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Abstract

In this paper, we present some characterizations of prime k-ideals and
maximal k-ideals of a semiring. Then we extend these properties to
prime k-subsemimodules and maximal k-subsemimodules of a semi-
module. After that, the correspondence between prime k-ideals and
prime k-subsemimodules, and between maximal k-ideals and maximal
k-subsemimodules are given.
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1. Introduction

In this work we investigate k-ideals of semirings and k-subsemimodules of semimod-
ules. In Section 2 the definitions of prime k-ideals and maximal k-ideals are given. Then
we give some characterizations of prime k-ideals and maximal k-ideals, and give the
prime avoidance theorem for k-ideals. In Section 3 we extend these properties to prime
k-subsemimodules and maximal k-subsemimodules. Then, relations between k-ideals and
k-subsemimodules are given.

First of all we recall some known definitions.

A set R together with two associative binary operations called addition (+) and mul-
tiplication (-) is called a semiring provided:

i) Addition is a commutative operation, and
ii) Multiplication distributes over addition both from the left and from the right.
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An element 0 € R such that z +0 =0+ 2z = 2 and 20 = Ox = 0 for each = € R is called
an absorbing zero element.

A subset I of a semiring R is called an ideal of R if for a,b € I and r € R we have
a+bel,ra €l and ar € I. Anideal I of a semiring R is called trivial iff I = R or
I = {0}. For each ideal I of a semiring R the k-closure I of I is defined by

T:{FzGR|a+a1:a2 for some a1, a2 € I},

and is an ideal of R satisfying I C Tand T =T. Anideal I is called a k-ideal of R if and
only if I = I holds.

Given two semirings R and R’, a mapping 1 from R to R’ is called a homomorphism
if n(a + b) = n(a) + n(b) and n(ab) = n(a)n(b) for each a,b € R. An isomorphism is a
one-to-one homomorphism (see [1] for more details). In this situation the semirings R
and R’ are called isomorphic.

Each ideal T of a semiring R defines a congruence x; on (R, +, -) by
’/‘K]T, <~ r4+a; = r! + as for some ai,az € 1.

The corresponding congruence class semiring R/k; consisting of the classes [r]., = [r],
contains the k-closure T of I as one of its classes, and T is a multiplication absorbing zero
of R/kr. (see [6]).

An ideal I is called prime if ab € I implies a € I or b € [ for all a,b € R. For details
of prime ideals the reader is refereed to [3,6] and [7]. Throughout this paper we let the
semiring R be commutative.

If R is a semiring, an additively written commutative semigroup M with neutral
element 0 is called an R-semimodule if

yr-(m+m)=r-m+r-m,
i) (r+7) m=r-m+7-m,
iii) (rr')-m=r-(r"-m),

iv) 1-m=m,

v) r-0=0-m=29,

for all m,m’ € M and r,’ € R. A subset N of the R-semimodule M will be called a
subsemimodule of M if a,b € N and r € R implies a +b € N and ra € N.

The k-closure of a subsemimodule of the R-semimodule M is defined by
N = {a € M |a+ a1 = a2 for some a1,a2 € N}.

Note that N is a subsemimodule, satisfying N C N and N = N. We say that a subsemi-
module N of M is a k-subsemimodule if N = N.

The annihilator of a subsemimodule M/N is defined by
An(M)={a€ R:aM C N}.

Clearly, Anx(M) is an ideal of the semiring R. A subsemimodule N is called prime if
rm € N implies r € Ax(M) or m € N for all r € R and m € M.

Each subsemimodule N of a semimodule M defines a congruence kny on (M, +) by
menm’ <= m+ a1 =m' + as for some ai,az € N.

The corresponding congruence class semimodule M /ky, consisting of the classes [m],., =
[m], contains the k-closure N of N as one of its classes, and N is a multiplication absorbing
zero of M/kn.
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2. Prime k-ideals and maximal k-ideals

Recall that the natural homomorphism ¥ : R — R/k; of a semiring R for some ideal
I of R is defined by r — [r].; = [r].

2.1. Lemma. Let R be a semiring and I an ideal of the semiring R. Consider the
natural homomorphism ¥ : R — R/kr. Then

(i) If I C J is a k-ideal of R, then U(J) is a k-ideal of R/k1,

(i) If J is a k-ideal of R/k1 then ¥ (J) is a k-ideal of R.

Proof. Let ¥ : R — R/kr be the natural homomorphism, i.e ¥(r) = [r].

(i) Let I C J be a k-ideal of R. Suppose that [z] + [r1] = [rz] for some r1,7r2 € J and
z € R. Then we have for some a1,a2 € I, x+71+a1 =ra+az. Since r1+a1,r2+az € J
and J is a k-ideal we get « € J, so ¥(z) = [z] € ¥(J).

(ii) Let J be a k-ideal of R/kr, and suppose that « +r1 = ro for some 1,72 € \Ilfl(J)
and x € R. Therefore we get [r2] = [¢ + r1] = [z] + [r1], and since J is a k-ideal we get
[] € J. So ¥(x) = [z] € J, consequently z € U~ (J). O

2.2. Definition. Let (R, +, -) be a semiring and I a prime ideal of R. If I is a k-ideal,
then we call I a prime k-ideal.

2.3. Theorem. Let R be a semiring and I an ideal of the semiring R. Consider the
natural homomorphism ¥ : R — R/kr for some ideal I of R. Then an ideal I C J of R
is a prime k-ideal if and only if W(J) is prime k-ideal of R/kr.

Proof. Let I C J be a prime k-ideal of R and for some 71,72 € R let U(r1)W¥(r2) € ¥(J).
Then ¥(rir2) = ¥(x) € U(J) for some x € J. Then for some a1,a2 € I, rire+a1 = x+az
and since J is a k-ideal we get r172 € J. Therefore r1 € J or ro € J. Thus ¥(r1) € ¥(J)
or U(rp) € W(J).

Conversely, assume that ¥(.J) is a prime k-ideal for an ideal J containing I. If rire € J
for some 71,72 € R, then W(rirg) € W(J). So WU(r1)U(re) € ¥(J). Therefore ¥(r1) €
W(J)or U(rz) € ¥(J). Thusr1 € J or rg € J. O

2.4. Lemma. Let P be a prime k-ideal of the commutative semiring R, and let I, ..., I,
be ideals of R. Then the following statements are equivalent:
(i) P 2 I; for some j with1 < j <mn,
(i) P2 N, L,
(i) PO I, L.

Proof. (i) = (ii) and (ii) = (iii) are trivial.

(ili) = (i) Let P D []7, I for some ideals Ii,...,I, of R and prime k-ideal P.
Assume that P 2 I; for all j with 1 < j < n. Then for all j there exist elements
a; € I; \ P, where 1 < j < n. Therefore a1 ---an € [[I-; I; C P. Since P is prime we
get for some j with 1 < j < n, a; € P which is a contradiction. g

Let R be a ring with identity. One of the fundamental theorems of commutative ring
theory is the “prime avoidance” theorem, which states that if Pi, Ps,..., P, are prime
ideals of R and I is an ideal of R such that I C |J]_, P;, then I C P; for some 1 < j < n.
In the following Theorem we will prove the “prime avoidance” theorem for semirings.
Now let us give a lemma for the theorem.

2.5. Lemma. Let Pi, P> be k-ideals of a commutative semiring R and I an ideal of R
such that I C PLUPs. Then I C P, or I C Ps.
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Proof. Let I C P; U P, and we assume that P;, P> are k-ideals. Suppose that g P, and
I g P,. Thus there exist elements a1 € I\ P1 and a2 € I\Pz so that a; € P, and as € P;.
Since [ is an ideal we get a1 + a2 € I C Py U P, and thus a1 + a2 € P; or a1 + a2 € Ps.
Since Pi, P> are k-ideals, we have a1 € Pi or az € Pa, which is a contradiction. Therefore
I g P1 or I g PQ. O

2.6. Theorem. Let Pi,...,P,, n > 2, be k-ideals of the commutative semiring R such
that at most two of P1, ..., P, are not prime. Let I be an ideal of R such that I C |J;_, P;.
Then I C P; for some j with 1 < j < n.

Proof. We will prove this using induction on n. Consider first the case n = 2. This is
given by Lemma 2.5. Now assume that it is true for n = k£ and let n = k+ 1. Let
IcC Uf;rll P; and, since at most 2 of the P; are not prime, we can assume that they have
been indexed in such a way that Py is prime.

Suppose that for each j = 1,...,k + 1, it is the case that I ¢ Uf;rll’i# P;. We will

obtain a contradiction, so by the induction hypothesis I C P; for some t = 1,..., k+ 1

where ¢ # j. Now we have elements a; € I\ Uf;rll’ iz; i with a; € Pj. Also, since

Pj41 is prime, we have a1 ---ar ¢ Py+1. Thus a1---ax € ﬂle P;\ Pit1 and agy1 €
Pit1 \ Ule P;. Now, consider the element b = a1 ---ar + art1. Since a1---ar € I and
ak+1 € I we get be I C Uf:ll P;. Thus we have b € P41 or b € P; for some 1 < j < k.
If b € Pyt then ai - - ax € Pyy1, which is a contradiction. If b € P; for some 1 < j <k
then axy1 € P;, which is again a contradiction. Hence we get I C Uf;l, i; P for some
j and by the induction hypothesis we get I C P; for some 1 <i<k+ 1,1 # j. d
2.7. Definition. Let R be a semiring with an absorbing zero element 0. Then we call
R an integral semidomain if ab = 0 implies a = 0 or b = 0 for any a,b € R.

2.8. Example. 1) N, the set of all non-negative integers, is an integral semidomain.

2) N is a semiring with the binary operations a + b = max{a, b} and ab = min{a, b}.
Then 0 is an absorbing zero of N, and N is an integral semidomain.

Note that, if R is a semiring and I is an ideal of R then R/k; has {I} = O, as an
absorbing zero.

2.9. Theorem. Let R be a semiring. Then a k-ideal P of R is a prime k-ideal if and
only if R/kp is an integral semidomain.

Proof. Let P be a prime k-ideal of R and [r1][r2] = {P} = Ok, for some 71,72 € R. Then
[rire] = Ok p, so there exist ai1,a2 € P such that r172 4+ a1 = a2. Since P is a k-ideal we
get r1r2 € P. Therefore, r1 € P or r3 € P. Hence [r1] = Oxp or [r2] = Oxp-

For the converse, suppose that R/kp is an integral semidomain. Assume that rire € P
and rg ¢ P for some r1,r2 € R. Then [rir2] = [r1][r2] = Oxp. Since R/kp is an integral
semidomain and 72 ¢ P we obtain [r1] = 0,p. Thus, r1 € P. O

2.10. Definition. Let R be a semiring. A k-ideal A C R is called a maximal k-ideal of
R if there is no k-ideal I of R satisfying h C I C R.

We note that a maximal k-ideal of R need not to be a maximal ideal of R. For
example, by [5, Sen 4.2], let N be the set of all non-negative integers. Then the maximal
k-ideals of N are of the form (p) = {pn : n € N}, where p is prime, but none of these
are maximal ideals. Indeed, for a prime element p, (p) is properly contained in the ideal
B={beN|b>p}

2.11. Theorem. Let R be a semiring. Then every mazimal k-ideal is a prime k-ideal.
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Proof. See [5, Proposition 3.1]. a
2.12. Definition. A semiring R is called a k-semifield if it has only the trivial k-ideals.
2.13. Theorem. Let R be a semiring. Then h is a maximal k-ideal of R if and only if
R/kp is a k-semifield.

Proof. Let h be a maximal k-ideal of R. Assume that J is an k-ideal of R/k; such that
J # {h}. By Lemma 2.1, U~'(J) is an k-ideal and we get h C U~'(J). Since 4 is a
maximal k-ideal we obtain ¥™*(J) = R. Thus J = R/k».

Conversely, let i & J be a k-ideals of R. Then ¥(J) is a k-ideal of R/kp. Since R/kp
is a k-semifield we get ¥(J) = R/kx. Hence, J = R. O

3. Prime k-subsemimodules and maximal k-subsemimodules

3.1. Lemma. Let M be an R-semimodule, N a proper subsemimodule of M and consider
the natural homomorphism U : M — M/kn given by ¥(m) = [m]. Then:
(i) If N C K is a k-subsemimodule of M then ¥(K) is a k-subsemimodule of M /kn .
(ii) If K is a k-subsemimodule of M/kn then ¥~ '(K) is a k-subsemimodule of M.

Proof. Similar to the proof of Lemma 2.1. g

3.2. Theorem. Let M be a semimodule over a commutative semiring R. If N is a
k-subsemimodule of M, then An(M) is a k-ideal of R.

Proof. We know that Anx(M) C An(M) by the property of k-closure. Now, let = €
An(M). Then there exist r1,72 € An(M) such that © + r1 = r2. Therefore we obtain,
for all m € M, that xm + r1m = ram. Since rim,ram € N and N is a k-subsemimodule

we get xm € N. Hence, x € An(M). O

The converse of this theorem is not true in general. To show this we give the following
example.

3.3. Example. Consider the semigroup (Z, +) as an N-semimodule, where (N, +, .)
is regarded as a semiring. The subset N of Z is a subsemimodule of Z which is not a
k-subsemimodule. Indeed, —2+ 2 =0 for 2,0 € N and —2 € Z, but —2 ¢ N. But on the
other hand, An(Z) = {0}, is a k-ideal of N.

Recall that a subsemimodule N of a semimodule M is called prime if rm € N implies
r € An(M) orm € N for r € R and m € M. The reader is refereed to [7] for details.

3.4. Definition. Let M be an R-semimodule and N a prime subsemimodule of M.
Then N is called a prime k-subsemimodule if it is k-subsemimodule.

3.5. Theorem. Let M be an R-semimodule and N be subsemimodule of M. Then
AN (M) is a prime k-ideal of R if N is a prime k-subsemimodule.

Proof. Let N be a prime k-subsemimodule of M. By Theorem 3.2 above, Ax(M) is a
k-ideal. Now we will show that Ax(M) is a prime ideal of R. Let a,b € R such that
ab € An(M) but b ¢ An(M). Then there exists an element m € M such that bm ¢ N
but a(bm) € N. Since N is prime we get a € Ay (M). O

Now we give an example showing that the converse of this theorem is not true in
general.

3.6. Example. (Nx N, +) is an N-semimodule. It is clear that (0) is a prime k-ideal of
N. If we consider the subsemimodule K = 0 X 6N of N x N, then K is a k-subsemimodule
but not prime even though the annihilator (0) is prime.
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3.7. Definition. Let M be an R-semimodule over a semiring R. We call M a k-
multiplication semimodule if for all subsemimodules N of M there exists a k-ideal I of R
such that N = I M.

3.8. Theorem. Let M be a k-multiplication semimodule of the semiring R. Then a
k-subsemimodule N is prime if and only if An(M) is a prime k-ideal.

Proof. Let N be a k-subsemimodule of M such that Ax(M) is a prime k-ideal. Assume
that rm € N for some r € R and m € M. Then (r)(m) C N. Since M is a k-
multiplication semimodule, there exist a k-ideal of R such that (m) = IM. Thus N D
(r)(m) = (r)(UM) = (rI)M. So we get (rI) C Anx(M). Hence, (r) C An(M) or
I C AN(M). If (r) C An(M), then r € Axy(M) and if I C Ax(M), then IM C N. So
(m) C N and m € N.

For the converse we may use the above theorem. (]

3.9. Definition. Let M be an R-semimodule. A k-subsemimodule N C M is called
a mazimal k-subsemimodule of M if there is no k-subsemimodule K of M satisfying
NCKCM.

3.10. Theorem. A proper k-subsemimodule N of an R-semimodule M is maximal if
and only if M/kn has only trivial k-subsemimodules.

Proof. Let N be maximal k-subsemimodule of M. Assume that C is a k-subsemimodule
of M/ky such that {N} C C C M/kn. Since W™'(C) is a k-subsemimodule we get
U~(C) = M. Thus, C = M/kn.

Conversely, assume that M/ky has only trivial k-subsemimodules. Consider a k-
subsemimodule B of M such that N C B C M. Then ¥(B) is a k-subsemimodule of
M/kn, so {N} C ¥(B) C M/kn. Therefore we obtain W(B) = M/ky, which gives us
B=M. d

3.11. Theorem. Let M be a finitely generated semimodule over a semiring R. Then
each proper k-subsemimodule N of M is contained in a mazimal k-subsemimodule of M.

Proof. Let M = (mu,...,mn) be a finitely generated semimodule over a semiring R,
N a k-subsemimodule of M and ¥ the set of all k-subsemimodules K of M satisfying
N C K C M. This set is partially ordered by inclusion. Consider a chain {K; |7 € [} in
Y., where [ is a index set. Then the subsemimodule K = Uie[ K; is a k-subsemimodule
of M and K # M since M = (ma,...,my). Hence K € X is an upper bound of the
chain. So, by Zorn’s Lemma, 3 has a maximal element, as required. (]

3.12. Example. If the semimodule M is cyclic then each proper k-subsemimodule of
M is contained in a maximal k-subsemimodule of M.

3.13. Definition. A semimodule M is said to satisfy condition (C) if and only if for all
a € M' = M\ {0} and all m € M there are 71,72 € R such that m + ria = rsa.

3.14. Example. Consider the semigroup (N, +). Then since every semigroup is a
(N, +, - )-semimodule, so is (N, 4+ ). Thus the N-semimodule (N, + ) satisfies condition

().

3.15. Example. The set U = {0}U{u € N | u > ¢} is a semigroup under usual addition
and is a N-semimodule. Then U satisfies condition (C) since u+0-u =1-u for all u € U.

3.16. Lemma. If a semimodule M satisfies condition (C), then rm = 6 for r € R,
m € M, impliesm =6 orr € An(M).
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Proof. Assume that rm = 6 and r # 0, m # 6 for some r € R, m € M. Then for all
s € M there exist ri1,72 € R such that s + rim = rem. So, rs + rrim = rram, which
gives us rs = 0 for all s € M. There for x € M, if we use condition (C), x + r3s = r4s
for some r3,74 € R. Hence, x = 6. O

3.17. Theorem. Let M be a semimodule. Then condition (C') implies that M contains
only trivial k-subsemimodules. The converse is true if Rm = {rm | r € R} # {6} holds
for allm e M'.

Proof. Assume that M satisfies condition (C). Let {6} # N be a k-subsemimodule of M,
i.e N contains at least one element a € M’. Then by condition (C), for all m € M there
exist 1,72 € R such that m+ria = r2a, since r1a, r2a € N, and N is a k-subsemimodule.
This gives m € N. Thus, N = M.

For the converse, let 6 # m € M. Then Rm # {0} is a subsemimodule of M. By our
assumption, the k-subsemimodule Rm is equal to M, i.e Rm = M. This gives us

{0} # Rm C Rm = {m € M | m + rim = ram for some r; € R} = M,
so the condition (C) is satisfied. a

3.18. Theorem. Let M be a semimodule over a commutative semiring R, and N a
k-subsemimodule of M. Then N is mazimal if and only if M /N satisfies condition (C).

Proof. Suppose that N is a maximal k-subsemimodule of M. Let cpon € (M/N)'. Then
c ¢ N. Now let K be the smallest subsemimodule which contains N and ¢. Since N C K
we get

K=MEK={mcM|m+s =33, 5 € K},

where 37 = s;c+n; for s; € R, n; € N. So m+sic+ni1 = sac+na, thus mpn+s1(con) =
s2(cpn). This shows that M /N satisfies condition (c).

For the converse suppose that M /N satisfies condition (c), and let K be a k-subsemi-
module of M satisfying N C K. Then there is an element ¢ € K/N, so that con €
(M/N)'. By condition (c), for all mpn € M/N there exist 71,72 € R such that mpy +
ri(con) = r2(cpn). Hence there exist ni,ne € N such that m 4+ ric + n1 = roc + no.
Since K is a k-subsemimodule, m € K. Thus K = M. O

3.19. Theorem. Let M be a semimodule over a commutative semiring R. Then each
mazimal k-subsemimodule N of M is prime.

Proof. By Theorem 3.18, M /N satisfies condition (C). Then for r ¢ Axy(M), m ¢ N we
have r # 0 and mpn # 0pn. Now if we use Lemma 3.16, we get r(mpn) # Opn, thus
rm & N. O
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