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Abstract

In this article, a new generalization of Jordan’s inequality
n

∑

k=1

µk
(

θt − xt
)k

≤
sin x

x
−

sin θ

θ
≤

n
∑

k=1

ωk
(

θt − xt
)k

for t ≥ 2, n ∈ N and θ ∈ (0, π] is established, where the coefficients µk
and ωk are defined by recursion formulas, and are the best possible. As
an application, Yang’s inequality is refined.
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1. Introduction

The well-known Jordan’s inequality (see [2, 5], [3, p. 143], [7, p. 269] and [10, p. 33])
states that

(1.1)
2

π
≤

sin x

x
< 1

for 0 < |x| ≤ π
2
. Equality in (1.1) is valid if and only if x = π

2
.
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Jordan’s inequality and its refinements have important applications in several math-
ematical areas such as calculus and trigonometry, where specially the theory of limits
are involved in [25]. These are important tools in approximating the Riemann zeta func-
tion ζ(x) in [8], in improving Yang’s inequality in [29] and its generalization, which play
an important role in the theory of distribution of values of functions. Therefore, many
mathematicians have struggled to refine, generalize and apply it. For more detailed in-
formation, please refer to [7, pp. 274–275] and [1, 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22, 24, 25, 26, 28, 30, 33, 34, 35], especially [11, 20], and related references
therein.

In [1, 9, 15, 16, 17, 18, 19], among other things, Jordan’s inequality had been refined
as

(1.2)
1

π3
x
(

π2 − 4x2) ≤ sin x−
2

π
x ≤

π − 2

π3
x
(

π2 − 4x2).

In [35], a stronger sharp double inequality for x ∈
(

0, π
2

]

was obtained:

(1.3)
12 − π2

16π5

(

π2 − 4x2)2
≤

sin x

x
−

2

π
−

1

π3

(

π2 − 4x2) ≤
π − 3

π5

(

π2 − 4x2)2
.

Recently, the following general refinement of Jordan’s inequality was shown in [13]:

(1.4)
2

π
+

n
∑

k=1

αk
(

π2 − 4x2)k ≤
sin x

x
≤

2

π
+

n
∑

k=1

βk
(

π2 − 4x2)k,

where the constants

αk =
(−1)k

(4π)kk!

k+1
∑

i=1

(

2

π

)i

cki−1 sin

(

k + i

2
π

)

(1.5)

and

βk =







1 − 2/π −
∑n−1
i=1 αiπ

2i

π2n
, k = n

αk, 1 ≤ k < n
(1.6)

with

(1.7) cki =











(i+ k − 1)ck−1
i−1 + ck−1

i , 0 < i ≤ k

1, i = 0

0, i > k

are the best possible.

In [28], as a generalization of Jordan’s inequality (1.1), the following sharp inequality

(1.8)

1

2τ 2

[

(1 + λ)

(

sin θ

θ
− cos θ

)

− θ sin θ

](

1 −
xτ

θτ

)2

≤
sin x

x
−

sin θ

θ
−

1

λ

(

sin θ

θ
− cos θ

)(

1 −
xλ

θλ

)

≤

[

1 −
sin θ

θ
−

1

λ

(

sin θ

θ
− cos θ

)](

1 −
xτ

θτ

)2

was obtained for 0 < x ≤ θ ∈
(

0, π
2

]

, τ ≥ 2 and τ ≤ λ ≤ 2τ . Equalities in (1.8) hold

if and only if x = θ. The coefficients of the term
(

1 − xτ

θτ

)2
are the best possible. If
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1 ≤ τ ≤ 5
3

and either λ 6= 0 or λ ≥ 2τ , then inequality (1.8) is reversed. In particular,
when θ = π

2
, inequality (1.8) becomes

(1.9)

4λ+ 4 − π2

4τ 2π2τ+1

(

πτ − 2τxτ
)2

≤
sin x

x
−

2

π
−

2

λπλ+1

(

πλ − 2λxλ
)

≤
λπ − 2λ − 2

λπ2τ+1

(

πτ − 2τxτ
)2

for 0 < x ≤ π
2
, τ ≥ 2 and τ ≤ λ ≤ 2τ . If 1 ≤ τ ≤ 5

3
and either λ 6= 0 or λ ≥ 2τ , then the

inequality (1.9) is reversed. If we take (τ, λ) = (2, 2) in (1.9), then the inequality (1.3)
can be deduced.

For recent developments of refinements, generalizations and applications of Jordan’s
inequality, please refer to the survey paper [20] and related references therein.

The first aim of this paper is to generalize inequalities (1.4) and (1.8) as the following
Theorem 1.1.

1.1. Theorem. For 0 < x ≤ θ < π, n ∈ N and t ≥ 2, the inequality

(1.10)

n
∑

k=1

µk
(

θt − xt
)k

≤
sin x

x
−

sin θ

θ
≤

n
∑

k=1

ωk
(

θt − xt
)k

holds with equalities if and only if x = θ, where the constants

µk =
(−1)k

k!tk

k+1
∑

i=1

aki−1θ
k−i−kt sin

(

θ +
k + i− 1

2
π

)

(1.11)

and

ωk =







1 − sin θ/θ −
∑n−1
i=1 µiθ

ti

θtn
, k = n

µk, 1 ≤ k < n
(1.12)

with

(1.13) aki =











ak−1
i + [i+ (k − 1)(t− 1)]ak−1

i−1 , 0 < i ≤ k

1, i = 0

0, i > k

are the best possible.

1.2. Remark. Taking t = 2 in (1.10) yields inequality (1.4). Letting n = 2 in (1.10)
leads to (1.8) for λ = τ = 2.

The second aim of this paper is to apply Theorem 1.1 to refine Yang’s inequality [29]
as follows.

1.3. Theorem. Let 0 ≤ λ ≤ 1, 0 < x ≤ θ < π, t ≥ 2 and Ai > 0 with
∑n

i=1Ai ≤ π for

n ∈ N. If m ∈ N and n ≥ 2, then

(1.14) Lm(n, λ) ≤ H(n,λ) ≤ Rm(n, λ),
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where

Lm(n, λ) =
(n

2

)

λ2π2

[

sin θ

θ
+

m
∑

k=1

2−ktµk
(

2tθt − λtπt
)k

]2

cos2
(λ

2
π
)

,(1.15)

H(n,λ) = (n− 1)
n

∑

k=1

cos2(λAk) − 2 cos(λπ)
∑

1≤i<j≤n

cos(λAi) cos(λAj),(1.16)

Rm(n, λ) =
(n

2

)

λ2π2

[

sin θ

θ
+

m
∑

k=1

2−ktωk
(

2tθt − λtπt
)k

]2

cos2
(λ

2
π
)

,(1.17)

and µk and ωk are defined by (1.11).

2. Lemmas

To prove our main results, the following lemmas are necessary.

2.1. Lemma. For x > 0, let u0(x) = sinx
x

and uk(x) =
u′

k−1
(x)

xr for k ∈ N and r ≥ 1.
Then

(2.1) uk(x) =
k+1
∑

i=1

aki−1 sin
(

x+ (i+ k − 1)π/2
)

xkr+i
,

where aki is defined by (1.13).

Proof. It is apparent that

u1(x) = x−r

(

sin x

x

)′

= x−1−r cosx− x−2−r sin x,

which tells us that the formula (2.1) is valid for k = 1.

Now assume the formula (2.1) holds for some given k > 1. Direct computation and
utilization of (1.13) gives

uk+1 =
k+1
∑

i=1

aki−1

[

1

xkr+i+r
cos

(

x+
k + i− 1

2
π

)

−
1

xkr+i+r+1
sin

(

x+
k + i− 1

2
π

)]

=
ak0

xkr+r+1
cos

(

x+
k

2
π

)

−
(kr + k + 1)akk
xkr+r+k+2

sin(x+ kπ)

−
k−1
∑

i=0

aki (kr + 1 + i) + aki+1

xkr+r+i+2
sin

(

x+
k + i

2
π

)

=
ak+1
0

xkr+r+1
sin

(

x+
k + 1

2
π

)

+
ak+1
k+1

xkr+r+k+2
sin[x+ (k + 1)π]

+
k−1
∑

i=0

ak+1
i+1

xkr+r+i+2
sin

(

x+
k + i+ 2

2
π

)

=

k+2
∑

i=1

ak+1
i−1

xkr+i+r
sin

(

x+
k + i

2
π

)

.

By mathematical induction, Lemma 2.1 is proved. �
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2.2. Lemma. For x > 0 and k ∈ N, let

v1(x) =

k+1
∑

i=1

aki−1x
k−i+1 sin

(

x+
k + i− 1

2
π

)

and vj+1(x) = 1
x
v′j(x) for j ∈ N. Then

(2.2) vj(x) =

k−j+1
∑

i=0

bjix
k−i−j+1 sin

(

x+
k + i+ j − 1

2
π

)

is valid for j ∈ N, where b1i = aki , b
j
0 = 1 and

(2.3) bji = bj−1
i − (k − i− j + 3)bj−1

i−1 , 0 < i ≤ k − j + 1, j > 1.

Proof. When j = 1, the formula (2.2) is clearly valid.

By induction, suppose that the formula (2.2) holds for some j > 1. Since k − j + 1 >

k − (j + 1) + 1, it can be deduced from (2.3) that bj+1
k−j+1 = bjk−j+1 − bjk−j = 0. Thus,

vj+1(x) =
1

x

{

k−j
∑

i=0

bji

[

(k − i− j + 1)xk−i−j sin

(

x+
k + i+ j − 1

2
π

)

+ xk−i−j+1 cos

(

x+
k + i+ j − 1

2
π

)]

+ bjk−j+1 cos(x+ kπ)

}

= bj0x
k−j sin

(

x+
k + j

2
π

)

+

k−j−1
∑

i=0

[

bji+1 − (k − i− j + 1)bji
]

xk−i−j+1 sin

(

x+
k + i+ j + 1

2
π

)

= bj0x
k−j sin

(

x+
k + j

2
π

)

+

k−j−1
∑

i=0

bj+1
i+1x

k−i−j+1 sin

(

x+
k + i+ j + 1

2
π

)

=

k−j
∑

i=0

bj+1
i xk−i−j sin

(

x+
k + i+ j

2
π

)

.

By mathematical induction, the formula (2.2) is proved. �

2.3. Lemma. [23] Let f and g be continuous on [a, b] and differentiable in (a, b) such

that g′(x) 6= 0 in (a, b). If
f ′(x)
g′(x)

is increasing (or decreasing) in (a, b), then the functions
f(x)−f(b)
g(x)−g(b)

and
f(x)−f(a)
g(x)−g(a)

are also increasing (or decreasing) in (a, b).

2.4. Lemma. Let 0 < x ≤ θ < π and t ≥ 2. Then the double inequality

(2.4)
1

t

(

sin θ

θ1+t
−

cos θ

θt

)

(

θt − xt
)

≤
sin x

x
−

sin θ

θ
≤

(

1

θt
−

sin θ

θ1+t

)

(

θt − xt
)

holds with equalities if and only if x = θ, where the constants

1

t

(

sin θ

θ1+t
−

cos θ

θt

)

and

(

1

θt
−

sin θ

θ1+t

)

are the best possible.



58 Zh. -H. Huo, D. -W. Niu, J. Cao, F. Qi

Proof. Let

(2.5)
f(x) =

sin x

x
−

sin θ

θ
, g(x) = θt − xt,

f1(x) = x cos x− sin x, g1(x) = −tx1+t.

Then

f(x)

g(x)
=
f(x) − f(0)

g(x) − g(0)
,

f ′(x)

g′(x)
=
f1(x) − f1(0)

g1(x) − g1(0)
,

f ′
1(x)

g′1(x)
=

sin x

t(1 + t)xt
.

Since sinx
xt is decreasing in (0, π], then

f ′1(x)

g′
1
(x)

is decreasing, and so, in virtue of Lemma 2.3,

the function f ′(x)
g′(x)

is decreasing, and the function f(x)
g(x)

is decreasing in (0, π], thus,

1

t

(

sin θ

θ1+t
−

cos θ

θt

)

= lim
x→θ−

f(x)

g(x)
≤
f(x)

g(x)
≤ lim
x→0+

f(x)

g(x)
=

1

θt

(

1 −
sin θ

θ

)

and the two constants are proved to be the best possible. �

3. Proofs of theorems

3.1. Proof of Theorem 1.1. If n = 1, the inequality (1.10) becomes (2.4).

For n ≥ 2, let t = r + 1 and

ϕ(x) =
sin x

x
−

sin θ

θ
−

n−1
∑

k=1

µk
(

θr+1 − xr+1
)k
, ψ(x) =

(

θr+1 − xr+1
)n
,

ϕ1(x) =
ϕ(x)

xr
, ϕi+1(x) =

ϕ′
i(x)

xr
, ψ1(x) =

ψ′(x)

xr
, ψi+1(x) =

ψ′
i(x)

xr
,

where 2 ≤ i ≤ n. Then for 1 ≤ k ≤ n− 2,

ϕk(x) = uk(x) − [−(r + 1)]kk!µk −
n−k−1
∑

i=1

(i+ k)!

i!
µi+k

(

θ1+r − x1+r)i,

ϕn−1(x) = un−1(x) − (n− 1)![−(r + 1)]n−1µn−1,

and ϕn(x) = un(x), where uk(x) for 1 ≤ k ≤ n is defined by (2.1).

In view of (2.1), it is deduced that

[−(1 + r)]kk!µk = uk(θ)

for 1 ≤ k ≤ n− 1, hence ϕi(θ) = 0 for 1 ≤ i ≤ n− 1. A simple calculation gives

ψi(x) = [−(1 + r)]i
i−1
∏

ℓ=0

(n− ℓ)(θr+1 − xr+1)n−i

for 1 ≤ i ≤ n, consequently ψi(θ) = 0 for 1 ≤ i ≤ n− 1. As a result, for 1 ≤ i ≤ n− 1,

ϕ(x)

ψ(x)
=
ϕ(x) − ϕ(θ)

ψ(x) − ψ(θ)
,

ϕ′(x)

ψ′(x)
=
ϕ1(x) − ϕ1(θ)

ψ1(x) − ψ1(θ)
,

ϕ′
i(x)

ψ′
i(x)

=
ϕi+1(x) − ϕi+1(θ)

ψi+1(x) − ψi+1(θ)
,

ϕ′
n−1(x)

ψ′
n−1(x)

=
ϕn(x)

ψn(x)
=

un(x)

n![−(r + 1)]n
.

Let h1(x) = xnr+n+1 and hi+1(x) = 1
x
h′
i(x) for 1 ≤ i ≤ n and n ∈ N. Then it is easy to

see that

hi+1(x) =
i

∏

ℓ=1

(nr + n− 2ℓ + 3)xnr+n−2i+1
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for 1 ≤ i ≤ n. Utilization of Lemma 2.1 and Lemma 2.2 leads to

ϕ′
n−1(x)

ψ′
n−1(x)

=

∑n+1
i=1 a

n
i−1x

n−i+1 sin
(

x+ n+i−1
2

π
)

n![−(1 + r)]nxrn+n+1
=

v1(x)

n![−(1 + r)]nh1(x)
,

and, since vi(0) = hi(0) = 0 for 1 ≤ i ≤ n+ 1,

v1(x)

h1(x)
=
v1(x) − v1(0)

h1(x) − h1(0)
,

v′j(x)

h′
j(x)

=
vj+1(x) − vj+1(0)

hj+1(x) − hj+1(0)
,

v′n(x)

h′
n(x)

=
vn+1(x) − vn+1(0)

hn+1(x) − hn+1(0)
=

(−1)n sin x
∏i

ℓ=1(nr + n− 2ℓ+ 3)xnr−n+1

for 1 ≤ j ≤ n − 1. Since sinx
x

and x−n(r−1) are decreasing on (0, π), then the function
sinx

xnr−n+1 is decreasing and
(−1)nv′n(x)

h′n(x)
is deceasing. Accordingly, from Lemma 2.3, it

follows that the functions
(−1)nv′i(x)

h′
i
(x)

and
(−1)nv′i−1(x)

h′
i−1

(x)
for 2 ≤ i ≤ n are decreasing. Thus,

the functions
(−1)nv′1(x)

h′
1
(x)

and (−1)nv1(x)
h1(x)

are decreasing, and so
ϕ′

n−1(x)

ψ′
n−1

(x)
is decreasing in

(0, π).

Utilizing Lemma 2.3 again reveals that the functions
ϕ′

j(x)

ψ′
j
(x)

and
ϕ′

j−1(x)

ψ′
j−1

(x)
for 2 ≤ j ≤

n − 1 are decreasing, which implies the decreasing monotonicity of ϕ(x)
ψ(x)

in
(

0, π). By

L’Hôspital’s rule, it is easy to deduce that

lim
x→θ−

ϕ(x)

ψ(x)
= lim
x→θ−

ϕ′(x)

ψ′(x)
= lim
x→θ−

ϕ′
i(x)

ψ′
i(x)

=
un(θ)

n![−(1 + r)]n
= µn

for 1 ≤ i ≤ n − 1 and limx→0+
ϕ(x)
ψ(x)

= ωn, which implies µn ≤ ϕ(x)
ψ(x)

≤ ωn, and so the

constants µk and ωk are the best possible.

By mathematical induction, the inequality (1.10) is proved. The proof of Theorem 1.1
is complete. �

3.2. Proof of Theorem 1.3. It was proved in [31] and [32, (2.13)] that

(3.1)

sin2(λπ) ≤ cos2(λAi) + cos2(λAj) − 2 cos(λAi) cos(λAj) cos(λπ) , Hij

≤ 4 sin2

(

λ

2
π

)

.

Summing up (3.1) for 1 ≤ i < j ≤ n yields

(3.2)
(n

2

)

sin2(λπ) ≤
∑

1≤i<j≤n

Hij = H(n, λ) ≤ 4
(n

2

)

sin2
(λ

2
π
)

.

By virtue of inequality (1.10) in Theorem 1.1,

4 sin2
(λ

2
π
)

≤ λ2π2

[

sin θ

θ
+

m
∑

k=1

2−ktωk
(

2tθt − λtπt
)k

]2

,(3.3)

sin2(λπ) = 4 cos2
(λ

2
π
)

sin2
(λ

2
π
)

≥ λ2π2

[

sin θ

θ
+

m
∑

k=1

2−ktµk
(

2tθt − λtπt
)k

]2

cos2
(λ

2
π
)

.
(3.4)

Substituting (3.3) and (3.4) into (3.2) leads to (1.14). The proof of Theorem 1.3 is
complete. �
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