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Abstract

In this paper, the order of simultaneous approximation and
Voronovskaja type theorems with quantitative estimate for complex
genuine g-Bernstein-Durrmeyer polynomials (0 < ¢ < 1) attached to
analytic functions on compact disks are obtained. Our results show
that extension of the complex genuine g-Bernstein-Durrmeyer polyno-
mials from real intervals to compact disks in the complex plane extends
approximation properties (with quantitative estimates).
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1. Introduction

Recent studies demonstrate that the theory of g-calculus plays an important role in
analytic number theory and theoretical physics. For example, various applications of this
theory have appeared in the study of hypergeometric series [3], in approximation theory
[24], while other important applications have been related with quantum theory [20]. In
this paper, with the help of techniques from the g-calculus, we study the approximation
properties of a general family of genuine ¢-Bernstein—-Durrmeyer operators, which are
well-known positive linear operators in approximation theory.

Genuine Bernstein-Durrmeyer operators were first considered by W. Chen [4] and
T.N.T. Goodman and A. Sharma [16] around 1987. In recent years, genuine Bernstein—
Durrmeyer operators have been investigated intensively by a number of authors. Among
the many articles written on the U,, we mention here only the ones by H. Gonska et al.
[15], by P. Parvanov and B. Popov [23], by T. Sauer [25], by S. Waldron [26], and the
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book of R. Péltdnea [22]. Recently, the genuine g-Bernstein-Durrmeyer operators was
introduced and studied in [18].

Approximation properties of complex Bernstein polynomials in compact disks were
studied by many authors, see [17], [9] and references therein. In [9] a Voronovskaja-
type result with a quantitative estimate for complex Bernstein polynomials in compact
disks was obtained. In [14] similar results for Bernstein-Stancu and Kantorovich-Stancu
polynomials were obtained, while in [1] similar results for Bernstein-Schurer polynomials
were proved. Very recently, G. A. Anastassiou and S.G. Gal [2] studied the order of
simultaneous approximation and Voronovskaja kind results with quantitative estimate
for complex Bernstein-Durrmeyer polynomials attached to analytic functions on compact
disks. The results of paper [2] put in evidence the over-convergence phenomenon for
Bernstein-Durrmeyer polynomials, namely the extensions of approximation properties
(with quantitative estimates) from real intervals to compact disks in the complex plane.
On the other hand complex Bernstein type operators based on g-integers were studied
by S. Ostrovska [21], S. G. Gal [9] and N.I. Mahmudov [19].

The goal of this paper is to obtain approximation results for complex genuine g-
Bernstein-Durrmeyer polynomials on compact disks in the case 0 < ¢ < 1. First we
present upper estimates in approximation and we prove a Voronovskaja type conver-
gence theorem in compact disks in C, centered at the origin, with quantitative estimate
of this convergence. These results allow us to obtain the exact degrees in simultane-
ous approximation by complex genuine g-Bernstein-Durrmeyer polynomials. Our results
show that the extension of the complex genuine g-Bernstein-Durrmeyer polynomials from
real intervals to compact disks in the complex plane extends approximation properties
(with quantitative estimates).

2. Auxiliary results
Let ¢ > 0. For any n € NU {0}, the g-integer [n], is defined by

[n]g =1 +q+-+q" [0]q := 0;

and the g-factorial [n]q! by
[nlg! = [1q[2]q - - - [nlg, [0]4! :=1.

For integers 0 < k < n, the g-binomial is defined by

[ n ] o [n]q!

kile™ [Klg!n — k]!

For ¢ = 1 we obviously get [n]q = n, [n]q! = nl, [ " ] = <Z> Moreover,
q

k

n—1 n

(1—2)g:= H (1—=¢"2), pni(gz) = [ L ]qzk(l -2k zec.
s=0

For fixed ¢ > 0,q # 1, we define the g-derivative Dy f(z) of f by

M) =16,

Dy f(z) = (¢—1)z
7(0), =0,

The g-analogue of integration in the interval [0, A] (see [3]) is defined by

A ()
/0 f(#)dgt := A(1 —q) Z f(Aq”)q”, 0<g<l1.

n=0
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Let Dr be a disc Dg := {z € C : |z| < R} in the complex plane C. Denote by H (Dr) the
space of all analytic functions on Dg. For f € H (Dg) it follows that f(z) =3 > amz™

2.1. Definition. Let 0 < ¢ < 1. For f : [0,1] — C, we define the following genuine
g-Bernstein-Durrmeyer operator

Un,q (f;2) == f(0)pn,0(q; 2) + f(1)pn,n(g; 2)

(2.1) +[n —1] Z q pn &(q; )/o Pr—2,k—1(g; gt) f(t) dgt,

where for n = 1 the sum is empty, i.e., equal to 0.

Here Uy 4(f; 2) are linear operators reproducing linear functions, and thus interpolat-
ing every function f € C[0,1] at 0 and 1. For ¢ = 1 we recapture the genuine complex
Bernstein-Durrmeyer polynomials.

2.2. Lemma. Un,q(tm; z) is a polynomial of degree less than or equal to min(m,n) and

n—1
Un»Q(em;Z) = n+m_]q1 IZCS [n]q nq(eSaZ)' O

Also, the following lemma holds.

2.3. Lemma. For all m,n € N the identity

[n—1]q
+m—1 IZ 1,
holds.

Proof. This follows from the interpolation properties of Uy, q(em;z) and By 4(es; 2z) at
the end points. Indeed,

1= Un,q(e'm; 1)

[n—1]q
] Z cs(m [n]q Bng(es;1)

[n +m— 1]q —
2= 1, Z cs(m)[n]; O
[n +m— 1] ! T
Lemma 2.3 implies that for all m,n € N and |z| < r we have

[n—1]q
|Un,q(em; 2)| < [n+m—1] 'ch )[n]5|Bn.q(es; 2)]

(2:2) [n—1]q
s [n—|—m—1] ,ch nlar
<r™m.

Notice that if Ppn(z) is a polynomial of degree m, then by the Bernstein inequality we
have

(23)  |DePu ()| < |[Pal, < = [P (2)].

For our purpose first we need a recurrence formula for Uy q(em; 2).
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2.4. Lemma. For allm,n € NU{0} and z € C we have

202 )zt ), |
(24) Un’q (€m+1, Z) = WDqUnyq (em, Z) + WU’”H (em, Z) .

Proof. By a simple calculation we obtain

2 (1= 2) Dy (oo (:2)) = (K], =[], ) Pk (452).
t (1= qt) Dg (pn.k (4; 9t)) = pnk (; qt) ([K] = [n] qt) .

It follows that
2 (1 = 2) DqUn,q (€m; 2)

=l 2 (1= 2) 2 4 =1, 30 (16, ~ ], 2) P (0:2)
k=1
X /o Pr—2,k—1(g; qt) t"dqt
= [n]q 2" 4+ [n - l]q Z qlikpn,k (q; Z)

1
X / (q [k—1],+ 1) Pr—2,k—1 (¢; qt) " dgt — 2 [n], Un,q (€m; 2)
Jo

n—1
=, 2" = 2"+ =1, ¢ "pur(32)q
k=1
1
X / ([k -1, = —=2],qt+[n—2], qt) Prn—2,k—1 (g; gt) t™ dgt
J0
(2.5) -z [n]q Un.q (€m; 2) + Un,q (€m; 2)
n—1
=, 2" = 2"+ =10, ¢ " par(g2)q
k=1
1
x / ([k -1, —[n-2], qt) Pr—2,k—1 (q; qt) t" dgt
0
n—1
+n=1,n—=2,¢> ¢ " pux(g2)
k=1

1
< [ praie (@ a) £ gt = 0], U (6 2) + U (emi2)
0
n—1

=[n], 2" =" = [n-2], 2"+ [n— 1], Z @ Fpnr(g;2)
k=1

1
X / (Dgpn—2,k-1(g;qt)) qt (1 — qt) t"dgt
0

+[n 2], ¢*Ung (emt1;2) = 2 [n], Un.g (m; ) + Un.q (em; 2) -



Approximation by Genuine g-Bernstein-Durrmeyer Polynomials 81

We integrate by parts, setting ¢ (¢) =t (1 —t) (3) . The integral in the above formula
becomes

1
/ qu7lf2,k71 (qa qt) qt (1 - qt) tmdqt
0
1 1
=00 puzio @500 1~ [ prnics (6500 D () dt
JO
1
(2.6) = —q’m/ P21 (g qt) Dy (™ —772) dyt
0
1
=—q " [m+ 1]q / Prn—2,k—1 (q; qt) " dgt
JO

+q " [m+2], /01 P21 (g;qt) t" dgt
Substituting (2.6) in (2.5) we get
2(1 = 2) DqUn,q (em; 2)
=[n], 2" —2" —[n - 2]qq2z" +q¢ " m+1],2" —g " Im+ 2], 2"
—q " [m+ 1], Ung(em;z) +q " [m+2],Ung (€m+1;2)
+[n = 2], ¢"Unyg (em+152) = 2 [, Un,g (em; 2) + Ung (em; 2)
=—¢ " [m+1] Ung(em;2) + ¢ " [m+2] Ung (emt1;2)
+[n— 2]q q2Un,q (em41;2) — 2 [n]q Un,q (€m; 2) + Un,q (€m; 2)

which implies the recurrence in the statement. (]
Let
Tom (¢32) = Un,q (em;2) — 2™,
" m(m—1 _
On,m (q;2) := Un,q (em;2) — 2™ — ﬁzm Y1-2).

q

Using the recurrence formula (2.4) we prove two more recurrences.

2.5. Lemma. For all m,n € N U{0} and z € C we have

0" 2(1—2) o
(2 7) T"v”" (Q1 Z) - [n Im— l]q DGU’”:CI( m—1, )
. ¢ n) 2+ [m - 1], . [m —1], 1
rmo1, ot @A T A
L gz 1-2) )
. On,m (¢;2) = meTn,m (g;2)
() qul[n]z—k[m—l]q@ ) R )
[TL Tm— 1]q n,m—1 (Q7 Z) + n,m (q, Z) 5
where
(¢" —1) <q[m— 1]§+2<[m— 1]q—|-~~+1>> —m(m—1)[m—1],
Bonm (g2) = ntm—1] [n+1]
(2.9) a q

(m—=1l, (m—-1)(m=2) s
mtm—1, [y, - 473

x 2" (1 —2) +
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Proof. By simple calculation we obtain

-1 _
Un,q (e'm; Z) _ Zm _ m (m ) m—1

(1-2)

[n+1],
_q" 2 (1-2) _ o1y A" 24 1],
= T, Dr Unalems ) =270 + —p
X (Un’q (em;z) — 2™ ' — wzm*2 (1- z))

[n+1],
+ Rnm (¢; %),

where

_ [m — l]q
T nd+m— 1],
qm—l [m _ 1]q

[n+m—1],

m (m — 1)Zm,1
[n+1],
¢" ]2+ [m - 1],
[n+m—1],
m=1)(m=2) m
[n+1],

Rnm (¢;2) (1—2)2""" - (1-2)

(1 _ Z) mel +

(1-2)

= T (452) (1= 2) 27

[(m—1], (m—-1)(m—-2) m2

mtm—1, [+, (1-2)

Again, by a simple but tedious calculation, we obtain

To,m (45 2)
o m=1 w1y " m =], @, (1) (m—2)
_[n—i—m—l]q [n+1], [n+m—1],  [n+m-—1], [n+1],

o m =1 n+1], —m(m-1)[n+m—1],

- [n—|—m—1]q[n—|—1]q

¢" "t m—1], [n+1,+¢" " [n], (m—1) (m—2)
[n—|—m—1]q[n—|—1]q

+

=1, 1], —mm = 1) (=1, + ¢ ],

N [n+m—1], [n+1],

¢" ' m—1], [n+1],+¢" " [n], (m—1)m —2¢""" [n] (m—1)
[n+m—1], [n+1],

m=1] [n+1], —m(m—1)[m—1],

N [n+m—1] [n+1],

+

q"tm—1], [n+1], —2¢™ " [n], (m — 1)
[n+m—1]q[n+1]q
(" —1) <q[m_1]§+2<[m_1]q+---+1)) —m(m—1)m—1],
[n+m—1], [n+1], ’

+
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3. Approximation by complex genuine ¢g-Bernstein-Durrmeyer
polynomials

The first main result of the paper is expressed by the following upper estimates.

3.1. Theorem. Let 1 <r < R. Then for all |z| < r we have
(1 —l—r m—
[Ung (f52) = [ (2)] < Z |am|m (m —1) ™2,

Proof. From the recurrence formula (2.7) and the inequality (2.2) for m > 2 we get

|Tn, ( ) M

< T s e,

1]
+ 7 Th,m-1(q; 2)| + Tqrmfl (1+7)

(I+r)(m—1) [m—l]q m—1
< - r_ ., 11 n,m-— ; T, 11
[n+1]q r +T|T ) 1(q Z)|+ r

r(14r) -
[n+1],

By writing the last inequality for m = 2, ..., we easily obtain, step by step the following

<2(m-—1) P | Tomo1 (@32)]

o 2 < 7(r M g9+ 20 (1407
+2(m—1) [751:1]’“) P2
=7 | Tnm-2 (q;2)|+27£7£1T+1L) "2 — 1+ m — 2)
<--- < ﬁlT_Fl]:)m(m— 1) rm 2,

It follows that

[Un,q (f;2) = f(2)] <

]2

lam| [ To,m (g; 2)]
2

< % Z |am|m (m —1)r™

The second main result of the paper is the Voronovskaja theorem with a quantitative
estimate for the complex version of genuine g-Bernstein-Durrmeyer polynomials.

3.2. Theorem. Let R > 1, f € H (Dgr).
(i) For any r € [1, R) we have

z(1—2)

[n+1],

for all |z| <r andn € N.
(ii) The following Voronovskaja-type result in the closed unit disk holds

z2(1=2) ., . 8|z | am|m (

for all |z| <1 and n € N.

3
I

Ung (F;2) — £ (2) — £ (2| < AT ”"‘ Z|am|m — 1yt

Unq (f;2) = f(2) =

m=3
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Proof. (i) The formula (2.8) implies, for m > 2,

r(147r) /
1Onm (@:2)] < gy [Yom-1.(42)]
m—1
q" " [n],r+[m—1],
On,m—1(q; 2)| + |Rn,m (q; 2
i Ot (@) F R (02)
1+7)
hS ['fETl]|Tnm 1(g2 |+T|6nm 1(q; 2)| + [ Rnm (g5 2)] -
Now we will estimate |Tn m—1(q; 2 | for m > 2. Taking into account that YTp,m—1 (2) is
a polynomial of degree < (m — 1), we obtain

m—1
T/n,'mfl (g5 Z)’ < R Trm—1 (g3 )”T

m—1r(1+r) m—
< — m(m—l)(m—mr 8
— 2(m_1)2 (m_2) m—3
= i, Q+r)yrm .

This implies that

r(1+47r)
[n+1],

On the other hand

| Bn,m (q;2)| <

2m (m —1)(m —2)

|Tnm I(Q7 )| — [n_’_l]z

“2(1+7r)
[n+m—1] [n+

+3(1—q”)[m—1]q(m—1)r+m(m—1)[m—1]qr>
42 (1 + 1)

[n+1]z m(m—1)[m—1],

n <[m—1]q(m—1)(m—2)

Finally we obtain

6(147r)rm=2
[n+ 1]2

forall m > 1, n € N and |z| < 7. But ©n,0(g;2) = On,1(g;2) =0, for any z € C, and

therefore by writing the last inequality for m = 1,2,..., we easily obtain, step by step
the following:

[On,m (¢;2)| <7 |Onm—1(g;2)| + m(m— 1)

6(1—1—7"2 m-2 (1—&—7“)27“’"72 3
Onm (¢;2)| < ]y—l _7771 m—1)".
O )] < 25— Y D
As a conclusion, we obtain
z(1—2) St
W32 =1 () = T ng [1Onm (45|
2
1—|—r Z|am|m —1)3m1,
m=3

Note that since f(z) = >.°°_, amm (m — 1) (m 2) (m— 3) 2™~ and the series is
absolutely convergent in |z| < r, this implies that 3%, amm (m — 1)>r™™* < oo, and
proves part (i) of the theorem.

m=4
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(ii) The formula (2.8) implies

- [n+1]

Now we will estimate |Tﬁ“m,1 (g; z)| for m > 2. Taking into account that Y, m—1 (g; 2)

|z (1= 2)[ o
| ( q; )| = m |Tn,m71 (Q7Z)| + |@n,m71 (q; Z)| + |Rn,m (q72)|
|2 (1= 2)| {4
< o1 (652)| 4 [Onm—1 (¢ 2)] + | Ry (g5 2)] -
q

is a polynomial of degree < (m — 1), we obtain
| m—1 (g;2)] < (m—=1) I Thm—1(g;)Il;
2
< —1)———(m-—1 -2
< (m=1) gy (= 1) (m—2)
2m (m —1) (m —2)
- [n+1], '
On the other hand
4lz(1 - 2)|
an > S -1 1
R @59)] < Gy g = Dm = 1
< Mm(m_ 1)2.
[n+1]

Finally we obtain
81z (1 —z)]
2
[n+ 1],
forallm > 2, n € N and |z| < 1. But ©,,0(¢;2) = On,1(g;2) =0, for any z € C, and

therefore by writing the last inequality for m = 2,3, 4, ..., we easily obtain, step by step
the following

B ST LI L
O, (g52)] < E Z G-1° T (m —1)°.

[©n,m (¢;2)| < [On,m—1(g;2)| + m(m— 1)

As a conclusion, we obtain

L—2) -
Un,g (f;2)— f(2) — %ﬂ?f (2)] < mz:s |am]1©n,m (g;2)]
< 8lz(1 = 2)| _
< m23|am|m< 0*.
Note that since f* () = 0%, amm(m —1) (m —2) (m —3) 2™~ ", and the series is

absolutely convergent in |z| < r, it easily follows that >, |am|m (m —1)(m—2)?
0. d

Finally we will obtain the exact order of approximation by complex genuine Bernstein-
Durrmeyer polynomials and their derivatives. In this sense we present the following
results.

3.3. Theorem. Let 0 < g <1 be with limp—ooqn =1, R>1, f € H(Dgr). If f is not
a polynomial of degree <1, then for any r € [1, R) we have
1

1Unan (f) = fll, = CEST

holds, where the constant Cr (f) > 0 depends on f, r and on the sequence {qn}
is independent of n.

Cr(f), neN,

nEN but
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Proof. For all z € Dr and n € N we get

1 1"
Unan (519~ 1) = =0 =9 £ @ + a1,
) z(1—=2) i
X (Uann (f;z) = f(2) - mf (Z)) }
It follows that
1Unae (F) = 11, = %{Hel (e s
sdn r = [Tl 4 l]qn r
~ o1, [Onan () -7 - S5 )

Since by hypothesis f is not a polynomial of degree < 1 in Dr we have |le1 (1 — e1) f|],. >
0. Indeed, assuming the contrary it follows that 2 (1 —2) f” () = 0 for all z € D, that
is f"" (2) =0 for all z € D,. Thus, f is linear, which contradicts the hypothesis.

Now, by Theorem 3.2 we have

4 1Ly [V (5520 — £ ) - ﬁf ®)|
n—i:ir ng|am|m m—1)>%r""*" 5 0asn— occ.

Consequently, there exists n1 (depending only on f and r) such that for all n > n; we
have

(] (1 — 61)

[n+ 1]% f

le (L —ex) £, — 11, \ Unan (F) =

> 2l —en s,
which implies

1Un.qn (f) = fll,. > H€1(1—e1)f”HT7 for all n > ns.

>
"2+,

For 1 <n <n; —1 we have

1
— > - —
(O (1) = £, 2 gy I+ 1y, W () = 11,
1
= ————M;ngq, >0,
[TL + 1]qn 31, Qg (f)
which finally implies that
1
n - > — T 5
HU sdn (f) f”r - [n + l]qn C sdn (f)
for all n, with Crq, (f) = min {Mr1.4, (), - Mrn; -1, (f), 5 llex (1 —ex) f7II, },
which ends the proof. O

3.4. Corollary. Let 0 < gn <1 be with limp—ooqn =1, R> 1, f € H(Dg). If f is not
a polynomial of degree < 1, then for any r € [1, R) we have

1Unan () = Il , nEN

_ 1
[n+1],

holds, where the constants in the equivalence < depends on f, r and on the sequence

{@n}, ey, but is independent of n. O
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Notice that we have the following saturation.

3.5. Corollary. If f € H(Dgr), R > 1, then |Un,q, (f;2) — f(2)] =0 (1/ [n]qn> for an
infinite number of points having an accumulation point on the disc Dr if and only if f is
linear.

Proof. By Theorem 3.2, we get limn—.oo [2], (Un,q, (f;2) = f(2)) =2(1—2)f"(2) =0
z) €

for an infinite number of points having an accumulatlon point on Dg. Since z (1 — 2) f”

H (Dgr), by the Unicity Theorem for analytic functions we get
2(1=2)f"(2) =2(1-2) Z amm (m —1) 2™ =0,
and therefore, a,, = 0, m = 2,3,... Thus, f is linear and the corollary is proved. (]

For the derivatives of complex genuine Bernstein-Durrmeyer polynomials we can state
the following result.

3.6. Theorem. Let 0 < gn < 1 satisfy limp—oogn = 1, f € H(Dgr), R > 1 and
1<r<ri<R.If fis not a polynomial of degree < max {1,p — 1}, then we have
‘ - 1
T - [n + 1]¢Zn ’

where the constant in the equivalence < depends only on f, r, r1, p and on the sequence
{q”}nEN'

U(I?;n (f) _ f(P)

Proof. Let I" be a circle of radius 71 > r > 1 and center 0. We have

U (f:2) = 7 (2)

{027 @1 1,
) z(1—=2) ., ®)
(U 59 - 100 - FEFE @)}
== {['z“‘z” @

ot [ Unaa (F50) = F (0) = G (v )dv}.

+TL% - (v_z)p+1
It follows that
|, (1= 1® )|
1 ” p
> e e,
. v(l=v) pr
pl Un,lIn (fav) - f(v) - "+1]q f ( )
N Y =" “.
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where by using Theorem 3.2 we get

) e Fre, £ )
r

[n+1], Sy (0— 2)P 71 dv
p! 21Ty e1(l—er)
<[n+1],, 2 (ry = 1) Un,gn (f) = f = Wf" (v)
an 1

M, (f) plri
T, (=)

But by the hypothesis on f we have
[ler (1= ex) £ ()]

Indeed, assuming the contrary it follows that z (1 — z) f” (2) is a polynomial of degree
< p—1. Now, if p = 1 and p = 2 then the analyticity of f obviously implies that
f necessarily is a polynomial of degree < 1 = max (1,p — 1), which contradicts the
hypothesis. If p > 2 then the analyticity of f obviously implies that f necessarily is a
polynomial of degree < p — 1 = max (1,p — 1), which again contradicts the hypothesis.

> 0.

Continuing by reasoning exactly as in the proof of Theorem 3.3, we immediately get
the desired conclusion. g
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