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Abstract

In this paper we consider the notion of hyper implicative bounded BCK-
algebras, give some examples and introduce the relation β on them.
Then we let β∗ be the transitive closure of β. In hyper implicative
bounded BCK-algebra theory, the fundamental relation is defined as
the smallest equivalence relation so that the quotient would be the
(fundamental) BCK-algebra. We show that β∗ is the fundamental re-
lation on a hyper implicative bounded BCK-algebra. Finally, we state
conditions that are equivalent with the transitivity of this relation.
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1. Introduction

Imai and Iseki [3] in 1966 introduced the notion of BCK-algebra as an important tool
for recent investigations in algebraic logic. This notion originated in two different ways.
One of the motivations is based on set theory. In set theory, there are three elementary
and fundamental operations, introduced by L. Kantorovic and E. Livenson, to make a new
set from old sets. These fundamental operations are union, intersection and set difference.
As a generalization of union, intersection and set difference and their properties, we have
the concept of Boolean algebra that added the notion of distributivity. Moreover, if we
consider the notion of union or intersection, we have the notion of an upper semilattice
or lower semilattice. But, the notion of set difference was not considered systematically
before K. Isaci.

Another motivation is taken from classical and non-classical propositional calculi.
There are some systems which contain only the implication functor among the logical
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functors. These examples are the systems of positive implicational calculus, weak positive
implicational calculus by A. Church, and the BCI, BCK-systems by C. AS. Meredith.

We know the following simple relations in set theory:

(A − B) − (A − C) ⊂ C − B,

A − (A − B) ⊂ B.

In propositional calculi, these relations are denoted by

(p → q) → ((q → r) → (p → r)),

p → ((p → q) → q).

From these relationships, K. Isaci introduced a new notion called a BCK-algebra. BCK-
algebras arise as an algebraic counterpart of pure implicational logic containing only the
logical connective implication → and the constant 1, considered as the value “true”, in
which the formulas

(B) (p → q) → ((q → r) → (p → r));
(C) (p → (q → r)) → (q → (p → r));
(K) p → (q → p).

are theorems. Here (B) and (C) mean transitivity and commutativity, respectively.

The study of hyperstructures started in 1934 with Marty’s paper at the 8th Congress
of Scandinavian Mathematicians [7] which introduced the concept of hypergroup. Since
then other classic hyperstructures have also been studied. A hypergroupoid (H, ◦) is a
non-empty set H together with a hyperoperation ◦ defined on H , that is, a mapping
of H × H into the family of non-empty subsets of H . If (x, y) ∈ H × H , its image
under ◦ is denoted by x ◦ y. If A, B are non-empty subsets of H then A ◦ B is given
by A ◦ B =

⋃
{x ◦ y | x ∈ A, y ∈ B}. x ◦ A is used for {x} ◦ A and A ◦ x for A ◦ {x}.

A hypergroupoid (H, ◦) is called a semi-hypergroup if for all x, y, z ∈ H the following
condition holds:

x ◦ (y ◦ z) = (x ◦ y) ◦ z.

A short review of hyperstructure theory appears in [2]. Recently (see [6]) Jun, Zahedi,
Xin, and Borzoei applied hyperstructure theory to BCK-algebras, and introduced the
concept of the hyper K-algebra, which is a generalization of the concept of BCK-algebra.

2. Preliminaries

2.1. Definition. A BCK-algebra is a non-empty set H endowed with a binary operation
“◦” and a constant 0 satisfying the following axioms:

(BCK 1): ((x ◦ y) ◦ (x ◦ z)) ◦ (z ◦ y) = 0,
(BCK 2): (x ◦ (x ◦ y)) ◦ y = 0,
(BCK 3): x ◦ x = 0,
(BCK 4): 0 ◦ x = 0,
(BCK 5): x ◦ y = 0 and y ◦ x = 0 imply x = y.

Let A be a BCK-algebra. The partial ordering ≤ on A is defined by

x ≤ y if and only if x ◦ y = 0.

If A contains an element 1 such that a ≤ 1, i.e., a ◦ 1 = 0, for all a ∈ A then A is called
a bounded BCK-algebra.

If x∧ y = y ∧ x, where x∧ y = y ◦ (y ◦ x) for all x, y ∈ A, then A is called a commutative
BCK-algebra.
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A bounded commutative BCK-algebra A is a distributive lattice with respect to ∧ and ∨,
where x∨y = N(Nx∧Ny) and Nx = 1◦x for all x, y ∈ A (see [1, 4, 9]). A BCK-algebra
A is called implicative if x ◦ (y ◦ x) = x for all x, y ∈ A. Every implicative BCK-algebra
is commutative [5, Theorem 9].

A BCK-algebra is therefore a partially ordered set A with a fixed element 0 and a
binary operation “◦” satisfying the following axioms:

(bck 1): ((x ◦ y) ◦ (x ◦ z)) ≤ (z ◦ y),
(bck 2): (x ◦ (x ◦ y)) ≤ y,
(bck 3): x ≤ x,
(bck 4): 0 ≤ x,
(bck 5): x ≤ y and y ≤ x imply x = y �

2.2. Theorem. [6] Let 〈A, ◦, 0〉 be a BCK-algebra. We have the following properties:

(1) x ◦ 0 = x;
(2) x ≤ y and y ≤ z imply x ≤ z;
(3) x ≤ y implies x ◦ z ≤ y ◦ z;
(4) x ≤ y implies z ◦ x ≤ z ◦ y;
(5) (x ◦ y) ◦ z = (x ◦ z) ◦ y;
(6) (x ◦ y) ≤ z implies (x ◦ z) ≤ y;
(7) x ◦ y ≤ x. �

2.3. Definition. Let I be a non-empty subset of a BCK-algebra 〈H, ◦, 0〉. Then I is
called an ideal of H if

(I1) 0 ∈ I ;
(I2) x ◦ y ∈ I and y ∈ I imply that x ∈ I .

An ideal P in a commutative BCK-algebra A is called prime if x ∧ y ∈ P implies that
x ∈ P or y ∈ P . Equivalently (see [9]), P is prime if and only if for any ideals I, J of A,
I ∩ J ⊆ P implies I ⊆ P or J ⊆ P . The maximal and minimal ideals of BCK-algebras
have the usual meaning.

2.4. Theorem. [4] Let X be a subset of a BCK-algebra A. The set of all a ∈ A for
which (. . . ((a ◦ x1) ◦ x2) ◦ . . . ◦ xn) = 0 for some x1, x2, . . . , xn ∈ X is the minimal ideal
containing X, it is called the ideal generated by X and is usually denoted by 〈X〉. If
X = {x} then we denote 〈{x}〉 by 〈x〉, and call it as the principal ideal generated by x.

Let I be an ideal of a BCK-algebra A. We define an equivalence relation R on A by
aRb if and only if a ◦ b ∈ I . Let Ca denote the equivalence class of a ∈ A, then evidently
C0 = I . Let A/I denote the set of all classes Ca, a ∈ A. Then A/I is a BCK-algebra with
Ca ◦Cb = Ca◦b and Ca ≤ Cb if and only if a ≤ b. A/I is called the quotient BCK-algebra
of A determined by I .

2.5. Definition. Let H be a non-empty set, endowed with a binary hyperoperation “◦”
and a constant 0. Then 〈H, ◦, 0〉 is called a quasi hyper BCK-algebra if it satisfies the
following axioms:

(H1) (x ◦ z) ◦ (y ◦ z) ≪ x ◦ y,
(H2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(H3) x ◦ H ≪ x,

and is called a hyper BCK-algebra, if also

(H4) x ≪ y and y ≪ x imply x = y,

where x ≪ y is defined by 0 ∈ x ◦ y, and for every A, B ⊆ H , A ≪ B is defined by
∀a ∈ A,∃b ∈ B such that a ≪ b.
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A hyper BCK-algebra A is called bounded if there exists an element 1 such that x ≪ 1
for all x ∈ A, and is called implicative if x ∈ (x ◦ y) ◦ x for all x, y ∈ A.

2.6. Example. Let A = {0, a, 1}. Consider the following table:

◦ 0 a 1

0 {0} {0} {0}

a {a} {0,a} {0,a}

1 {1} {a,1} {0,a,1}

Then (A, ◦, 0, 1) is a bounded and implicative hyper BCK-algebra.

2.7. Example. Let A = {0, a, b, 1}. Consider the following table:

◦ 0 a b 1

0 {0} {0} {0} {0}

a {a} {0} {0} {0}

b {b} {b} {0} {0}

1 {1} {b} {a} {0,1}

Then (A, ◦, 0, 1) is a bounded hyper BCK-algebra, but it is not implicative.

2.8. Theorem. Let 〈H, ◦, 0〉 be a hyper BCK-algebra, A,B any non-empty subsets of H
and x, y ∈ H. We have the following properties:

(h1) x ◦ y ≪ x;
(h2) x ◦ 0 ≪ x, 0 ◦ x ≪ 0 and 0 ◦ 0 ≪ 0;
(h3) (A ◦ B) ◦ C = (A ◦ C) ◦ B, A ◦ B ≪ A and 0 ◦ A ≪ 0;
(h4) 0 ◦ 0 = {0};
(h5) 0 ≪ x;
(h6) x ≪ x;
(h7) A ≪ A;
(h8) A ⊆ B implies A ≪ B;
(h9) 0 ◦ x = {0};

(h10) 0 ◦ A = {0};
(h11) A ≪ 0 implies A = {0};
(h12) x ∈ x ◦ 0, (x ◦ 0 = {x});
(h13) x ◦ 0 ≪ y implies x ≪ y;
(h14) x ≪ y implies x ◦ z ≪ y ◦ z;
(h15) x ◦ y = 0 implies (x ◦ z) ◦ (y ◦ z) = 0 and x ◦ z ≪ y ◦ z;
(h16) A ◦ 0 = 0 implies A = 0.

In a hyper BCK-algebra H, the condition (H3) is equivalent to the condition (h1). �

2.9. Example. Let 〈H, ◦, 0〉 be a BCK-algebra and I an ideal of H . Now, we define the
hyper operation “◦” on H/I as follows

x/I ◦ y/I :=
⋃

a∈x/I,b∈y/I

(a ◦ b)/I.

Then 〈H/I, ◦, 0/I〉 is a hyper BCK-algebra.

2.10. Definition. Let I be a non-empty subset of a hyper BCK-algebra 〈H, ◦, 0〉. Then
I is called a hyper BCK-ideal of H if

(I1) 0 ∈ I ;
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(I2) if x ◦ y ≪ I and y ∈ I imply that x ∈ I .

2.11. Example. Let A be a hyper BCK-algebra as in Example 2.7. Then I := {0, 1} is
a hyper BCK-ideal.

3. The fundamental relation on implicative bounded hyper BCK-

algebras

3.1. Definition. Let R be an equivalence relation on a hyper BCK-algebra 〈H, ◦, 0, 1〉
and A, B ⊆ H . Then

(i) ARB if and only if there exist a ∈ A and b ∈ B such that aRb.

(ii) ARB if and only if for all a ∈ A there exist b ∈ B such that aRb.

(iii) ARB if and only if for all a ∈ A and b ∈ B we have aRb.

(iv) R is called regular to the right if aRb implies a ◦ cR b ◦ c, for all a, b, c ∈ H .

(v) R is called strongly regular to the right if aRb implies a ◦ cR b ◦ c, for all
a, b, c ∈ H .

(vi) R is called good, if a ◦ bR{0} and b ◦ aR{0} imply aRb, for all a, b ∈ H .

Let < H, ◦, 0 > be a hyper BCK-algebra and A a subset of H . Then L(A) will denote
the set of all finite combinations of elements A with ◦.

Now, in the following, the well-known idea of β∗ relation on hyperstructures [2, 8, 10]
is transferred and applied to hyper BCK-algebras.

3.2. Definition. If 〈H, ◦, 0〉 is a hyper BCK-algebra, then we set:

βH
1 = {(a, a) | a ∈ H}

and, for every integer n > 1, βH
n is the relation defined as follows:

aβH
n b ⇐⇒ ∃(c1, c2, . . . , cn) ∈ Hn, ∃z ∈ L({c1, c2, . . . , cn}) : {a, b} ⊆ z.

Obviously, for every n ≥ 1, the relations βH
n are symmetric, and the relation βH =⋃

n≥1
βH

n is reflexive and symmetric. Let βH
∗ be the transitive closure of βH . (When it

is clear from the context which hyper BCK-algebra is being considered, βn, β, β∗ will
be written in place of βH

n , βH , βH
∗ ).

3.3. Theorem. Let 〈H, ◦, 0, 1〉 be a hyper BCK-algebra. Then βH
∗ is strongly regular on

H. Moreover, if H is implicative and bounded, then βH
∗ is a good relation.

Proof. Let aβ∗b. Then there exist s ∈ N, (c0, c1, . . . , cs) ∈ Hs+1 such that c0 =
a, cs = b and q1, q2, . . . , qs ∈ N such that a = c0βq1c1βq2c2 . . . βqs

cs = b, so for each
i ∈ {1, 2, . . . , s} there exists (zi

1, z
i
2, . . . , z

i
qi

) ∈ Hqi such that {ci, ci+1} ⊆ zi, where

zi ∈ L({zi
1, z

i
2, . . . , z

i
qi
}). Now, let x ∈ H . It easily follows that ∀i ∈ {0, 1, . . . , s− 1}, ci ◦

x, ci+1 ◦x ⊆ zi ◦x. Consequently if i is such that 0 ≤ i ≤ s, ∀u ∈ ci ◦x,∀v ∈ ci+1 ◦x, one
gets uβv. Therefore, ∀u ∈ c1 ◦x,∀v ∈ cs ◦ x we have uβ∗v and thus by Definition 3.1, β∗

is strongly regular.

Now, let H be implicative and bounded. We show that β∗ is good. Suppose that
x ◦ yβ∗{0} and y ◦xβ∗{0}. Since β∗ is a strongly regular relation on H , we have (x ◦ y) ◦

x ¯̄β∗0 ◦ x = {0} and (y ◦ x) ◦ y ¯̄β∗0 ◦ y = {0}. Since x ∈ (x ◦ y) ◦ x then xβ∗0. Similarly,
we have yβ∗0, so by transitivity of β∗, xβ∗y. �

3.4. Lemma. Let 〈H, ◦, 0〉 be a hyper BCK-algebra and R a regular relation on H. We
denote the set of all equivalence classes of R by H/R (i.e H/R = {R(x) | x ∈ H}), and
for all R(x),R(y) ∈ H/R define

R(x)◦R(y) := {R(t)|t ∈ x ◦ y}.



466 S. Rasouli, D. Heidari, B. Davvaz

Then ◦ is well defined.

Proof. Let R(x1) = R(x2) and R(y1) = R(y2). Then x1Rx2 and y1Ry2. Since R is a
regular relation, we have x1◦y1Rx2◦y2. We must show that R(x1)◦R(y1) = R(x2)◦R(y2).

Let R(t) ∈ R(x1)◦R(y1), therefore R(t) = R(s) for some s ∈ x1 ◦ y1. From x1 ◦ y1Rx2 ◦
y2 there exists u ∈ x2 ◦ y2 such that sRu. Thus R(s) = R(u) and R(s) = R(t), so
R(t) = R(u) ∈ R(x2)◦R(y2). Therefore, R(x1)◦R(y1) ⊆ R(x2)◦R(y2). Similarly, we
have R(x2)◦R(y2) ⊆ R(x1)◦R(y1), hence ◦ is well defined. �

3.5. Definition. Let 〈H, ◦, 0〉 be a hyper BCK-algebra, R a regular relation on H and
R(x),R(y) ∈ H/R. Then we define

R(x) ≪ R(y) if and only if R(0) ∈ R(x)◦R(y).

3.6. Theorem. Let R be an equivalence relation on H. Then R is a regular relation on
H if and only if (H/R, ◦, R(0)) is a quasi hyper BCK-algebra.

Proof. =⇒ Let a ∈ (R(x)◦R(z))◦(R(y)◦R(z)). Then there exist s ∈ x ◦ z, t ∈ y ◦ z and
h ∈ H such that a = R(h) = R(s)◦R(t). So there exists h′ ∈ s ◦ t ⊆ (x ◦ z) ◦ (y ◦ z).
Hence by condition (H1) of Definition 2.5, there exists h′′ ∈ x ◦ y such that h′ ≪ h′′,
which means that 0 ∈ h′ ◦h′′. Hence R(0) ∈ R(h′) ◦R(h′′) and R(h′′) ∈ R(x) ◦R(y). We
conclude that R(0) ∈ R(h′) ◦ R(h′′), and by Definition 3.3, we obtain R(h) ≪ R(h′′) so

(R(x)◦R(z))◦(R(y)◦R(z)) ≪ R(x)◦R(y).

Now, we must prove (H2) for H/R. Suppose that R(h) is an element of (R(x)◦R(y))◦R(z),
so there exists s ∈ x ◦ y such that R(h) ∈ R(s)◦R(z). Then there exists t ∈ s ◦ z such
that R(h) = R(t). But, we have (x ◦ y) ◦ z = (x ◦ z) ◦ y, hence s ◦ z ⊆ (x ◦ z) ◦ y. By
definition there exists s′ ∈ x ◦ z such that t ∈ s′ ◦ y, so

R(t) ∈ R(s′)◦R(y) ⊆ (R(x)◦R(z))◦R(y).

Similarly, (R(x)◦R(z))◦(R(y) ⊆ (R(x)◦R(y))◦R(z), and so the condition (H2) issatisfied
in H/R. Clearly, we have (H3). Therefore, H/R is a quasi hyper BCK-algebra.

⇐= Let a, b, c, d ∈ H with aRb and cRd. Then R(a) = R(b) and R(c) = R(d). Since
H/R is a quasi hyper BCK-algebra and ◦ is well defined, we have R(a)◦R(c) = R(b)◦R(d).
Let R(x) ∈ R(a)◦R(c) = R(b)◦R(d). Then there exist t ∈ a ◦ c and u ∈ b ◦ d such that
R(x) = R(t) = R(u) so a ◦ cRb ◦ d. Therefore, R is a regular relation on H . �

3.7. Theorem. Let R be a good strongly regular relation on H. Then (H/R, ◦, R(0)) is
a hyper BCK-algebra, called the quotient hyper BCK-algebra of H with respect to R.

Proof. Let R be a good regular relation on H . By Theorem 3.6, we see that (H/R, ◦, R(0))
satisfies all conditions of Definition 2.5 except (H4). Let R(x) ≪ R(y) and R(y) ≪ R(x).
Since R(x) ≪ R(y), we have R(0) ∈ R(x) ◦ R(y). Then R(0) = R(t) for some t ∈ x ◦ y.
This implies that x ◦ yR{0}. Similarly, from R(y) ≪ R(x) we get that y ◦xR{0}. There-
fore, we have x ◦ yR{0} and y ◦ xR{0}. Since R is a good regular relation, by Definition
3.1 (vi), we have xRy. Hence, R(x) = R(y). �

3.8. Definition. Let H,H ′ be hyper BCK-algebras. A function f : H −→ H ′ is called
a homomorphism if it satisfies the condition ∀(x, y) ∈ H2, f(x ◦ y) = f(x) ◦ f(y) and
f(0) = 0.

3.9. Theorem. Let H, H ′ be hyper BCK-algebras and f : H −→ H ′ a homomorphism.
The equivalence R associated with f (i.e R = {(x, y) | f(x) = f(y)}) is regular. Further-
more, the function g : f(H) −→ H/R, g(f(x)) = x, is an isomorphism.
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Proof. Let xRy and a ∈ H , so f(x◦a) = f(x)◦f(a) = f(y)◦f(a) = f(y ◦a), from which
it follows that ∀u ∈ x ◦ a there exists v ∈ y ◦ a such that f(u) = f(v), and this implies
that uRv. Regularity on the left is shown similarly, and therefore R is regular. Now, we
prove that g is an isomorphism. Since x ◦ y = x ◦ y is clear, g is an monomorphism, and
obviously g is onto. �

3.10. Theorem. Let R be a good and strongly regular relation on a hyper BCK-algebra
(H, ◦, 0). Then

(1) H/R is a BCK-algebra.
(2) If H ′ is a BCK-algebra and f : H −→ H ′ is a homomorphism, then the equiva-

lence ρ associated with f is strongly regular.

Proof. (1) Since R is a good and strongly regular relation on H , we have x ◦ yRx ◦ y for
each x, y ∈ H . It follows that |x ◦ y| = 1. Therefore H/R is a BCK-algebra.

(2) Let xρy and a ∈ H . Therefore f(x) = f(y), so for every u ∈ x ◦ a, v ∈ y ◦ a we
obtain f(u), f(v) ∈ f(x ◦ a) = f(x) ◦ f(a). Since H ′ is a BCK-algebra, then |f(x ◦ a)| =
1 = |f(y ◦ a)| which implies that uρv. Thus, x ◦ a ρ y ◦ a. �

3.11. Theorem. The relation β∗ is the smallest equivalence relation such that the quo-
tient H/β∗ is a BCK-algebra.

Proof. Firstly, β∗ is a strongly regular relation and so H/β∗ is a BCK-algebra. Let
θ be an equivalence relation such that H/θ is a BCK-algebra and let ϕ : H −→ H/θ
be the canonical projection. If xβy there exist n ∈ N, (c1, c2, . . . , cn) ∈ Hn and z ∈
L(c1, c2, . . . , cn) such that {a, b} ⊆ z. Since ϕ(a), ϕ(b) ∈ ϕ(z) and |ϕ(z)| = 1 then
ϕ(a) = ϕ(b), therefore θ(a) = θ(b) and we have a θ b, hence β ⊆ θ. It follows that
β∗ ⊆ θ. �

3.12. Corollary. The relation β∗ is the smallest strongly regular relation on a hyper
BCK-algebra.

Proof. Let θ be a strongly regular relation. Then H/θ is a BCK-algebra. But by The-
orem 3.11, β∗ is the smallest equivalence relation such that the quotient H/β∗ is a
BCK-algebra. Therefore, β∗ ⊆ θ. �

4. Transitivity conditions for β

In this section, we determine some necessary and sufficient conditions under which
the relation β is transitive.

4.1. Definition. Let A be a non-empty subset of H . We say that A is a β-part if for
every n ∈ N, i = 1, 2, . . . , n, ∀ki ∈ N, ∀(ai1, ai2, . . . , aiki

) ∈ Hki , we have

L(ai1, ai2, . . . , aiki
) ∩ A 6= ∅ =⇒ L(ai1, ai2, . . . , aiki

) ⊆ A.

4.2. Lemma. Let A be a non-empty subset of a hyper BCK-algebra H. The following
conditions are equivalent:

(1) A is a β-part of H;
(2) x ∈ A, xβy imply y ∈ A;
(3) x ∈ A, xβ∗y imply y ∈ A.

Proof. (1) =⇒ (2) Let (x, y) ∈ H2 be such that x ∈ A and xβy, so by definition there
exist n ∈ N and (a1, a2, . . . , an) ∈ H such that {x, y} ⊆ L(a1, a2, . . . , an). Since A is a
β-part and L(a1, a2, . . . , an) ∩ A 6= ∅, we have y ∈ A.



468 S. Rasouli, D. Heidari, B. Davvaz

(2) =⇒ (3) Let (x, y) ∈ H2 be such that x ∈ A and xβ∗y, so by transitivity there
exist n ∈ N and (x = a0, a1, . . . , an = y) ∈ Hn+1 such that x = a0βa1β · · · βan = y. By
applying (2) n times, we conclude that y ∈ A.

(3) =⇒ (1) Let L(a1, a2, . . . , an) ∩ A 6= ∅, and x ∈ L(a1, a2, . . . , an) ∩ A. Now, for
every y ∈ L(a1, a2, . . . , an), we have xβy. Therefore, xβ∗y and (3) implies y ∈ A. �

Before proving the next theorem, we introduce the following notations. For every
element x of a hyper BCK-algebra, set:

Pn(x) =
⋃
{L(A)|x ∈ L(A), |A| = n}

Pσ(x) =
⋃

n≥1
Pn(x).

4.3. Lemma. For every x ∈ H, Pσ(x) = {y ∈ H | xβy}

Proof. We have

x β y ⇐⇒ ∃n ∈ N,∃ (z1, z2, . . . , z3) ∈ Hn : x ∈ L(z1, z2, . . . , z3)

⇐⇒ ∃n ∈ N : y ∈ Pn(x)

⇐⇒ y ∈ Pσ. �

4.4. Theorem. Let H be a hyper BCK-algebra. Then the following conditions are equiv-
alent:

(1) β is transitive;
(2) for every x ∈ H, β∗(x) = Pσ(x);
(3) for every x ∈ H, Pσ(x) is a β-part of H.

Proof. (1) =⇒ (2) By Lemma 4.3, for every pair (x, y) of elements of H we have:

y ∈ β∗(x) ⇐⇒ x β∗ y ⇐⇒ x β y ⇐⇒ y ∈ Pσ(x).

(2) =⇒ (3) By Lemma 4.2, if A is a non-empty subset of H , then A is a β-part of H if
and only if it is a union of equivalence classes modulo β∗. Particularly, every equivalence
class modulo β∗ is a β-part of H .

(3) =⇒ (1) If xβy and yβz, then there exist (n, m) ∈ N
∗ × N

∗, (x1, x2, . . . , xn) ∈ Hn,
(y1, y2, . . . , ym) ∈ Hm, such that {x, y} ∈ L(x1, x2, . . . , xn), {y, z} ∈ L(y1, y2, . . . , ym).
Since Pσ(x) is a β-part of H , we have

x ∈ L(x1, x2, . . . , xn) ∩ Pσ(x) =⇒ L(x1, x2, ..., xn) ⊆ Pσ(x)

=⇒ y ∈ L(y1, y2, . . . , ym) ∩ Pσ(x)

=⇒ L(y1, y2, . . . , ym) ⊆ Pσ(x)

=⇒ z ∈ Pσ(x)

=⇒ ∃ k ∈ N
∗ : z ∈ Pk(x) =⇒ zβx.

Therefore, β is transitive. �

Acknowledgements. The authors are highly grateful to the referees for their valuable
comments and suggestions for improving the paper.



β-Relations on Implicative Bounded Hyper BCK-algebras 469

References

[1] Cornish, W.H. On Iseki’s BCK-algebras, algebraic structures and applications (Proceedings
of the First Western Australian Conference on Algebra (eds. P. Schultz, C.E. Praeger and
R.P. Sullivan), Marcel Dekker, New York, 1982), 101–122.

[2] Corsini, P. Prolegomena of hypergroup theory (Aviani Editore, Tricesimo, 1993).
[3] Imai, Y. and Iseki, K. On axiom systems of propositional calculi XIV, Proc. Japan Academy

42, 26–29, 1966.
[4] Iseki, K. and Tanaka, S. Ideal theory BCK-algcbras, Math. Japonica 21, 351–366, 1976.
[5] lseki, K. and Tanaka, S. An introduction to the theory of BCK-algebras, Math. Japonica

23, 1–26, 1978.
[6] Jun, Y. B., Zahedi, M.M., Xin, X. L. and Borzoei, R.A. On hyper BCK-algebras, Italian

Journal of Pure and Applied Mathematics 8, 127–136, 2000.
[7] Marty, F. Sur une generalization de la notion de groupe, 8iem congres Math. Scandinaves,

Stockholm, 45–49, 1934.
[8] Spartalis, S. and Vougiouklis, T. The fundamental relations on Hv-rings, Riv. Mat. Pura

Appl. 13, 7–20, 1994.
[9] Traczyk, T. On the variety of bounded commutative BCK-algebras, Math. Japonica 24,

283–292, 1979.
[10] Vougiouklis, T. Hyperstructures and their representations (Hadronic Press, Inc, 115 Palm

Harber, USA, 1994).


