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Abstract

We consider an anti-invariant, minimal, pseudoparallel and Ricci-
generalized pseudoparallel submanifold M of a Kenmotsu space form
M (c), for which & is tangent to M.
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1. Introduction

An n-dimensional submanifold M in an m-dimensional Riemannian manifold M is
pseudoparallel [1], if its second fundamental form o satisfies the following condition

(1.1)  R-o0=LsQ(g,0).

Pseudoparallel submanifolds in space forms were studied by A.C. Asperti, G. A. Lobos
and F. Mercuri (see [1] and [2]). Also, R. Deszcz, L. Verstraelen and S. Yaprak [6]
obtained some results on pseudoparallel hypersurfaces in a 4-dimensional space form
N 4(c). Moreover, C-totally real pseudoparallel submanifolds of Sasakian space forms
were studied by A.Yildiz, C. Murathan, K. Arslan and R. Ezentas in [12].

On the other hand, in [9], C. Murathan, K. Arslan and R. Ezentag defined submani-
folds satisfying the condition

(12) R-o0=LsQ(S,0).
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This kind of submanifold is called Ricci-generalized pseudoparallel. In [13], A. Yildiz and
C. Murathan studied pseudoparallel and Ricci-generalized pseudoparallel invariant sub-
manifolds of Sasakian space forms. In [10], the present authors considered pseudoparallel
and Ricci-generalized pseudoparallel invariant submanifolds of contact metric manifolds.

In the present study, we consider pseudoparallel and Ricci-generalized pseudoparallel,
anti-invariant, minimal submanifolds of Kenmotsu space forms. We find a necessary
condition for the submanifold to be totally geodesic.

2. Preliminaries

Let f:M" — M™% be an isometric immersion of an n-dimensional Riemannian
manifold M into an (n + d)-dimensional Riemannian manifold M. We denote by V and
V the Levi-Civita connections of M and M , respectively. Then we have the Gauss and
Weingarten formulas

(21)  VxY =VxY +0(X,Y)
and
(22)  VxN=—AxX + V%N,

where V1 denotes the normal connection on T+ M of M, and Ay is the shape operator of
M, for X,Y € x(M) and a normal vector field N on M. We call o the second fundamental
form of the submanifold M. If o = 0 then the submanifold is said to be totally geodesic.
The second fundamental form o and Ay are related by

g(ANX7 Y) = E(O(Xv Y)vN)v

where g is the induced metric of g for any vector fields X,Y tangent to M. The mean
curvature vector H of M is given by

1
H= ET’/‘(O’).

The first derivative Vo of the second fundamental form o is given by
23)  (Vxo)(Y,Z) = Vxo(Y,Z) —o(VxY,Z) —o(Y,VxZ),

where V is called the van der Waerden-Bortolotti connection of M [4]. If Vo = 0, then
f is said to be a parallel immersion.

The second covariant derivative Vo of the second fundamental form o is given by

(Vo) Z,W,X,Y) = (VxVyo)(Z,W)

(2.4) =Vx((Vyo)(Z, W) — (Vyo)(VxZ,W)
— (Vx0)(Z,VyW) = (Vexya)(Z,W).

Then we have

(VxVyo)(Z,W) - (VyVxo)(Z,W)
(2.5) — (R(X.Y)-0)(Z,W)

= RJ‘(X7 Y)o(Z,W)—-0o(R(X,Y)Z,W)—0(Z,R(X,Y)W),

where R is the curvature tensor belonging to the connection V, and

RY(X,Y) = [V"X, VY] - Vi,
(see [4]).
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Now for a (0, k)-tensor field T, k > 1, and a (0, 2)-tensor field A on (M, g), we define
Q(A,T) (see [5]) by
QAT X1, .., X X, Y)=-T(XNaY)X1,Xo,...,Xp)— -~

2.6
(2.6) = T( Xy, Xee1, (X AaY) Xe),

where X A4 Y is an endomorphism defined by
(2.7) (XAaY)Z =AY, 2)X — A(X,2)Y.

Substituting ' = 0 and A = g or A = S in formula (2.6), we obtain Q(g,0) and Q(S, o),
respectively. In case A = g we write X Ay Y = X AY for short.

3. Submanifolds of Kenmotsu manifolds

Let M be a (2n 4 1)-dimensional almost contact metric manifold with structure
(¢,€,m,9), where ¢ is a tensor field of type (1,1), & a vector field, n a 1-form and g

the Riemannian metric on M satisfying

P =-T+n®E ¢t=0, n¢) =1, nop=0,
(X, Y) = g(X,Y) — n(X)n(Y),
n(X) =g(X,8), g(pX,Y)=—g(X,pY),

for all vector fields X,Y on M [3]. An almost contact metric manifold M is said to be a
Kenmotsu manifold [7] if the relation

(3.1)  (Vx@)Y = g(eX,Y)E —n(Y)pX

holds on M7 where V is the Levi-Civita connection of g. From the above equation, for a
Kenmotsu manifold we also have

(32)  Vx&=X—n(X)E

Moreover, the curvature tensor R and the Ricci tensor S of M satisfy [7]

(33) R(X,Y)(=n(X)Y —n(Y)X,
(3.4) S(X, &) = —2nn(X).

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of ¢ equals —2dn ® &),
but not Sasakian. Moreover, it is also not compact since from the equation (3.2) we get
divé = 2n. In [7], K. Kenmotsu showed:

(1) That locally a Kenmotsu manifold is a warped product I x ¢ N of an interval I and
a Kaehler manifold N, with warping function f(t) = ce’, where ¢ is a nonzero constant;
and

(2) That a Kenmotsu manifold of constant sectional curvature is a space of constant
curvature —1, and so it is locally hyperbolic space.

A plane section in the tangent space T.M at x € M is called a p-section if it is
spanned by a vector X orthogonal to £ and pX. The sectional curvature K (X, pX)
with respect to a -section, denoted by the vector X, is called a @-sectional curvature.
A Kenmotsu manifold with constant holomorphic ¢-sectional curvature c is a Kenmotsu
space form, and is denoted by M (¢), The curvature tensor of a Kenmotsu space form is
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given by

R(X,Y)Z = i(c —3){g(Y, 2)X — g(X,Z2)Y}

(c+D{n(X)n(2)Y —n(Y)n(Z)X
+n(Y)g(X, Z)¢ —n(X)g(Y, Z)¢
+9(X,0Z2)pY — g(Y,0Z)pX +29(X, Y )pZ}.

Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional Kenmotsu manifold

]

(3.5) +

M, with £ tangent to M. Then we have from Gauss’ formula
Vxé=VxE+o(X,6),
which implies from (3.2) that
for each vector field X tangent to M (see [8]). It is also easy to see that for a submanifold
M of a Kenmotsu manifold M
(3.7  R(X,Y)§=n(X)Y —n(Y)X,
for any vector fields X and Y tangent to M. From the equation (3.7) we get
(38)  R(§X)E=X —n(X)§,
for a submanifold M of a Kenmotsu manifold M. Moreover, the Ricci tensor S of M
satisfies
(39)  S(X,¢§) = —mn(X).
We proved the following theorems in [11]:

3.1. Theorem. [11] Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional
Kenmotsu manifold ]\7, with & tangent to M. If M is pseudoparallel such that L, # —1,
then it is totally geodesic.

3.2. Theorem. [11] Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional
Kenmotsu manifold J\N/[, with € tangent to M. If M is Ricci-generalized pseudoparallel
such that Ly # %, then it is totally geodesic.

The technique used in the proofs of Theorem 3.1 and Theorem 3.2 is not sufficient to
interpret the cases L, = —1 and Lg = % These cases are open. For this reason, we
give solutions of these cases in Section 4, for anti-invariant, minimal submanifolds of a
Kenmotsu space form.

4. Anti-invariant Submanifolds of Kenmotsu Space Forms

Let M be an (n + 1)-dimensional submanifold of a (2n + 1)-dimensional Kenmotsu

manifold M. A submanifold M of a Kenmotsu manifold M is called anti-invariant if
and only if (T M) C T;-M for all x € M (T, M and T; M are the tangent space and
normal space of M at x, respectively).

For an anti-invariant submanifold M of a Kenmotsu space form M (c), with £ tangent
to M, we have

R(X,Y)Z = i(c -3){9(YV,2)X —g(X,2)Y} + i(c + D{n(X)m(2)Y

(4.1) —n(Y)n(Z)X +n(Y)g(X, Z2)§ — n(X)g(Y, Z)¢}
+Asvi2) X — As(x,2)Y.
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We denote by S and r the Ricci tensor and scalar curvature of M, respectively. Then we
have

L= 1)+ nm(2)

S(V,2) = 7lnle —3) ~ e+ Dlg(¥, 2) - §
—Zg (Y,ei),0(Z,es))

(4.2)

and

(4.3) r:i[nz(c— 3) —n( c—|—5]—Zg o(es, ej),0(ei, e;)),

where {e;} is an orthonormal basis of M.

By an easy calculation, we have the following proposition:

4.1. Proposition. Let M™*! be an anti-invariant, minimal submanifold of a Kenmotsu
space form M*"*1(c) . Then we have

%A(HUHQ) = Vo] + {w} o

4
(4.4) 2n+1
Z {[Tr(Aa o Ap)I* + [|[Aa, As]l1?},
=n-+2
where {e1,e2,...,ent1} 18 an orthonormal basis of M such that eny1 = &. O

4.2. Theorem. Let M™" be an anti-invariant, minimal submanifold of a Kenmotsu
space form M>"V1(c), with € tangent to M. If M™" is pseudoparallel and ("Hl& <0
then it is totally geodesic.

Proof. Suppose that M is an (n+ 1)-dimensional anti-invariant submanifold of the (2n+
1)-dimensional Kenmotsu space form M>"%!(c). We choose an orthonormal basis

* *
{e1,e2,...,en,& 01 =€1,...,pen =e€p}.

Then, for 1 <i,5 <n+1,n+2 < a < 2n+1, the components of the second fundamental
form o are given by

(4.5)  op =glo(ei e5),€a).
Similarly, the components of the first and the second covariant derivative of o are given
by
(4.6) ok = 9((Ve,o)(ei,€5),€a) = Ve, 05
and

okt = 9((Ve, Ve, o) (ei, €5), €a)
(4.7) = Ve, 00k

= V. Vo0l

respectively. Since M is pseudoparallel, then the condition
(4.8)  Rleyex) o= —[(e1 Ag ex) - 0]
is fulfilled where
(49)  [(ee Ag ex) - o](eire;) = —o((e1 Ag er)eis e5) — o(ei, (e1 Ag ex)e;)
for 1 <4,j5,k,l<n+1.



540 S. Sular, C. ézgﬁr7 C. Murathan

Using (2.7) in (4.9), we obtain

[(e1 Ag er) - a](ei, e5) = —glex, ei)a(er, e5) + gler, ei)a(ex, ;)
(4.10) —g(ex,ej)o(er, i) + g(e, ej)a(ex, e:).

By virtue of (2.5) we have
(411)  (R(er,ex) - 0)(eir €5) = (Ve, Ve, 0)(eir €5) = (Ve, Ve, 0) (eir €5).

Then using (4.5), (4.7), (4.10) and (4.11), the pseudoparallelity condition (4.8) reduces
to

(4.12) o7 = ok + {0kiofy — S1iok; + Okiof — S0k},
where g(ei,ej) =d; and 1 <4, 5,k l<n+1,n+2<a<2n+1

The Laplacian Acy; of of; can be written as

n+1
(413) Aof= > k.-
,5,k=1
Then we get
1 n+1 2n+1

(414) ZA(lel) = > Y7 ool + Vol

i,j,k,l=1 a=n+2

where
n+1 2n+1

415) ol*= 3" > (o5)

i,7,=1 a=n+2

and
n+1 2n+1

416) [[Vo|*= Y 3 (ofw)?

i,7,k,l=1 a=n+2

are the square of the length of the second and the third fundamental forms of M, respec-
tively. On the other hand, by the use of (4.5) and (4.7), we have

oij0ijre = 9(o (€, €5),€a)g((Ve, Ve, o) (i, €5), €a)
(4.17) =9((Ve, Ver0)(eise5)g(o(eir €5), €a), €a)
= 9((Ve, Ve, 0)(eir ), 0(eis €5))-
On the other hand, by the use of (4.17), equation (4.14) turns into

n+1
1 s = = 112
(4.18) EA(HUHZ): Y 9(VeVe,o)(eire)), o(eie;)) + || Vo
i, k=1
Substituting (4.17) into (4.18), we have
n+1 o
Alol) = Y [9((Ve, Ve, 0)(exs er), 0 (eis ;)
i, k=1
(4.19) + {g(ei,ej)g(o(er, er), o (e, €5)) — glex, e5)g(o(ex, €i), o (ei €5))

+ g(ekv ei)g(a(ejv ek)v U(Siv ej)) - g(ekv ek)g(g(eiv 6]‘), 0‘(67;, 63))}]
+[Vo®
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Furthermore, by the definitions
n+1

(4.20)  loll> = )" glo(eires), o(eire))),
Q=1
n+1

(4.21)  H*=> o
k=1

2n+1
1

(422) |H|?= —— > (H")?
(n+1)

a=n-+2
and after some calculations, we find

n+1 2n+1

Aol = 30 D7 05(VeiVe, HY) = (n 4 1) o]* + [ Vo

,J=1 a=n+2

Then, by the use of the minimality condition, the last equation turns into

(423)  ZA(lol?) = ~(n+ 1) o] + [To

Comparing the right hand sides of the equations (4.4) and (4.23), we get

2n+1
(4.24) (_(nﬂ)_%) ol S {[Tr(AnoAs)]’ +l[Aw As]|? } =

a,B=n+2
It ("Hl& < 0 then Tr(A, o Ag) = 0. In particular, ||Aa|*> = Tr(Aa 0 Aa) = 0, thus
o = 0. This finishes the proof of the theorem. d

4.3. Theorem. Let M™"! be an anti-invariant, minimal submanifold of a Kenmotsu
space form M*"T1(c), with & tangent to M. If M™"' is Ricci-generalized pseudoparallel
and - — W > 0, then it is totally geodesic.

Proof. If M is Ricci-generalized pseudoparallel, then as in the proof of Theorem 4.2, for
1<i,j<n+1,n+2< a<2n+1, we have

nt1
A(llol*) = Z (9((Ve,Ve,0)(er, ex), o (ei, €5))
(4.25) - %{S(eivej)g(a(ek,ek),a(ei,ej))

- S(ekvej)g(o(ekvei)va(eivej))
+ S(ekvei)g(o—(ejvek)va(eivej))
= Sex, ex)g(o(eis e5), o (ei e5))}] + || Vo[
Thus, by the use of (4.2), we get

n+1

> S(eies)g(o(er ex), olei e5))

i k=1

n+1 2n+1

> Y Sleires)g(Aaer, er)g(Aaes, €5)
i,j,k=1 a=n+2

n+1 2n+1

Z Z S(6i76j)Tr(Aa)g(Aaei76j):O

i,j, k=1 a=n+2

(4.26)
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and
n+1
Y Slersei)glolersei),aleie;))
i,5,k=1
n+1 2n+1
= Z Z S(ex, e;)g(Aaei, er)g(Aaes, €5)
i,j,k=1 a=n+2
n+1 2n+1
= Z Z Sek,ej A e, e ) (Aaej,ei)
i,7,k=1 a=n+2
(4.27) =™

Z Z (er,€5)g(Aacr, Aaej)

i,7,k=1 a=n+2
n+1 2n+1

> Z — (c+ Dlg(er, €5)9(Aacr, Aae;)

i,j,k=1 a= n+2

_ i(n —D(c+1)g(Aaer, Ane;)

2n+1

— Z g(Aaer, Aaej)g(Aacer, Aaej).
a=n-+2
Moreover, using the equation (4.3), we have
n+1
(428) > S(en,er)g(o(eire;) oleie;) =r ol
i,j,k=1

Then, substituting equations (4.26) - (4.28) in (4.25), we obtain

1 n+1 o r o )
(429) Aol = Y 9(VeiVe;0)(en ex), (e e5) + — llo]]* + [V

ig,k=1
n+1
Putting H* = Y o}y, the equation (4.29) turns into
k=1

n+1 2n+1

N N _
(430) ZA(el) = ¥ Y of(Ve Ve, HY) + = |0l + Vo

1,7,k=1 a=n+2

Furthermore, making use of the minimality condition, the equation (4.30) can be written
as follows

1 2y _ T 2 2
(431)  ZA(elP) = = lo]* + Vo]

Consequently, comparing the right hand sides of the equations (4.4) and (4.31), we get

2n+1

(1_%) Z {[Tr(Aa 0 A45)]” + [[[Aa, 46] | *} = 0.

n
=n-+2

If - — %4(“3) > 0 then Tr(Aq 0 Ag) = 0. In particular, ||Aq||® = Tr(Aa 0 As) = 0,
thus o = 0. Therefore, our theorem is proved. (]



Submanifolds of Kenmotsu Manifolds 543

References

il

[2

3]

(10]
(11]
(12]

13]

Asperti, A.C., Lobos, G. A. and Mercuri, F. Pseudo-parallel immersions in space forms,
Math. Contemp. 17, 59-70, 1999.

Asperti, A.C., Lobos, G. A. and Mercuri, F. Pseudo-parallel submanifolds of a space form,
Adv. Geom. 2 (1), 57-71, 2002.

Blair, D. E. Riemannian Geometry of Contact and Symplectic Manifolds (Progress in Math-
ematics, 203, Birkhauser Inc., Boston, MA, 2002).

Chen, B.Y. Geometry of Submanifolds and its Applications (Science University of Tokyo,
Tokyo, 1981).

Deszcz, R. On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser. A, 44, 1-34, 1992.
Deszcz, R., Verstraelen, L. and Yaprak, S. Pseudosymmetric hypersurfaces in 4-dimensional
space of constant curvature, Bull. Ins. Math. Acad. Sinica, 22, 167-179, 1994.

Kenmotsu, K. A class of almost contact Riemannian manifolds, Téhoku Math. J. 24 (2),
93-103, 1972.

Kobayashi, M. Semi-invariant submanifolds of a certain class of almost contact manifolds,
Tensor (N.S.) 43, 28-36, 1986.

Murathan, C., Arslan, K. and Ezentas, R. Ricci Generalized Pseudo-parallel Immersions
(Differential Geometry and its Applications, Matfyzpress, Prague, 2005), 99-108.

Ozgiir, C., Sular, S. and Murathan, C. On pseudoparallel invariant submanifolds of contact
metric manifolds, Bull. Transilv. Univ. Bragsov Ser. B (N.S.) 14 (49), 227-234, 2007.

Sular, S., C)zgﬁr, C. and Murathan, C. On pseudoparallel, invariant submanifolds of Ken-
motsu manifolds, Submitted.

Yildiz, A., Murathan, C., Arslan, K. and Ezentas, R. C-totally real pseudo-parallel subman-
ifolds of Sasakian space forms, Monatshefte fiir Mathematik 151 (3), 247-256, 2007.
Yildiz, A. and Murathan, C. Invariant submanifolds of Sasakian space forms, Journal of
Geometry 95 (1-2), 135-150, 2009.



