 i.e.

⌊a, b; c,d⌋ = ⌊σe (a) , σe (b) ; σe (c) , σe (d)⌋ ,

and σh (U, P ) a perspectivity such that h ≁ e and h are not near to P , U . It is sufficient
to show that σh (U, P ) preserves the cross-ratio. Since σ = σeσ

−1
h is a projectivity of U ,

by Corollaries 3.5 and 3.4, it preserves the cross-ratio. Thus:

⌊σh (a) , σh (b) ; σh (c) , σh (d)⌋ = ⌊σe (a) , σe (b) ; σe (c) , σe (d)⌋

= ⌊a,b; c, d⌋ . �

We can state the following as a direct result of this theorem.

3.12. Corollary. Cross-ratios are preserved by projectivities. �

Now we can give the following definition in M(A), dual to the definitions of harmonic-
ity and harmonic position given in [1, Definition 11] for points.

3.13. Definition. In M(A), any four pairwise non-neighbour lines a, b, c, d passing
through P are called harmonic if ⌊a,b; c, d⌋ = 〈−1〉, and we let h (a, b, c,d) represent
the statement: a, b, c, d are harmonic.

Let P be any point in M(A). Then the pairwise non-neighbour lines a, b, c, d passing
through P are said to be in harmonic position if there exists a quadrilateral (p1, p2, q1,
q2) such that p1p2 ∪ q1q2 = a, p1q2 ∪ p2q1 = b, p1q1 ∪ P = c, and p2q2 ∪ P = d,
(see Figure 1). We let H (a,b, c,d) represent the statement: a, b, c, d are in harmonic
position.

Figure 1

1q
1p

2p

a

dc

b

2q
P

Now we can state consecutively two lemmas and a theorem which are necessary for the
proof of Theorem 3.18. Their proofs can be easily obtained from the proofs of theorems
given in [1], by using the principle of duality.
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3.14. Lemma. [1, Lemma 12] In M(A), if f1, f2 are elations with axis p and f1 (q) =
f2 (q) 6= q for some lines q ≁ p, then f1|pq = f2|pq. �

3.15. Lemma. [1, Lemma 13] In M(A), if H (a,b, c,d) then there exist a point P and
an elation f with axis a, center P , such that f : c, b→ b, d. �

3.16. Theorem. [1, Theorem 14] In M(A), if H (a,b, c,d) and H (a,b, c,d′), then
d = d′. �

As a result of Theorem 3.16, we have the following:

3.17. Corollary. If a, b, c ∈ LU are pairwise non-neighbour lines and d is constructed
from a, b, c, p1, p2 where p1, p2 are not near to U and p1 ≁ p2 via the configuration
in Figure 1, then the line d is uniquely determined by a, b and c. That is, the line d is
independent of the choice of p1 and p2. �

For any x ∈ A, 〈x〉−1 and 1−〈x〉 are defined in the obvious way as 〈x−1〉 and 〈1−x〉,
respectively. In this situation we can give the following results about cross-ratios of lines,
analogous to the results obtained in [1] for cross-ratios of points (which were discovered
by Möbius for the real projective plane [13, p. 152]).

(3.1)

⌊a,b; c,d⌋ = ⌊b,a;d, c⌋ = ⌊c, d;a,b⌋ = ⌊d, c;b,a⌋ = 〈w〉

⌊b, a; c,d⌋ = ⌊a,b;d, c⌋ = ⌊d, c;a,b⌋ = ⌊c,d;b,a⌋ = 〈w〉−1

⌊a, c;b,d⌋ = ⌊b,d;a, c⌋ = ⌊c, a;d,b⌋ = ⌊d,b; c, a⌋ = 1− 〈w〉

⌊b, c;a,d⌋ = ⌊a,d;b, c⌋ = ⌊d, a; c,b⌋ = ⌊c,b;d,a⌋ = 1− 〈w〉−1

⌊c, a;b,d⌋ = ⌊d,b;a, c⌋ = ⌊a, c;d,b⌋ = ⌊b,d; c, a⌋ = 〈1− w〉−1

⌊c, b;a,d⌋ = ⌊d,a;b, c⌋ = ⌊a, d; c,b⌋ = ⌊b, c;d,a⌋ = 〈1− w−1〉−1

where w ∈ ⌊a,b; c, d⌋. Hence, there exist at most six different values of the cross-ratio,
depending on the order of the lines. We will need the results (3.1) in the proof of the
following theorem which is the analogue of [1, Theorem 16].

3.18. Theorem. In M(A), H (a,b, c, d) if and only if h (a,b, c,d), where a, b, c,
d ∈ LU .

Proof. Suppose that the lines a, b, c, d ∈ LU are in harmonic position and also firstly
that none of them is neighbour to UV . Then we will show that ⌊a,b; c, d⌋ = 〈−1〉.

Let a = [0, 1, a], b = [0, 1, b], c = [0, 1, c], d = [0, 1, d]. Without loss of generality, by
Corollary 3.17, we may assume that p1 = g and p2 = [1, 1, a]. Then bp2 = (b− a, b, 1),

bp2 ∪ cp1 = q1 =
[

(a− b)−1 (c− b) , 1, c
]

, and

bp1 ∪ aq1 = q2 =
[((

(a− b)−1 (c− b)
)

(a− c)−1
)

(a− b) , 1, b
]

.

Since dp2 = (d− a, d, 1) and dp2∈ q2, we have

(d− a)
(((

(a− b)−1 (c− b)
)

(a− c)−1
)

(a− b)
)

+ b = d

=⇒
((

(a− b)−1 (c− b)
)

(a− c)−1) (a− b) = (d− a)−1 (d− b)

=⇒
(

(a− b)−1 (c− b)
)

(a− c)−1 =
(

(d− a)−1 (d− b)
)

(a− b)−1

=⇒
(

(a− b)−1 (c− a + a− b)
)

(a− c)−1 =
(

(d− a)−1 (d− a + a− b)
)

× (a− b)−1

=⇒
(

(a− b)−1 (c− a) + 1
)

(a− c)−1 =
(

1 + (d− a)−1 (a− b)
)

(a− b)−1

=⇒ (b− a)−1 + (a− c)−1 = (a− b)−1 + (d− a)−1
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=⇒ (b− a)−1 − (d− a)−1 = (a− b)−1 − (a− c)−1

=⇒ −
(

(a− b)−1 − (a− d)−1
)

= (a− b)−1 − (a− c)−1

=⇒
(

(a− b)−1 − (a− d)−1) (

(a− b)−1 − (a− c)−1)−1
= −1,

and the last equality (by Corollary 3.2) means that h (a,b, c, d).

Secondly, if p2q2 ∪ U ∼ UV , then d = [0, n, 1] and

p2q2 = (1, 1 + na, n) ,

where n =
(

−2 (a− b)−1 − (c− a)−1
)

∈ I. In this case, by the definition of the cross-
ratio, we get

⌊a, b; c,d⌋ = (a, b; c, n−1)

=
〈(

(1− na)−1 (1− nb)
) (

(b− c)−1 (a− c)
)〉

=
〈

((1 + na) (1− nb))
(

(b− c)−1 (a− c)
)〉

=
〈

(1 + n(a− b))
(

(b− c)−1 (a− c)
)〉

=
〈

(1 + n(a− b))
(

(b− c)−1 (a− c)
)〉

,

and then by substituting n in the last equality we obtain

⌊a, b; c,d⌋ = 〈
(

1 +
(

−2 (a− b)−1 − (c− a)−1
)

(a− b)
) (

(b− c)−1 (a− c)
)

〉

= 〈−
(

1 + (c− a)−1 (a− b)
) (

(b− c)−1 (a− c)
)

〉

= 〈−
(

1 + (c− a)−1 ((a− c) + (c− b))
) (

(b− c)−1 (a− c)
)

〉

= 〈−
(

(c− a)−1 (c− b)
) (

(b− c)−1 (a− c)
)

〉

= 〈−
(

(c− a)−1 (b− c)
) (

(b− c)−1 (c− a)
)

〉

= 〈−1〉.

This means that h (a, b, c,d), even if d is neighbour to UV . If any one of the lines a, b,
c is neighbour to UV then the proof of this part follows from (3.1).

Conversely, let h (a,b, c,d). Existence of the point d′ such that H (a,b, c,d′) is
obvious from Definition 3.13. Then H (a,b, c, d′) implies h (a,b, c, d′) (from the first part
of the theorem). So, we have h (a,b, c,d′) and h (a,b, c,d). Finally, by Corollary 3.3,
we have d = d′, which gives H (a,b, c, d). �

We can also give a proof of the last theorem in an alternative way. All of the following
results are concerned with this.

3.19. Theorem. H (A, B, C, D) iff H (a, b, c,d), where A, B, C, D are four pairwise
non-neighbour collinear points and a, b, c, d are such that A ∈ a, B ∈ b, C ∈ c, D ∈ d
are four pairwise non-neighbour concurrent lines.

Proof. Let H (A, B, C, D), where A, B,C, D ∈ q. Let a,b, c, d be concurrent lines on R,
where R is not near to q. Then we can choose a point Q ∈ b where Q is not neighbour to
B and R. In this case, if P := c∩AQ, then it is clear that P is not neighbour to Q and R.
In this case if S := a∩BP , then it is clear that S is not neighbour to P , Q and R. So, we
have obtained a 4-gon (P, Q,R, S). Then it must be that D = q∩SQ since H (A, B, C, D).
If p := AQ, r := BS, s := DS, then we have found a quadrilateral (p,q, r, s) embedded
in a configuration like the one of Figure 1. This implies H (a,b, c, d). The remainder of
the proof follows from the principle of duality. �
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Combining the results of the last Theorem, [1, Theorem 16] and Theorem 3.1, we
immediately obtain the following:

3.20. Corollary.

H (a, b, c,d) ⇐⇒ H (A, B, C, D) ⇐⇒ h (A,B, C, D) ⇐⇒ h (a,b, c,d) ,

where a, b, c, d ∈ LU and A, B, C, D ∈ g. �

3.21. Remark. Corollary 3.20 is also valid for concurrent lines passing through any
point of M(A) if we can show that H (A, B, C, D) iff h (A, B, C, D), where A, B, C, D
are points on any line of M(A). A paper related to the derivation of this result is under
review. So, we have completely given the relation between harmonicity and harmonic
position, both for concurrent lines and collinear points.
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