PSEUDOPARALLEL ANTI-INVARIANT SUBMANIFOLDS OF KENMOTSU MANIFOLDS

Sibel Sular*†, Cihan Özgür* and Cengizhan Murathan‡

Received 09:11:2009 : Accepted 18:03:2010

Abstract

We consider an anti-invariant, minimal, pseudoparallel and Ricci-generalized pseudoparallel submanifold M of a Kenmotsu space form $\widetilde{M}(c)$, for which ξ is tangent to M.

Keywords: Kenmotsu space form, Anti-invariant submanifold, Pseudoparallel submanifold, Ricci-generalized pseudoparallel submanifold.

2000 AMS Classification: 53 C 40, 53 C 25, 53 C 42.

1. Introduction

An *n*-dimensional submanifold M in an *m*-dimensional Riemannian manifold \widetilde{M} is pseudoparallel [1], if its second fundamental form σ satisfies the following condition

$$(1.1) \quad \overline{R} \cdot \sigma = L_{\sigma}Q(g, \sigma).$$

Pseudoparallel submanifolds in space forms were studied by A. C. Asperti, G. A. Lobos and F. Mercuri (see [1] and [2]). Also, R. Deszcz, L. Verstraelen and Ş. Yaprak [6] obtained some results on pseudoparallel hypersurfaces in a 4-dimensional space form $N^4(c)$. Moreover, C-totally real pseudoparallel submanifolds of Sasakian space forms were studied by A.Yıldız, C. Murathan, K. Arslan and R. Ezentaş in [12].

On the other hand, in [9], C. Murathan, K. Arslan and R. Ezentaş defined submanifolds satisfying the condition

$$(1.2) \overline{R} \cdot \sigma = L_S Q(S, \sigma).$$

 $^{^*}$ Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey.

E-mail: (S. Sular) csibel@balikesir.edu.tr (C. Özgür) cozgur@balikesir.edu.tr

[†]Corresponding Author.

[‡]Department of Mathematics, Uludağ University, 16059 Bursa, Turkey.

This kind of submanifold is called *Ricci-generalized pseudoparallel*. In [13], A. Yıldız and C. Murathan studied pseudoparallel and Ricci-generalized pseudoparallel invariant submanifolds of Sasakian space forms. In [10], the present authors considered pseudoparallel and Ricci-generalized pseudoparallel invariant submanifolds of contact metric manifolds.

In the present study, we consider pseudoparallel and Ricci-generalized pseudoparallel, anti-invariant, minimal submanifolds of Kenmotsu space forms. We find a necessary condition for the submanifold to be totally geodesic.

2. Preliminaries

Let $f:M^n\longrightarrow \widetilde{M}^{n+d}$ be an isometric immersion of an n-dimensional Riemannian manifold M into an (n+d)-dimensional Riemannian manifold \widetilde{M} . We denote by ∇ and $\widetilde{\nabla}$ the Levi-Civita connections of M and \widetilde{M} , respectively. Then we have the Gauss and Weingarten formulas

$$(2.1) \qquad \widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y)$$

and

$$(2.2) \qquad \widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$$

where ∇^{\perp} denotes the normal connection on $T^{\perp}M$ of M, and A_N is the shape operator of M, for $X, Y \in \chi(M)$ and a normal vector field N on M. We call σ the second fundamental form of the submanifold M. If $\sigma = 0$ then the submanifold is said to be totally geodesic. The second fundamental form σ and A_N are related by

$$g(A_N X, Y) = \widetilde{g}(\sigma(X, Y), N),$$

where g is the induced metric of \widetilde{g} for any vector fields X,Y tangent to M. The mean curvature vector H of M is given by

$$H = \frac{1}{n} Tr(\sigma).$$

The first derivative $\overline{\nabla}\sigma$ of the second fundamental form σ is given by

$$(2.3) \qquad (\overline{\nabla}_X \sigma)(Y, Z) = \nabla_X^{\perp} \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z),$$

where $\overline{\nabla}$ is called the van der Waerden-Bortolotti connection of M [4]. If $\overline{\nabla}\sigma = 0$, then f is said to be a parallel immersion.

The second covariant derivative $\overline{\nabla}^2 \sigma$ of the second fundamental form σ is given by

$$(\overline{\nabla}^{2}\sigma)(Z, W, X, Y) = (\overline{\nabla}_{X}\overline{\nabla}_{Y}\sigma)(Z, W)$$

$$= \overline{\nabla}_{X}^{\perp}((\overline{\nabla}_{Y}\sigma)(Z, W) - (\overline{\nabla}_{Y}\sigma)(\nabla_{X}Z, W)$$

$$- (\overline{\nabla}_{X}\sigma)(Z, \nabla_{Y}W) - (\overline{\nabla}_{\nabla_{X}Y}\sigma)(Z, W).$$

Then we have

$$(\overline{\nabla}_X \overline{\nabla}_Y \sigma)(Z, W) - (\overline{\nabla}_Y \overline{\nabla}_X \sigma)(Z, W)$$

$$= (\overline{R}(X, Y) \cdot \sigma)(Z, W)$$

$$= R^{\perp}(X, Y) \sigma(Z, W) - \sigma(R(X, Y)Z, W) - \sigma(Z, R(X, Y)W),$$

where \overline{R} is the curvature tensor belonging to the connection $\overline{\nabla}$, and

$$R^{\perp}(X,Y) = \left[\nabla^{\perp}X, \nabla^{\perp}Y\right] - \nabla^{\perp}_{[X,Y]},$$

(see [4]).

Now for a (0, k)-tensor field $T, k \ge 1$, and a (0, 2)-tensor field A on (M, g), we define Q(A, T) (see [5]) by

(2.6)
$$Q(A,T)(X_1,...,X_k;X,Y) = -T((X \wedge_A Y)X_1,X_2,...,X_k) - \cdots \\ \cdots - T(X_1,...,X_{k-1},(X \wedge_A Y)X_k),$$

where $X \wedge_A Y$ is an endomorphism defined by

$$(2.7) (X \wedge_A Y)Z = A(Y, Z)X - A(X, Z)Y.$$

Substituting $T = \sigma$ and A = g or A = S in formula (2.6), we obtain $Q(g, \sigma)$ and $Q(S, \sigma)$, respectively. In case A = g we write $X \wedge_g Y = X \wedge Y$ for short.

3. Submanifolds of Kenmotsu manifolds

Let \widetilde{M} be a (2n+1)-dimensional almost contact metric manifold with structure (φ, ξ, η, g) , where φ is a tensor field of type (1,1), ξ a vector field, η a 1-form and g the Riemannian metric on \widetilde{M} satisfying

$$\varphi^{2} = -I + \eta \otimes \xi, \quad \varphi \xi = 0, \quad \eta(\xi) = 1, \quad \eta \circ \varphi = 0,$$

$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y),$$

$$\eta(X) = g(X, \xi), \quad g(\varphi X, Y) = -g(X, \varphi Y),$$

for all vector fields X, Y on \widetilde{M} [3]. An almost contact metric manifold \widetilde{M} is said to be a Kenmotsu manifold [7] if the relation

(3.1)
$$(\widetilde{\nabla}_X \varphi) Y = g(\varphi X, Y) \xi - \eta(Y) \varphi X$$

holds on \widetilde{M} , where $\widetilde{\nabla}$ is the Levi-Civita connection of g. From the above equation, for a Kenmotsu manifold we also have

$$(3.2) \qquad \widetilde{\nabla}_X \xi = X - \eta(X) \xi.$$

Moreover, the curvature tensor \widetilde{R} and the Ricci tensor \widetilde{S} of \widetilde{M} satisfy [7]

$$(3.3) \qquad \widetilde{R}(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

$$(3.4) \widetilde{S}(X,\xi) = -2n\eta(X).$$

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of φ equals $-2d\eta \otimes \xi$), but not Sasakian. Moreover, it is also not compact since from the equation (3.2) we get $\text{div}\xi = 2n$. In [7], K. Kenmotsu showed:

- (1) That locally a Kenmotsu manifold is a warped product $I \times_f N$ of an interval I and a Kaehler manifold N, with warping function $f(t) = ce^t$, where c is a nonzero constant; and
- (2) That a Kenmotsu manifold of constant sectional curvature is a space of constant curvature -1, and so it is locally hyperbolic space.

A plane section in the tangent space $T_x\widetilde{M}$ at $x\in\widetilde{M}$ is called a φ -section if it is spanned by a vector X orthogonal to ξ and φX . The sectional curvature $K(X,\varphi X)$ with respect to a φ -section, denoted by the vector X, is called a φ -sectional curvature. A Kenmotsu manifold with constant holomorphic φ -sectional curvature c is a Kenmotsu space form, and is denoted by $\widetilde{M}(c)$, The curvature tensor of a Kenmotsu space form is

given by

$$\widetilde{R}(X,Y)Z = \frac{1}{4}(c-3)\{g(Y,Z)X - g(X,Z)Y\}$$

$$+ \frac{1}{4}(c+1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + \eta(Y)g(X,Z)\xi - \eta(X)g(Y,Z)\xi + g(X,\varphi Z)\varphi Y - g(Y,\varphi Z)\varphi X + 2g(X,\varphi Y)\varphi Z\}.$$

Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional Kenmotsu manifold \widetilde{M} , with ξ tangent to M. Then we have from Gauss' formula

$$\widetilde{\nabla}_X \xi = \nabla_X \xi + \sigma(X, \xi),$$

which implies from (3.2) that

(3.6)
$$\nabla_X \xi = X - \eta(X)\xi \text{ and } \sigma(X,\xi) = 0,$$

for each vector field X tangent to M (see [8]). It is also easy to see that for a submanifold M of a Kenmotsu manifold \widetilde{M}

$$(3.7) R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

for any vector fields X and Y tangent to M. From the equation (3.7) we get

$$(3.8) R(\xi, X)\xi = X - \eta(X)\xi,$$

for a submanifold M of a Kenmotsu manifold \widetilde{M} . Moreover, the Ricci tensor S of M satisfies

(3.9)
$$S(X, \xi) = -m\eta(X)$$
.

We proved the following theorems in [11]:

- **3.1. Theorem.** [11] Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional Kenmotsu manifold \widetilde{M} , with ξ tangent to M. If M is pseudoparallel such that $L_{\sigma} \neq -1$, then it is totally geodesic.
- **3.2. Theorem.** [11] Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional Kenmotsu manifold \widetilde{M} , with ξ tangent to M. If M is Ricci-generalized pseudoparallel such that $L_S \neq \frac{1}{m}$, then it is totally geodesic.

The technique used in the proofs of Theorem 3.1 and Theorem 3.2 is not sufficient to interpret the cases $L_{\sigma}=-1$ and $L_{S}=\frac{1}{m}$. These cases are open. For this reason, we give solutions of these cases in Section 4, for anti-invariant, minimal submanifolds of a Kenmotsu space form.

4. Anti-invariant Submanifolds of Kenmotsu Space Forms

Let M be an (n+1)-dimensional submanifold of a (2n+1)-dimensional Kenmotsu manifold \widetilde{M} . A submanifold M of a Kenmotsu manifold \widetilde{M} is called *anti-invariant* if and only if $\varphi(T_xM) \subset T_x^{\perp}M$ for all $x \in M$ (T_xM) and $T_x^{\perp}M$ are the tangent space and normal space of M at x, respectively).

For an anti-invariant submanifold M of a Kenmotsu space form $\widetilde{M}(c)$, with ξ tangent to M, we have

$$R(X,Y)Z = \frac{1}{4}(c-3)\{g(Y,Z)X - g(X,Z)Y\} + \frac{1}{4}(c+1)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + \eta(Y)g(X,Z)\xi - \eta(X)g(Y,Z)\xi\} + A_{\sigma(Y,Z)}X - A_{\sigma(X,Z)}Y.$$

We denote by S and r the Ricci tensor and scalar curvature of M, respectively. Then we have

$$S(Y,Z) = \frac{1}{4} [n(c-3) - (c+1)]g(Y,Z) - \frac{1}{4} (n-1)(c+1)\eta(Y)\eta(Z) - \sum_{i} g(\sigma(Y,e_i),\sigma(Z,e_i))$$

and

(4.3)
$$r = \frac{1}{4} [n^2(c-3) - n(c+5)] - \sum_{i,j} g(\sigma(e_i, e_j), \sigma(e_i, e_j)),$$

where $\{e_i\}$ is an orthonormal basis of M.

By an easy calculation, we have the following proposition:

4.1. Proposition. Let M^{n+1} be an anti-invariant, minimal submanifold of a Kenmotsu space form $\widetilde{M}^{2n+1}(c)$. Then we have

$$\frac{1}{2}\Delta(\|\sigma\|^2) = \|\overline{\nabla}\sigma\|^2 + \left[\frac{(n+1)(c-3)}{4}\right] \|\sigma\|^2 - \sum_{\alpha,\beta=n+2}^{2n+1} \{ [Tr(A_\alpha \circ A_\beta)]^2 + \|[A_\alpha, A_\beta]\|^2 \},$$

where $\{e_1, e_2, \dots, e_{n+1}\}$ is an orthonormal basis of M such that $e_{n+1} = \xi$.

4.2. Theorem. Let M^{n+1} be an anti-invariant, minimal submanifold of a Kenmotsu space form $\widetilde{M}^{2n+1}(c)$, with ξ tangent to M. If M^{n+1} is pseudoparallel and $\frac{(n+1)(c+1)}{4} \leq 0$ then it is totally geodesic.

Proof. Suppose that M is an (n+1)-dimensional anti-invariant submanifold of the (2n+1)-dimensional Kenmotsu space form $\widetilde{M}^{2n+1}(c)$. We choose an orthonormal basis

$$\{e_1, e_2, \dots, e_n, \xi, \varphi e_1 = e_1^*, \dots, \varphi e_n = e_n^*\}.$$

Then, for $1 \le i, j \le n+1, n+2 \le \alpha \le 2n+1$, the components of the second fundamental form σ are given by

(4.5)
$$\sigma_{ij}^{\alpha} = g(\sigma(e_i, e_j), e_{\alpha}).$$

Similarly, the components of the first and the second covariant derivative of σ are given by

$$(4.6) \sigma_{ijk}^{\alpha} = g((\overline{\nabla}_{e_k}\sigma)(e_i, e_j), e_{\alpha}) = \overline{\nabla}_{e_k}\sigma_{ij}^{\alpha}$$

and

(4.7)
$$\sigma_{ijkl}^{\alpha} = g((\overline{\nabla}_{e_l} \overline{\nabla}_{e_k} \sigma)(e_i, e_j), e_{\alpha})$$
$$= \overline{\nabla}_{e_l} \sigma_{ijk}^{\alpha}$$
$$= \overline{\nabla}_{e_l} \overline{\nabla}_{e_k} \sigma_{ij}^{\alpha},$$

respectively. Since M is pseudoparallel, then the condition

$$(4.8) \overline{R}(e_l, e_k) \cdot \sigma = -[(e_l \wedge_g e_k) \cdot \sigma]$$

is fulfilled where

$$(4.9) \qquad [(e_l \wedge_g e_k) \cdot \sigma](e_i, e_j) = -\sigma((e_l \wedge_g e_k)e_i, e_j) - \sigma(e_i, (e_l \wedge_g e_k)e_j)$$
 for $1 \le i, j, k, l \le n + 1$.

Using (2.7) in (4.9), we obtain

$$(4.10) \qquad [(e_l \wedge_g e_k) \cdot \sigma](e_i, e_j) = -g(e_k, e_i)\sigma(e_l, e_j) + g(e_l, e_i)\sigma(e_k, e_j) - g(e_k, e_j)\sigma(e_l, e_j) + g(e_l, e_j)\sigma(e_k, e_j).$$

By virtue of (2.5) we have

$$(4.11) \quad (\overline{R}(e_l, e_k) \cdot \sigma)(e_i, e_j) = (\overline{\nabla}_{e_l} \overline{\nabla}_{e_k} \sigma)(e_i, e_j) - (\overline{\nabla}_{e_k} \overline{\nabla}_{e_l} \sigma)(e_i, e_j).$$

Then using (4.5), (4.7), (4.10) and (4.11), the pseudoparallelity condition (4.8) reduces to

$$(4.12) \quad \sigma_{ijkl}^{\alpha} = \sigma_{ijlk}^{\alpha} + \{\delta_{ki}\sigma_{ij}^{\alpha} - \delta_{li}\sigma_{kj}^{\alpha} + \delta_{kj}\sigma_{il}^{\alpha} - \delta_{lj}\sigma_{ki}^{\alpha}\},$$

where $g(e_i, e_j) = \delta_{ij}$ and $1 \le i, j, k, l \le n+1, n+2 \le \alpha \le 2n+1$.

The Laplacian $\Delta \sigma_{ij}^{\alpha}$ of σ_{ij}^{α} can be written as

$$(4.13) \quad \Delta \sigma_{ij}^{\alpha} = \sum_{i,j,k=1}^{n+1} \sigma_{ijkk}^{\alpha}.$$

Then we get

$$(4.14) \quad \frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,j,k,l=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} \sigma_{ij}^{\alpha} \sigma_{ijkl}^{\alpha} + \|\overline{\nabla}\sigma\|^2,$$

where

(4.15)
$$\|\sigma\|^2 = \sum_{i,j=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} (\sigma_{ij}^{\alpha})^2$$

and

(4.16)
$$\|\overline{\nabla}\sigma\|^2 = \sum_{i,j,k,l=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} (\sigma_{ijkl}^{\alpha})^2$$

are the square of the length of the second and the third fundamental forms of M, respectively. On the other hand, by the use of (4.5) and (4.7), we have

$$\sigma_{ij}^{\alpha}\sigma_{ijkk}^{\alpha} = g(\sigma(e_i, e_j), e_{\alpha})g((\overline{\nabla}_{e_k}\overline{\nabla}_{e_k}\sigma)(e_i, e_j), e_{\alpha})$$

$$= g((\overline{\nabla}_{e_k}\overline{\nabla}_{e_k}\sigma)(e_i, e_j)g(\sigma(e_i, e_j), e_{\alpha}), e_{\alpha})$$

$$= g((\overline{\nabla}_{e_k}\overline{\nabla}_{e_k}\sigma)(e_i, e_j), \sigma(e_i, e_j)).$$

On the other hand, by the use of (4.17), equation (4.14) turns into

$$(4.18) \quad \frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,k=1}^{n+1} g((\overline{\nabla}_{e_k}\overline{\nabla}_{e_k}\sigma)(e_i,e_j),\sigma(e_i,e_j)) + \|\overline{\nabla}\sigma\|^2.$$

Substituting (4.17) into (4.18), we have

$$\frac{1}{2}\Delta(\|\sigma\|^{2}) = \sum_{i,j,k=1}^{n+1} \left[g((\overline{\nabla}_{e_{i}} \overline{\nabla}_{e_{j}} \sigma)(e_{k}, e_{k}), \sigma(e_{i}, e_{j})) + \left\{ g(e_{i}, e_{j})g(\sigma(e_{k}, e_{k}), \sigma(e_{i}, e_{j})) - g(e_{k}, e_{j})g(\sigma(e_{k}, e_{i}), \sigma(e_{i}, e_{j})) + g(e_{k}, e_{i})g(\sigma(e_{j}, e_{k}), \sigma(e_{i}, e_{j})) - g(e_{k}, e_{k})g(\sigma(e_{i}, e_{j}), \sigma(e_{i}, e_{j})) \right\} \right] + \|\overline{\nabla}\sigma\|^{2}.$$

Furthermore, by the definitions

(4.20)
$$\|\sigma\|^2 = \sum_{i,i=1}^{n+1} g(\sigma(e_i, e_j), \sigma(e_i, e_j)),$$

(4.21)
$$H^{\alpha} = \sum_{k=1}^{n+1} \sigma_{kk}^{\alpha},$$

$$(4.22) ||H||^2 = \frac{1}{(n+1)^2} \sum_{\alpha=n+2}^{2n+1} (H^{\alpha})^2,$$

and after some calculations, we find

$$\frac{1}{2}\Delta(\left\|\sigma\right\|^{2}) = \sum_{i,j=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} \sigma_{ij}^{\alpha}(\overline{\nabla}_{ei}\overline{\nabla}_{e_{j}}H^{\alpha}) - (n+1)\left\|\sigma\right\|^{2} + \left\|\overline{\nabla}\sigma\right\|^{2}.$$

Then, by the use of the minimality condition, the last equation turns into

$$(4.23) \quad \frac{1}{2}\Delta(\left\Vert \sigma\right\Vert ^{2})=-(n+1)\left\Vert \sigma\right\Vert ^{2}+\left\Vert \overline{\nabla}\sigma\right\Vert ^{2}.$$

Comparing the right hand sides of the equations (4.4) and (4.23), we get

$$(4.24) \left(-(n+1) - \frac{(n+1)(c-3)}{4} \right) \|\sigma\|^2 + \sum_{\alpha,\beta=n+2}^{2n+1} \left\{ \left[\text{Tr}(A_\alpha \circ A_\beta) \right]^2 + \|[A_\alpha, A_\beta]\|^2 \right\} = 0.$$

If $\frac{(n+1)(c+1)}{4} \leq 0$ then $\text{Tr}(A_{\alpha} \circ A_{\beta}) = 0$. In particular, $||A_{\alpha}||^2 = \text{Tr}(A_{\alpha} \circ A_{\alpha}) = 0$, thus $\sigma = 0$. This finishes the proof of the theorem.

4.3. Theorem. Let M^{n+1} be an anti-invariant, minimal submanifold of a Kenmotsu space form $\widetilde{M}^{2n+1}(c)$, with ξ tangent to M. If M^{n+1} is Ricci-generalized pseudoparallel and $\frac{r}{n} - \frac{(n+1)(c-3)}{4} \geq 0$, then it is totally geodesic.

Proof. If M is Ricci-generalized pseudoparallel, then as in the proof of Theorem 4.2, for $1 \le i, j \le n+1, n+2 \le \alpha \le 2n+1$, we have

$$\frac{1}{2}\Delta(\|\sigma\|^{2}) = \sum_{i,j,k=1}^{n+1} \left[g((\overline{\nabla}_{e_{i}} \overline{\nabla}_{e_{j}} \sigma)(e_{k}, e_{k}), \sigma(e_{i}, e_{j})) - \frac{1}{n} \left\{ S(e_{i}, e_{j}) g(\sigma(e_{k}, e_{k}), \sigma(e_{i}, e_{j})) - S(e_{k}, e_{j}) g(\sigma(e_{k}, e_{i}), \sigma(e_{i}, e_{j})) + S(e_{k}, e_{i}) g(\sigma(e_{j}, e_{k}), \sigma(e_{i}, e_{j})) - S(e_{k}, e_{k}) g(\sigma(e_{j}, e_{k}), \sigma(e_{i}, e_{j})) \right\} \right] + \|\overline{\nabla}\sigma\|^{2}.$$

Thus, by the use of (4.2), we get

$$\sum_{i,j,k=1}^{n+1} S(e_i, e_j) g(\sigma(e_k, e_k), \sigma(e_i, e_j))$$

(4.26)
$$= \sum_{i,j,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} S(e_i, e_j) g(A_{\alpha}e_k, e_k) g(A_{\alpha}e_i, e_j)$$

$$= \sum_{i,j,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} S(e_i, e_j) \operatorname{Tr}(A_{\alpha}) g(A_{\alpha}e_i, e_j) = 0$$

and

$$\sum_{i,j,k=1}^{n+1} S(e_k, e_j) g(\sigma(e_k, e_i), \sigma(e_i, e_j))$$

$$= \sum_{i,j,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} S(e_k, e_j) g(A_{\alpha}e_i, e_k) g(A_{\alpha}e_i, e_j)$$

$$= \sum_{i,j,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} S(e_k, e_j) g(A_{\alpha}e_k, e_i) g(A_{\alpha}e_j, e_i)$$

$$= \sum_{i,j,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} S(e_k, e_j) g(A_{\alpha}e_k, A_{\alpha}e_j)$$

$$= \sum_{i,j,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} \frac{1}{4} [n(c-3) - (c+1)] g(e_k, e_j) g(A_{\alpha}e_k, A_{\alpha}e_j)$$

$$- \frac{1}{4} (n-1)(c+1) g(A_{\alpha}e_k, A_{\alpha}e_j)$$

$$- \sum_{\alpha=n+2}^{2n+1} g(A_{\alpha}e_k, A_{\alpha}e_j) g(A_{\alpha}e_k, A_{\alpha}e_j).$$

Moreover, using the equation (4.3), we have

$$(4.28) \quad \sum_{i,j,k=1}^{n+1} S(e_k, e_k) g(\sigma(e_i, e_j), \sigma(e_i, e_j)) = r \|\sigma\|^2.$$

Then, substituting equations (4.26) - (4.28) in (4.25), we obtain

$$(4.29) \quad \frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,k=1}^{n+1} g((\overline{\nabla}_{e_i}\overline{\nabla}_{e_j}\sigma)(e_k,e_k),\sigma(e_i,e_j)) + \frac{r}{n}\|\sigma\|^2 + \|\overline{\nabla}\sigma\|^2.$$

Putting $H^{\alpha} = \sum_{k=1}^{n+1} \sigma_{kk}^{\alpha}$, the equation (4.29) turns into

$$(4.30) \quad \frac{1}{2}\Delta(\|\sigma\|^2) = \sum_{i,k=1}^{n+1} \sum_{\alpha=n+2}^{2n+1} \sigma_{ij}^{\alpha}(\overline{\nabla}_{e_i} \overline{\nabla}_{e_j} H^{\alpha}) + \frac{r}{n} \|\sigma\|^2 + \|\overline{\nabla}\sigma\|^2.$$

Furthermore, making use of the minimality condition, the equation (4.30) can be written as follows

$$(4.31) \quad \frac{1}{2}\Delta(\|\sigma\|^2) = \frac{r}{n}\|\sigma\|^2 + \|\overline{\nabla}\sigma\|^2.$$

Consequently, comparing the right hand sides of the equations (4.4) and (4.31), we get

$$\left(\frac{r}{n} - \frac{(n+1)(c-3)}{4}\right) \|\sigma\|^2 + \sum_{\alpha,\beta=n+2}^{2n+1} \left\{ \left[\text{Tr}(A_{\alpha} \circ A_{\beta}) \right]^2 + \left\| [A_{\alpha}, A_{\beta}] \right\|^2 \right\} = 0.$$

If $\frac{r}{n} - \frac{(n+1)(c-3)}{4} \ge 0$ then $\text{Tr}(A_{\alpha} \circ A_{\beta}) = 0$. In particular, $||A_{\alpha}||^2 = \text{Tr}(A_{\alpha} \circ A_{\alpha}) = 0$, thus $\sigma = 0$. Therefore, our theorem is proved.

References

- Asperti, A. C., Lobos, G. A. and Mercuri, F. Pseudo-parallel immersions in space forms, Math. Contemp. 17, 59-70, 1999.
- [2] Asperti, A. C., Lobos, G. A. and Mercuri, F. Pseudo-parallel submanifolds of a space form, Adv. Geom. 2(1), 57–71, 2002.
- [3] Blair, D. E. Riemannian Geometry of Contact and Symplectic Manifolds (Progress in Mathematics, 203, Birkhauser Inc., Boston, MA, 2002).
- [4] Chen, B. Y. Geometry of Submanifolds and its Applications (Science University of Tokyo, Tokyo, 1981).
- [5] Deszcz, R. On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser. A, 44, 1–34, 1992.
- [6] Deszcz, R., Verstraelen, L. and Yaprak, S. Pseudosymmetric hypersurfaces in 4-dimensional space of constant curvature, Bull. Ins. Math. Acad. Sinica, 22, 167–179, 1994.
- [7] Kenmotsu, K. A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24 (2), 93–103, 1972.
- [8] Kobayashi, M. Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor (N.S.) 43, 28–36, 1986.
- [9] Murathan, C., Arslan, K. and Ezentaş, R. Ricci Generalized Pseudo-parallel Immersions (Differential Geometry and its Applications, Matfyzpress, Prague, 2005), 99–108.
- [10] Özgür, C., Sular, S. and Murathan, C. On pseudoparallel invariant submanifolds of contact metric manifolds, Bull. Transilv. Univ. Braşov Ser. B (N.S.) 14 (49), 227–234, 2007.
- [11] Sular, S., Özgür, C. and Murathan, C. On pseudoparallel, invariant submanifolds of Kenmotsu manifolds, Submitted.
- [12] Yıldız, A., Murathan, C., Arslan, K. and Ezentaş, R. C-totally real pseudo-parallel submanifolds of Sasakian space forms, Monatshefte für Mathematik 151 (3), 247–256, 2007.
- [13] Yıldız, A. and Murathan, C. Invariant submanifolds of Sasakian space forms, Journal of Geometry 95 (1-2), 135–150, 2009.