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Abstract

In this study, a renewal - reward process with a discrete interference
of chance is constructed. This process describes in particular a semi-
Markovian inventory model of type (s, S). The ergodic distribution of
this process is expressed by a renewal function, and a second-order ap-
proximation for the ergodic distribution of the process is obtained as
S − s → ∞ when the interference has a triangular distribution. Then,
the weak convergence theorem is proved for the ergodic distribution
and the limit distribution is derived. Finally, the accuracy of the ap-
proximation formula is tested by the Monte Carlo simulation method.

Keywords: Renewal-reward process, Discrete interference of chance, Asymptotic ex-
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1. Introduction

Many interesting problems that are related to the theories of inventory, stock control,
queuing, reliability, mathematical biology, stochastic finance, mathematical insurance,
etc., can be expressed by renewal-reward or random walk processes. There are many
interesting studies on these topics in the literature, see for example [1, 2, 4, 6, 9, 15,
16, 17, 18, 19, 20, 21]. But most of these studies are generally theoretical and are not
helpful enough in solving concrete problems in practice due to the complexity of their
mathematical structure. In addition to these theoretical studies, there are also some
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investigations devoted to the approximation methods for these kinds of the problems,
including [1, 2, 6, 9, 14, 15, 16, 19, 21, 24]. The approximation results are generally
simpler and easier for application. On the other hand, it is desirable that approximation
results should be reasonably close to exact expressions. One of the most effective methods
to obtain this kind of approximation is the asymptotic expansion method. In many cases,
it is possible to obtain such approximations, which are closer to the exact expressions, by
increasing the number of terms in the asymptotic expansions. However, when the number
of terms in the asymptotic expansions is increased, the approximations start to lose their
simplicity and meaning. For this reason, two- or three-term asymptotic expansions are
sufficient to obtain convenient approximation formulas. Because of that, in this study,
an inventory model of type (s, S) is considered, and a two-term asymptotic expansion is
obtained for the ergodic distribution of this model.

In recent years, the inventory models of type (s, S) have been extensively considered
and some of their characteristics investigated in the literature [3, 6, 7, 10, 12, 13, 20, 22,
23, and 26]. In most of these studies, analytical solutions could not be obtained. Instead
of analytical methods, heuristic approaches, dynamic programming, etc., are used in
these studies. In addition, in most of these studies both the demand quantity (ηn) and
the inter-arrival time (ξn) are assumed to have exponential distributions. However, in
our study, ηn and ξn are assumed to be arbitrary positive random variables.

Let us consider the following inventory model before expressing the problem math-
ematically. Assume that the stock level in a depot at the initial time (t = 0) is equal
to X(0) ≡ X0 ≡ z ∈ (s, S), 0 < s < S < ∞, where s represents the stock con-
trol level and S the maximum stock level. In addition, it is assumed that at ran-
dom times T1, T2, . . . , Tn, . . . the stock level (X(t)) in the depot at time t decreases
by η1, η2, . . . , ηn, . . ., respectively, until the inventory level falls below the predetermined
control level s. In other words, the stock level in the depot changes as follows:

X(T1) ≡ X1 = z−η1, X(T2) ≡ X2 = z−(η1 +η2), . . . , X(Tn) ≡ Xn = z−
n∑

i=1

ηi,

where ηn represents the quantity of the n th demand, n = 1, 2, 3, . . ..

In other words, demands are inserted into the system at random times Tn =
∑n

i=1 ξi,
where ξn represents the time between the (n−1) st and n th demands, n = 1, 2, 3, . . .. The
system passes from one state to another by jumping at time Tn, according to quantities
of demand {ηn}, n ≥ 1. This natural variation of the system continues up to a certain
random time τ1, where τ1 is the first time that the inventory level drops below the
control level s > 0. When this occurs, the system is brought to a random level ζ1 ∈ (s, S)
immediately. That completes the first period and starts the second. Afterwards, the
system will carry on its “natural variation” from a new initial state ζ1 similar to the first
period. When the stock level drops below s for the second time, by an interference to the
system the stock level is brought to a random level ζ2 ∈ (s, S) similar to the preceding
period. Here, ζ1, ζ2, . . . are independent and identically distributed random variables.
The important criteria on choosing the distribution for the random variable ζ1 can be
expressed as follows:

1) The re-starting state ζ1 of the system is desired not to be too close to the control
level s. In other words, it is desired that ζ1 takes values close to s with very low
probability. Note that if ζ1 takes values close to s, then the system may re-start
again in very short time intervals. This is not desirable in practice as it increases
the number of orders, which causes an increase in the total ordering cost.

2) The re-starting state ζ1 of the system is also desired not to be too close to the
maximum stock level S. In other words, it is desired that ζ1 takes values close
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to S with a very low probability. Having ζ1 very close to S increases the average
inventory level, which, in turn, increases the holding cost.

The triangular distributions defined on the interval (s, S) satisfy the criteria above. For
this reason, in this study it is assumed that the random variable ζ1 has a triangular
distribution on the interval (s, S).

The aim of this study is to construct a renewal-reward process with a discrete inter-
ference of chance which expresses the above mentioned semi-Markovian inventory model,
and to obtain the second-order approximation for the ergodic distribution of the process
while the interference has a triangular distribution. The final aim is to prove the weak
convergence theorem for the ergodic distribution of the process and to derive the exact
form of the limit distribution.

2. Mathematical construction of the process X(t)

Let {(ξn, ηn, ζn)}, n ≥ 1, be a sequence of independent and identically distributed
vectors of random variables defined on the probability space (Ω,ℑ, P), such that the ξn

and the ηn are positive-valued random variables, the random variable ζn takes values
within the interval (s, S). Suppose that the random variables ξn, ηn and ζn are indepen-
dent from each other and their distribution functions are known. Let these distribution
functions be denoted by Φ(t), F (x) and π(z), respectively. So,

Φ(t) = P{ξ1 ≤ t}, F (x) = P{η1 ≤ x}, π(z) = P{ζ1 ≤ z}.
Define the renewal sequences {Tn} and {Sn} as follows, using the initial sequences of the
random variables {(ξn, ηn)}, as:

T0 = S0 = 0, Tn =
n∑

i=1

ξi, Sn =
n∑

i=1

ηi, n ≥ 1,

and define a sequence of integer-valued random variables {Nn}, n ≥ 0, as:

N0 = 0; N1 = N(z − s) = inf{k ≥ 1 : z − Sk ≤ s}, z ∈ (s, S),

Nn+1 = inf{k ≥ Nn + 1 : ζn − Sk + SNn
≤ s}, n ≥ 1.

Here inf(⊘) = +∞ is stipulated. Put τ0 = 0, τ1 ≡ TN1
=

∑N(z−s)
i=1 ξi, τn ≡ TNn

=∑Nn

i=1 ξi, n ≥ 2, and define ν(t) as ν(t) = max{n ≥ 0 : Tn ≤ t}, t > 0. Here the random
variable τ1 represents the first time of the stock level drops below the control level s. We
can now construct the desired stochastic process X(t) as follows:

X(t) = ζn − (ηNn+1 + ηNn+2 + . . . + ην(t))

= ζn −
( ν(t)∑

i=1

ηi −
Nn∑

i=1

ηi

)
= ζn − (Sν(t) − SNn

),

where τn ≤ t < τn+1, n ≥ 0, ζ0 ≡ z ∈ (s, S) are given.

The process X(t) can be also rewritten as follows:

X(t) =
∞∑

n=0

(
ζn − (Sν(t) − SNn

)
)
I[τn;τn+1)(t)

Here IA(t) represents the indicator function of the set A, so

IA(t) =

{
1, t ∈ A

0, t /∈ A
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In this study, the process X(t) is called “a renewal- reward process with a triangular
interference of chance”, because in this case it is assumed that the random variable ζ1,
which expresses a discrete interference of chance, has a triangular distribution.

3. Ergodicity of the process X(t) and the exact formulas for the

ergodic distribution

To investigate the stationary characteristics of the considered process, it is necessary
to prove that X(t) is ergodic under some assumptions. This property can be given by
the following proposition.

3.1. Proposition. Let the initial sequence of the random variables {(ξn, ηn, ζn)} satisfy
the following supplementary conditions:

i) 0 < E(ξ1) < ∞,
ii) E(η1) > 0,
iii) η1 is a non-arithmetic random variable,
iv) The random variable ζ1 has a continuous distribution in the interval (s, S) such

that P{ζ1 = s} = P{ζ1 = S} = 0.

Then, the process X(t) is ergodic and the following expression is correct with probability
1 for each measurable bounded function f(x), (f : (s, S) → R):

(3.1) lim
t→∞

1

t

∫ t

0

f(X(u))du =

∫ S

s

∫ S

s
f(x)[Uη(z − s) − Uη(z − x)] dπ(z) dx

∫ S

s
Uη(z − s) dπ(z)

.

Here Uη(x) is a renewal function generated by the sequence {ηn}. So,

Uη(x) =

∞∑

n=0

F ∗n(x),

where the notation F ∗n(x) represents the n th convolution of the distribution function
F (x).

Proof. As mentioned in the Introduction, the process X(t) belongs to a wide class of
processes which is known in the literature as the class of semi-Markov processes with a
discrete interference of chance. Furthermore, for this class the general ergodic theorem of
type Smith’s ‘key renewal theorem’ exists in the literature [11, p.243]. According to the
general ergodic theorem, the following conditions must be satisfied to make the process
X(t) ergodic.

1) The monotone increasing random times sequence (γn) must exist such that the
values of the process X(t) at these times, meaning the values of ℵn ≡ X(γn +0),
must form an ergodic Markov chain.

2) Additionally, the expected values of the differences γn+1−γn, n = 1, 2, . . ., must
be finite, that is E(γn+1 − γn) < ∞.

Let us show that these two assumptions are satisfied under the conditions of Proposi-
tion 3.1. Firstly, let us prove that the first assumption is satisfied. For this purpose,
let us consider the sequence {τn}, n = 1, 2, . . ., that is defined in Section 2 instead of
{γn}. Here, τn is the n th time that the process X(t) crosses the control level s and
0 < τ1 < τ2 < . . .. Due to definition we have X(τn + 0) ≡ ζn. Furthermore, according
to the conditions of Proposition 3.1, the random variables ζn form a sequence of inde-
pendent random variables which have a continuous distribution in the interval [s, S]. So
the sequence {ζn} can be considered as an embedded Markov chain. Since the ζn are
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independent and identically distributed random variables with a common distribution
function

π(z) = P {ζ1 ≤ z} , s ≤ z ≤ S,

then the sequence {ζn} forms an ergodic Markov chain. So, this shows the first assump-
tion of the general ergodic theorem is satisfied.

Now, let us prove that the second assumption is satisfied. It is enough to show only
E(τ1) < ∞ because the differences τ1; τ2 − τ1; τ3 − τ2; . . . ; τn − τn−1; . . . have identical
distribution. According to the Wald identity, E(τ1) can be represented as follows:

E(τ1) = E(

N1∑

i=1

ξi) = E(ξ1)E(N1).

Here E(N1) =
∫ S

s
E(N(z−s))dπ(z). Additionally, according to Proposition 3.1, E(ξ1) <

∞ is satisfied. Having E(N1) finite is enough for E(τ1) to be finite. Let us show this.

Let us recall that,

E(N(z − s)) ≡ Uη(z − s) = 1 +
∞∑

n=1

F ∗n
η (z − s).

Here the renewal function, which is formed by the random variables {ηn}, is shown as
Uη(x). The function Uη(x) is finite for each finite x [9]. On the other hand, the renewal
function Uη(x), is a positive-valued and non-decreasing function. Therefore, for each
z ∈ [s, S], Uη(z − s) ≤ Uη(S − s) is satisfied. So, we have

E(N1) =

∫ S

s

E(N(z − s)) dπ(z)

=

∫ S

s

Uη(z − s) dπ(z) ≤
∫ S

s

Uη(S − s) dπ(z)

= Uη(S − s)

∫ S

s

dπ(z) = Uη(S − s) < ∞.

Briefly, for each 0 < s < S < ∞, E(τ1) < ∞ is true, and this shows the second assumption
is satisfied. Therefore, under the conditions of Proposition 3.1, both assumptions of the
general ergodic theorem [11, p.243] are satisfied. That means that the process X(t) is
ergodic when the conditions of Proposition 3.1 are satisfied. This completes the proof of
Proposition 3.1. �

Let us denote the ergodic distribution function of the process X(t) by QX(x):

QX(x) ≡ lim
t→∞

P{X(t) ≤ x}, x ∈ [s, S].

We can obtain the following exact result for the ergodic distribution function QX(x) by
replacing the function f(x) with indicator function in Proposition 3.1:

(3.2) QX(x) = 1 −
∫ S

x
Uη(z − x)dπ(z)

∫ S

s
Uη(z − s)dπ(z)

, x ∈ [s, S].

In this case, Equation (3.2) yields the following exact expression for QX(x). For each
x ∈ [s, S+s

2
]:

(3.3) QX(x) = 1 −
∫ (S+s)/2

x
(z − s)Uη(z − x) dz +

∫ S

(S+s)/2
(S − z)Uη(z − x) dz

∫ (S+s)/2

s
(z − s)Uη(z − s) dz +

∫ S

(S+s)/2
(S − z)Uη(z − s) dz

;
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and for each x ∈ [S+s
2

, S]:

(3.4) QX(x) = 1 −
∫ S

x
(S − z)Uη(z − x) dz

∫ (S+s)/2

s
(z − s)Uη(z − s) dz +

∫ S

(S+s)/2
(S − z)Uη(z − s) dz

.

3.2. Remark. It is possible to find the exact form of the renewal function Uη(x) when the
random variable η1 has a suitable simple distribution (for example exponential, Erlang,
etc). But, for most of distributions, it is very difficult to find an exact and closed form
for the renewal function Uη(x). Moreover the obtained expressions will be very complex.
Let us give the following two examples to show this complexity.

3.3. Example. Let the random variable η1 have an exponential distribution with pa-
rameter λ > 0, and the random variable ζ1 a triangular distribution in the interval (s, S)
with mode (S + s)/2. Then an exact expression of the ergodic distribution function
QX(x) of the process X(t) can be given as follows:

QX(x) = 1 − 3λ(S − s)2(S + s − 2x) + 4(x − s)2[λ(x − s) − 3] + 6(S − s)2

3(S − s)2[λ(S − s) + 2]
,

when x ∈
[
s, S+s

2

]
, and

QX(x) = 1 − 4(S − x)2[λ(S − x) + 3]

3(S − s)2[λ(S − s) + 2]
,

when x ∈
[

S+s
2

, S
]
.

3.4. Example. Let the random variable η1 have the second order Erlang distribution
with parameter λ > 0, and the random variable ζ1 a triangular distribution in the interval
(s, S) with mode (S+s)/2. Then an exact expression of the ergodic distribution function
QX(x) of the process X(t) can be given as follows:

QX(x) =





1 − J1(x)

J1(s)
, x ∈

[
s,

S + s

2

]
,

1 − J2(x)

J1(s)
, x ∈

[S + s

2
, S

]
,

where

J1(x) = λ3(S + s − 2x)(S − s)2 + 3λ2(S − s)2 + λ2(x − s)2[(4λ/3)(x − s) − 6]

+ 2λ(x − s) + 1 + exp(−2λ(S − x)) − 2 exp(−λ(S + s − 2x)),

J2(x) = 2λ2(S − x)2[(2λ/3)(S − x) + 3] − 2λ(S − x)[1 − exp(−2λ(S − x))].

3.5. Remark. As is seen from Example 3.1 and Example 3.2, the exact expressions for
the ergodic distribution of the process can be extremely complex even in very simple
cases. Besides, when the distribution of the random variable η1 is not the exponential
or Erlang distribution, it becomes a very complex problem to find the exact form of the
renewal function Uη(x). Thus it is advisable to derive an approximation formula for the
ergodic distribution which is simpler, instead of the exact but complex formula.

4. Exact and asymptotic results for the ergodic distribution of

the process Y (t)

As can be seen from the above examples, the exact expression of the ergodic distri-
bution function QX(x) of the process X(t) has a very complex mathematical structure.
The most effective way to remove this complexity is to obtain an asymptotic expansion
for QX(x) as S − s → ∞, by using certain asymptotic methods. But before using these
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asymptotic methods, it will be useful to “standardize” the process X(t). For this pur-
pose, let us define the process Y (t), which is a linear transformation of the process X(t),
as follows:

Y (t) =
X(t) − s

a
∈ [0, 2], where a ≡ (S − s)/2.

Additionally, set

QY (v) = lim
t→∞

P {Y (t) ≤ v} , v ∈ [0, 2].

By considering these notations we can give the following proposition.

4.1. Proposition. In addition to the assumptions of Proposition 3.1, let the following
condition be satisfied:

The random variables ζn have a triangular distribution in the interval (s, S) with
mode (S + s)/2.

Then, the ergodic distribution function QY (v) of the process Y (t) has the following exact
form:

(4.1) QY (v) = 1 −
∫ 2a

av
Uη(x − av)ρ̃a(x)dx

∫ 2a

0
Uη(x)ρ̃a(x) dx

, v ∈ [0, 2],

where ρ̃a(x) = x/a2 if 0 ≤ x ≤ a, and ρ̃a(x) = (2a − x)/a2 if a < x ≤ 2a.

Proof. For each v ∈ [0, 2]

P {Y (t) ≤ v} = P

{
X(t) − s

a
≤ v

}
= P {X(t) ≤ s + av} .

Therefore,

QY (v) = QX(s + av) = 1 −
∫ s+2a

s+av
Uη(z − s − av)dπ(z)

∫ s+2a

s
Uη(z − s)dπ(z)

.

Since the random variable ζ1 has a triangular distribution in the interval (s, S) with mode

(S + s) /2, then the random variable ζ̃1 = ζ1 − s will have a triangular distribution in
the interval [0, 2a], with mode a ≡ (S − s)/2. So we have,

QY (v) = 1 −
∫ 2a

av
Uη(x − av)ρ̃a(x) dx

∫ 2a

0
Uη(x)ρ̃a(x) dx

, v ∈ [0, 2].

This completes the proof of Proposition 4.1. �

Now, let us try to obtain the asymptotic expansion for the ergodic distribution function
of the process Y (t), when a → ∞. For this purpose, let us give some asymptotic results
about the renewal function Uη(x). Note that there are many valuable studies about the
asymptotic behaviour of the renewal function Uη(x) in the literature (see, for example,
[9,21, 24, 25]).

4.2. Lemma. [9, p.366]. Assume that η1 is a non-arithmetic random variable, and that
the condition E(η2

1) < ∞ is satisfied. Then, the asymptotic expansion for the renewal
function Uη(x) can be written as follows, when x → ∞:

Uη(x) =
x

m1
+

m2

2m2
1

+ o(1),

where mk = E(ηk
1 ), k = 1, 2, . . .. �
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4.3. Remark. If we know the asymptotic behaviour of the renewal function Uη(x), it
is not difficult to obtain the asymptotic expansion for the integrals depending on Uη(x)
(see, for example, [8,9]).

4.4. Lemma. Under the conditions of Lemma 4.1, as x → ∞ we have:

I0(x) ≡
∫ x

0

Uη(t)dt =
x2

2m1
+ cx + o(x), c =

m2

2m2
1

. �

4.5. Lemma. Under the conditions of Lemma 4.1, as x → ∞ we have:

I1(x) ≡
∫ x

0

tUη(t) dt =
x3

3m1
+

cx2

2
+ o(x2), c =

m2

2m2
1

. �

Let us now state the theorem which is the basic aim of this study.

4.6. Theorem. Suppose that, in addition to the assumptions of Proposition 4.1, the
condition E(η2

1) < ∞ is satisfied. Then for each v ∈ [0, 2] we have the following as-
ymptotic expansion for the ergodic distribution function QY (v) of the process Y (t) when
a ≡ (S − s)/2 → ∞:

(4.2) QY (v) = G0(v) − m2

12m1

G1(v)

a
+ o

( 1

a

)
,

where

G0(v) =

{
1 − (2 − v)3/6 + (1 − v)3/3, v ∈ [0, 1],

1 − (2 − v)3/6, v ∈ (1, 2],
(4.3)

G1(v) =

{
[(2 − v)2(1 − v) − 2(1 − v)2(2 + v), v ∈ [0, 1],

(2 − v)2(1 + v), v ∈ (1, 2].
(4.4)

Proof. To simplify the notation, let us denote the numerator and denominator in Equa-

tion (4.1) by J1a(v) =
∫ 2a

av
Uη(x − av)ρ̃a(x) dx and J1a(0) =

∫ 2a

0
Uη(x)ρ̃a(x) dx, respec-

tively. Then, the denominator can be written as follows:

(4.5) J1a(0) =
1

a2
[2I1(a) − I1(2a)] +

2

a
[I0(2a) − I0(a)],

where I0(x) =
∫ x

0
Uη(t) dt; I1(x) =

∫ x

0
tUη(t) dt. By substituting the results of Lemma 4.1

and Lemma 4.2 in Equation (4.5), we can obtain the following asymptotic expansion for
a → ∞:

(4.6) J1a(0) =
a

m1
+

m2

2m2
1

+ o(1).

Moreover, the integral J1a(v) can be written in the following exact form:

(4.7) J1a(v) =
1

a2
[2I1(a(1−v))−I1(a(2−v))]+

1

a
[2(v−1)I0(a(1−v))+(2−v)I0(a(2−v))],

when v ∈ [0, 1], and

(4.8) J1a(v) =
1

a2
[(a(2 − v))I0(a(2 − v)) − I1(a(2 − v))],

when v ∈ (1, 2]. Taking into account Lemma 4.1 and Lemma 4.2 in Equation (4.7) and
Equation (4.8), we can write the following asymptotic expansion for J1a(v) when a → ∞:

(4.9) J1a(v) =






a[(2 − v)3 − 2(1 − v)3]

6m1
+

c[(2 − v)2 − 2(1 − v)2]

2
+ o(1), v ∈ [0, 1],

a(2 − v)3

6m1
+

c(2 − v)2

2
+ o(1), v ∈ (1, 2].
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Substituting the asymptotic expansions (4.7), (4.8) and (4.9) in Equation (4.1), we have
the following asymptotic expansion for QY (v) when v ∈ [0, 1] and a → ∞:

QY (v) = 1 − J1a(v)

J1a(0)

= 1 −

a
[
(2 − v)3 − 2(1 − v)3

]

6m1
+

c
[
(2 − v)2 − 2(1 − v)2

]

2
+ o(1)

a

m1
+ c + o(1)

= 1 − (2 − v)3 − 2(1 − v)3

6
− m2

12m1a

[
(2 − v)2(1 + v) − 2(1 − v)2(2 + v)

]

+ o
( 1

a

)
.

In a similar manner, it is not difficult to obtain the following asymptotic expansion for
QY (v) when v ∈ (1, 2] and a → ∞:

QY (v) = 1 − J1a(v)

J1a(0)
= 1 −

{[
a(2 − v)3

6m1
+

c(2 − v)2

2
+ o(1)

]/[
a

m1
+ c + o(1)

]}

= 1 − (2 − v)3

6
− m2

12m1a
(2 − v)2(1 − v) + o

( 1

a

)
.

Therefore, for each v ∈ [0, 2], we have:

QY (v) = G0(v) − m2

12m1

G1(v)

a
+ o

( 1

a

)
, as a → ∞.

Thus we have proved Theorem 4.1, which is the basic aim of this study. �

Now, we can obtain the weak convergence theorem for the ergodic distribution function
(QY (v)) of the process Y (t), as a → ∞.

4.7. Proposition. Assume that the conditions of Theorem 4.1 are satisfied. Then the
ergodic distribution of the process Y (t) weakly converges to the limit distribution G0(v),
i.e.,

QY (v) → G0(v)

when a → ∞ and v ∈ [0, 2]. The function G0(v) is defined in Equation (4.3).

Proof. From Equation (4.4), it is not difficult to see that the value v∗ =
√

3−1 maximizes
the function G1(v). At this point the value of the function G1(v) is equal to 2K. Here

the constant K is equal to K = 3
√

3−4 ∼= 1.196152423 . . .. Therefore, for each v ∈ [0, 2],
since |G1(v)| ≤ 2K < ∞, then G1(v)/a → 0 while a → ∞.

In other words, the ergodic distribution of the process Y (t) weakly converges to the
limit distribution G0(v) when a → ∞, i.e., for each v ∈ [0, 2], QY (v) → G0(v). This
completes the proof of Proposition 4.2. �

4.8. Remark. It can be observed that the form of the limit distribution G0(v), which
is obtained by applying asymptotic methods, is simpler than the exact formulas (see,
Example 3.1 and Example 3.2). By using this simple form of the limit distribution,
it is possible to derive many probability characteristics of the process very easily and
quickly, which are very important for inventory models. But besides simplicity, it is
very important to show that the approximated formulas are very close to the exact
formulas. For this purpose, in the following section, we compare the approximated values
of the ergodic distribution function of the process to those obtained by the Monte Carlo
simulation method.
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5. Simulation Results

Suppose that the random variable ζ1 has a triangular distribution in the interval
(1, 1 + 2a) and the random variable η1 has exponential distribution with a parameter

λ = 1. Besides, assume that Q̂Y (v) denotes the value of the ergodic distribution function
of the process X(t), which is calculated using the Monte Carlo simulation method, and

Q̃Y (v) denotes the value of the first two terms of the asymptotic expansion given by
Theorem 4.1, i.e.,

Q̃Y (v) ≡ G0(v) − (m2G1(v)/12m1a) , v ∈ (0, 2], a ≡ (S − s)/2.

Furthermore let ∆ =
∣∣∣Q̂Y (v) − Q̃Y (v)

∣∣∣; δ = ∆

Q̂Y (v)
100% and AP = 100 − δ. In other

words, the numbers ∆, δ and AP denote the absolute error, relative error and accuracy
percentage between the simulation and asymptotic results for the ergodic distribution
function of the process Y (t), respectively. So we can generate Table 1, Table 2, and
Table 3.

For the calculation of each value of Q̂Y (v) in the tables, we simulated 2×106 trajecto-
ries of the process X(t). As seen from the presented tables, the approximating formulas
are of high accuracy even for small values of the parameter a ≡ (S − s)/2. For example,
as seen from Table 2 and Table 3, the accuracy percentage (AP ) is greater than %99, for
each value of the parameters a ≥ 10 and v ∈ (0, 2]. This indicates that the asymptotic
expansion obtained can be safely applied to different problems of inventory or queuing
models, even for values of the parameter a ≡ (S − s)/2 that are not large.

Table 1. Comparison of the Asymptotic and the Simulation Values of the

Ergodic Distribution for the case a = 5, (a ≡ (S − s)/2).

v Q̂Y (v) Q̃Y (v) ∆ δ(%) AP (%)

0,1 0,0840 0,0809 0,0031 3,6905 96,3095

0,2 0,1688 0,1629 0,0059 3,4953 96,5047

0,3 0,2532 0,2454 0,0078 3,0806 96,9194

0,4 0,3376 0,3275 0,0101 2,9917 97,0083

0,5 0,4202 0,4083 0,0119 2,8320 97,1680

0,6 0,5005 0,4872 0,0133 2,6573 97,3427

0,7 0,5760 0,5633 0,0127 2,2049 97,7951

0,8 0,6488 0,6357 0,0131 2,0191 97,9809

0,9 0,7161 0,7038 0,0123 1,7176 98,2824

1,0 0,7776 0,7667 0,0109 1,4017 98,5983

1,1 0,8310 0,8218 0,0092 1,1071 98,8929

1,2 0,8756 0,8677 0,0079 0,9022 99,0978

1,3 0,9118 0,9053 0,0065 0,7129 99,2871

1,4 0,9401 0,9352 0,0049 0,5212 99,4788

1,5 0,9619 0,9583 0,0035 0,3639 99,6361

1,6 0,9779 0,9755 0,0024 0,2454 99,7546

1,7 0,9886 0,9874 0,0012 0,1214 99,8786

1,8 0,9955 0,9949 0,0006 0,0603 99,9397

1,9 0,9990 0,9989 0,0001 0,0100 99,9900

2,0 1,0000 1,0000 0,0000 0,0000 100,0000
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Table 2. Comparison of the Asymptotic and the Simulation Values of the Ergodic
Distribution for the case a = 10, (a ≡ (S − s)/2).

v Q̂Y (v) Q̃Y (v) ∆ δ(%) AP (%)

0,1 0,0912 0,0904 0,0008 0,8772 99,1228

0,2 0,1824 0,1808 0,0016 0,8772 99,1228

0,3 0,2731 0,2705 0,0026 0,9520 99,0480

0,4 0,3612 0,3584 0,0030 0,8301 99,1699

0,5 0,4472 0,4438 0,0034 0,7603 99,2397

0,6 0,5296 0,5256 0,0040 0,7553 99,2447

0,7 0,6063 0,6031 0,0032 0,5278 99,4722

0,8 0,6783 0,6752 0,0031 0,4570 99,5430

0,9 0,7444 0,7412 0,0032 0,4299 99,5701

1,0 0,8032 0,8000 0,0032 0,3984 99,6016

1,1 0,8526 0,8502 0,0024 0,2815 99,7185

1,2 0,8936 0,8912 0,0024 0,2686 99,7314

1,3 0,9258 0,9241 0,0017 0,1836 99,8164

1,4 0,9508 0,9496 0,0012 0,1262 99,8738

1,5 0,9696 0,9688 0,0008 0,0825 99,9175

1,6 0,9829 0,9824 0,0005 0,0509 99,9490

1,7 0,9918 0,9915 0,0003 0,0302 99,9698

1,8 0,9970 0,9968 0,0002 0,0201 99,9799

1,9 0,9994 0,9994 0,0000 0,0000 100,0000

2,0 1,0000 1,0000 0,0000 0,0000 100,0000

Table 3. Comparison of the Asymptotic and the Simulation Values of the Ergodic
Distribution for the case a = 20, (a ≡ (S − s)/2).

v Q̂Y (v) Q̃Y (v) ∆ δ(%) AP (%)

0,1 0,0955 0,0951 0,0004 0,4188 99,5812

0,2 0,1909 0,1897 0,0012 0,6286 99,3714

0,3 0,2850 0,2830 0,0020 0,7018 99,2982

0,4 0,3767 0,3739 0,0028 0,7433 99,2567

0,5 0,4649 0,4615 0,0034 0,7313 99,2687

0,6 0,5486 0,5448 0,0038 0,5839 99,3073

0,7 0,6269 0,6229 0,0040 0,6381 99,3619

0,8 0,6984 0,6949 0,0035 0,5011 99,4989

0,9 0,7633 0,7598 0,0035 0,4585 99,5415

1,0 0,8195 0,8167 0,0028 0,3417 99,6583

1,1 0,8661 0,8643 0,0018 0,2078 99,7922

1,2 0,9044 0,9029 0,0015 0,1659 99,8341

1,3 0,9348 0,9334 0,0014 0,1498 99,8502

1,4 0,9575 0,9568 0,0007 0,0731 99,9269

1,5 0,9744 0,9740 0,0004 0,0411 99,9589

1,6 0,9862 0,9859 0,0003 0,0304 99,9696

1,7 0,9937 0,9935 0,0002 0,0201 99,9799

1,8 0,9978 0,9977 0,0001 0,0100 99,9900

1,9 0,9996 0,9996 0,0000 0,0000 100,0000

2,0 1,0000 1,0000 0,0000 0,0000 100,0000
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6. Summary and Conclusion

In this study, a semi-Markovian model of type (s, S) is considered. This model is
expressed by using a renewal-reward process with a discrete interference of chance. An
exact expression of the ergodic distribution function of the process is derived when the
random variable ζ1, which describes a discrete interference of chance, has a triangular
distribution. However, it is very difficult to use this exact expression in solving concrete
problems of inventory or queuing theory, because this exact expression has a very com-
plex mathematical structure. In this study, an asymptotic method is used to overcome
this mathematical difficulty. At the same time, the two-term asymptotic expansion for
the ergodic distribution is obtained, when S − s → ∞. Using this expansion, a weak
convergence theorem for the ergodic distribution is proved, and the exact expression of
the limit distribution (G0(v)) is derived. The accuracy of the approximated result is
tested by using the Monte Carlo simulation method. The approximation is satisfactory
even for small values of the parameter S − s. It is easy to see that this approximation
formula is not only simple and clear, but also accurate.

Note that it is important to obtain a similar asymptotic result for the delayed (s, S)
models by using the methods and approaches introduced in this paper. Such investigation
can also be applied to the semi-Markovian random walk process. Applying this approach
to distribution other than triangular distribution is another promising direction for future
research.

Acknowledgement. The authors would like to express their thanks to Professor A.V.
Skorohod, Michigan State University, for his support and valuable advice. The authors
also would like to express their thanks to the Editor and the anonymous Referees for
their valuable comments and suggestions on this article.

References

[1] Alsmeyer, G. Some relations between harmonic renewal measure and certain first passage

times, Statistics & Probability Letters 12 (1), 19–27, 1991.
[2] Aras, G. and Woodroofe, M. Asymptotic expansions for the moments of a randomly stopped

average, Annals of Statistics 21, 503–519, 1993.
[3] Beyer, D., Sethi, S. P. and Taksar, M. Inventory models with Markovian demands and cost

functions of polynomial growth, Journal of Optimization Theory and Application 98 (2),
281–323, 1998.

[4] Borovkov, A.A. Stochastic Processes in Queuing Theory (Spinger-Verlag, New York, 1976).
[5] Brown, M. and Ross, S.M. Asymptotic properties of cumulative process, Journal of Applied

Mathematics 22 (1), 93–105, 1972.
[6] Brown, M. and Solomon, H.A. Second-order approximation for the variance of a renewal-

reward process, Stochastic Processes and their Applications 3, 301–314, 1975.
[7] Chen, F. and Zheng, Y. Waiting time distribution in (T, S) inventory systems, Operations

Research Letters 12, 145–151, 1992.
[8] Federyuk, M.V. Asymptotics for Integrals and Series (Nauka, Moscow, 1984).
[9] Feller, W. Introduction to Probability Theory and Its Applications II (John Wiley, New

York, 1971).
[10] Gavirneni, S. An efficient heuristic for inventory control when the customer is using a (s;S)

policy, Operations Research Letters 28 , 187-192, 2001.
[11] Gihman, I.I. and Skorohod, A.V. Theory of Stochastic Processes II, (Springer, Berlin, 1975).
[12] Janssen, F., Heuts, Y. and Kok, T. On the (R, s, Q) inventory model when demand is

modeled as a compound Bernoulli process, European Journal of Operational Research 104,
423–436, 1998.



On the Weak Convergence of the Ergodic Distribution 611

[13] Johansen, S. G. J. and Thorstenson, A. Optimal and approximate (Q, r) inventory policies

with lost sales and gamma-distributed lead time, International Journal of Production Eco-
nomics 30, 179–194, 1993.

[14] Khaniev, T.A., Ozdemir, H. and Maden, S. Calculating probability characteristics of a

boundary functional of a semi-continuous random process with reflecting and delaying

screens, Applied Stochastic Models and Data Analysis 18, 117–123, 1998.
[15] Khaniev, T. A., Unver, I. and Maden, S. On the semi-Markovian random walk with two

reflecting barriers, Stochastic Analysis and Applications 19 (5), 799–819, 2001.
[16] Khaniyev, T.A. and Kucuk, Z. Asymptotic expansions for the moments of the Gaussian

random walk with two barriers, Statistics & Probability Letters 69 (1), 91–103, 2004.
[17] Khaniyev, T.A. and Mammadova, Z. On the stationary characteristics of the extended model

of type (s, S) with Gaussian distribution of summands, Journal of Statistical Computation
and Simulation 76 (10), 861–874, 2006.

[18] Khaniyev, T.A., Kesemen, T., Aliyev, R. T. and Kokangül, A. Asymptotic expansions for

the moments of a semi-Markovian random walk with exponentional distributed interference

of chance, Statistics & Probability Letters 78 (6), 785–793, 2008.
[19] Lotov, V. I. On some boundary crossing problems for Gaussian random walks, Annals of

Probability 24 (4), 2154–2171, 1996.
[20] Prabhu, N.U. Stochastic Storage Processes (Springer-Verlag, New York, 1981).

[21] Ross, S.M. Introduction to Probability Models (Academic Press INC., Boston, 1989).
[22] Sahin, I. On the continuous-review (s, S) inventory model under compound renewal demand

and random lead times, Journal of Applied Probability 20, 213–219, 1983.
[23] Sethi, S. P. and Cheng, F. Optimality of (s, S) policies in inventory models with markovian

demand, Operations Research 45 (6), 931–939, 1997.
[24] Smith, W. L. Renewal theory and its ramification, Journal of the Royal Statistical Society -

Series B (Methodological) 20 (2), 243–302, 1958.
[25] Tijms, H.C. Stochastic Models: An Algorithmic Approach (Wiley, New York, 1994).
[26] Zheng, Y. S. and Federgruen, A. Computing an optimal (s, S) policy is as easy as a single

evaluation of the cost function, Operations Research 39, 654–665, 1991.


