ON PRIME AND MAXIMAL k-SUBSEMIMODULES OF SEMIMODULES

Gürsel Yeşilot*

Received 05:02:2009 : Accepted 29:01:2010

Abstract

In this paper, we present some characterizations of prime k-ideals and maximal k-ideals of a semiring. Then we extend these properties to prime k-subsemimodules and maximal k-subsemimodules of a semimodule. After that, the correspondence between prime k-ideals and prime k-subsemimodules, and between maximal k-ideals and maximal k-subsemimodules are given.

Keywords: Prime k-ideal, Maximal k-ideal, Prime k-subsemimodule, Maximal k-subsemimodule.

2000 AMS Classification: 16 Y 60.

1. Introduction

In this work we investigate k-ideals of semirings and k-subsemimodules of semimodules. In Section 2 the definitions of prime k-ideals and maximal k-ideals are given. Then we give some characterizations of prime k-ideals and maximal k-ideals, and give the prime avoidance theorem for k-ideals. In Section 3 we extend these properties to prime k-subsemimodules and maximal k-subsemimodules. Then, relations between k-ideals and k-subsemimodules are given.

First of all we recall some known definitions.

A set R together with two associative binary operations called addition (+) and multiplication (\cdot) is called a semiring provided:

- i) Addition is a commutative operation, and
- ii) Multiplication distributes over addition both from the left and from the right.

^{*}Yıldız Technical University, Department of Mathematics, Davutpaşa, 34210 Esenler, Istanbul, Turkey. E-mail: gyesilot@yildiz.edu.tr

An element $0 \in R$ such that x + 0 = 0 + x = x and x0 = 0x = 0 for each $x \in R$ is called an absorbing zero element.

A subset I of a semiring R is called an ideal of R if for $a,b \in I$ and $r \in R$ we have $a+b \in I$, $ra \in I$ and $ar \in I$. An ideal I of a semiring R is called trivial iff I=R or $I=\{0\}$. For each ideal I of a semiring R the k-closure \overline{I} of I is defined by

$$\overline{I} = \{ \overline{a} \in R \mid \overline{a} + a_1 = a_2 \text{ for some } a_1, a_2 \in I \},$$

and is an ideal of R satisfying $I \subseteq \overline{I}$ and $\overline{\overline{I}} = \overline{I}$. An ideal I is called a k-ideal of R if and only if $I = \overline{I}$ holds.

Given two semirings R and R', a mapping η from R to R' is called a homomorphism if $\eta(a+b)=\eta(a)+\eta(b)$ and $\eta(ab)=\eta(a)\eta(b)$ for each $a,b\in R$. An isomorphism is a one-to-one homomorphism (see [1] for more details). In this situation the semirings R and R' are called isomorphic.

Each ideal I of a semiring R defines a congruence κ_I on $(R, +, \cdot)$ by

$$r\kappa_I r' \iff r + a_1 = r' + a_2 \text{ for some } a_1, a_2 \in I.$$

The corresponding congruence class semiring R/κ_I consisting of the classes $[r]_{\kappa_I} = [r]$, contains the k-closure \overline{I} of I as one of its classes, and \overline{I} is a multiplication absorbing zero of R/κ_I . (see [6]).

An ideal I is called prime if $ab \in I$ implies $a \in I$ or $b \in I$ for all $a, b \in R$. For details of prime ideals the reader is referred to [3,6] and [7]. Throughout this paper we let the semiring R be commutative.

If R is a semiring, an additively written commutative semigroup M with neutral element θ is called an R-semimodule if

- i) $r \cdot (m+m') = r \cdot m + r \cdot m'$,
- ii) $(r+r')\cdot m = r\cdot m + r'\cdot m$,
- iii) $(rr') \cdot m = r \cdot (r' \cdot m),$
- iv) $1 \cdot m = m$,
- v) $r \cdot \theta = 0 \cdot m = \theta$,

for all $m, m' \in M$ and $r, r' \in R$. A subset N of the R-semimodule M will be called a subsemimodule of M if $a, b \in N$ and $r \in R$ implies $a + b \in N$ and $r \in R$.

The k-closure of a subsemimodule of the R-semimodule M is defined by

$$\overline{N} = \{ \overline{a} \in M \mid \overline{a} + a_1 = a_2 \text{ for some } a_1, a_2 \in N \}.$$

Note that \overline{N} is a subsemimodule, satisfying $N \subset \overline{N}$ and $\overline{N} = \overline{\overline{N}}$. We say that a subsemimodule N of M is a k-subsemimodule if $N = \overline{N}$.

The annihilator of a subsemimodule M/N is defined by

$$A_N(M) = \{a \in R : aM \subseteq N\}.$$

Clearly, $A_N(M)$ is an ideal of the semiring R. A subsemimodule N is called prime if $rm \in N$ implies $r \in A_N(M)$ or $m \in N$ for all $r \in R$ and $m \in M$.

Each subsemimodule N of a semimodule M defines a congruence κ_N on (M, +) by

$$m\kappa_N m' \iff m + a_1 = m' + a_2 \text{ for some } a_1, a_2 \in N.$$

The corresponding congruence class semimodule M/κ_N , consisting of the classes $[m]_{\kappa_N} = [m]$, contains the k-closure \overline{N} of N as one of its classes, and \overline{N} is a multiplication absorbing zero of M/κ_N .

2. Prime k-ideals and maximal k-ideals

Recall that the natural homomorphism $\Psi: R \to R/\kappa_I$ of a semiring R for some ideal I of R is defined by $r \mapsto [r]_{\kappa_I} = [r]$.

- **2.1. Lemma.** Let R be a semiring and I an ideal of the semiring R. Consider the natural homomorphism $\Psi: R \longrightarrow R/\kappa_I$. Then
 - (i) If $I \subseteq J$ is a k-ideal of R, then $\Psi(J)$ is a k-ideal of R/κ_I ,
 - (ii) If J is a k-ideal of R/κ_I then $\Psi^{-1}(J)$ is a k-ideal of R.

Proof. Let $\Psi: R \to R/\kappa_I$ be the natural homomorphism, i.e $\Psi(r) = [r]$.

- (i) Let $I \subseteq J$ be a k-ideal of R. Suppose that $[x] + [r_1] = [r_2]$ for some $r_1, r_2 \in J$ and $x \in R$. Then we have for some $a_1, a_2 \in I$, $x + r_1 + a_1 = r_2 + a_2$. Since $r_1 + a_1, r_2 + a_2 \in J$ and J is a k-ideal we get $x \in J$, so $\Psi(x) = [x] \in \Psi(J)$.
- (ii) Let J be a k-ideal of R/κ_I , and suppose that $x+r_1=r_2$ for some $r_1,r_2\in\Psi^{-1}(J)$ and $x \in R$. Therefore we get $[r_2] = [x + r_1] = [x] + [r_1]$, and since J is a k-ideal we get $[x] \in J$. So $\Psi(x) = [x] \in J$, consequently $x \in \Psi^{-1}(J)$.
- **2.2. Definition.** Let $(R, +, \cdot)$ be a semiring and I a prime ideal of R. If I is a k-ideal, then we call I a prime k-ideal.
- **2.3.** Theorem. Let R be a semiring and I an ideal of the semiring R. Consider the natural homomorphism $\Psi: R \to R/\kappa_I$ for some ideal I of R. Then an ideal $I \subseteq J$ of R is a prime k-ideal if and only if $\Psi(J)$ is prime k-ideal of R/κ_I .

Proof. Let $I \subseteq J$ be a prime k-ideal of R and for some $r_1, r_2 \in R$ let $\Psi(r_1)\Psi(r_2) \in \Psi(J)$. Then $\Psi(r_1r_2) = \Psi(x) \in \Psi(J)$ for some $x \in J$. Then for some $a_1, a_2 \in I$, $r_1r_2 + a_1 = x + a_2$ and since J is a k-ideal we get $r_1r_2 \in J$. Therefore $r_1 \in J$ or $r_2 \in J$. Thus $\Psi(r_1) \in \Psi(J)$ or $\Psi(r_2) \in \Psi(J)$.

Conversely, assume that $\Psi(J)$ is a prime k-ideal for an ideal J containing I. If $r_1r_2 \in J$ for some $r_1, r_2 \in R$, then $\Psi(r_1r_2) \in \Psi(J)$. So $\Psi(r_1)\Psi(r_2) \in \Psi(J)$. Therefore $\Psi(r_1) \in \Psi(J)$ $\Psi(J)$ or $\Psi(r_2) \in \Psi(J)$. Thus $r_1 \in J$ or $r_2 \in J$.

- **2.4. Lemma.** Let P be a prime k-ideal of the commutative semiring R, and let I_1, \ldots, I_n be ideals of R. Then the following statements are equivalent:
 - $\begin{array}{ll} \text{(i)} & P\supseteq I_j \text{ for some } j \text{ with } 1\leq j\leq n,\\ \text{(ii)} & P\supseteq \bigcap_{i=1}^n I_i,\\ \text{(iii)} & P\supseteq \prod_{i=1}^n I_i. \end{array}$

Proof. (i) \Longrightarrow (ii) and (ii) \Longrightarrow (iii) are trivial.

(iii) \Longrightarrow (i) Let $P \supseteq \prod_{i=1}^n I_i$ for some ideals I_1, \ldots, I_n of R and prime k-ideal P. Assume that $P \not\supseteq I_j$ for all j with $1 \leq j \leq n$. Then for all j there exist elements $a_j \in I_j \setminus P$, where $1 \leq j \leq n$. Therefore $a_1 \cdots a_n \in \prod_{i=1}^n I_i \subseteq P$. Since P is prime we get for some j with $1 \le j \le n$, $a_j \in P$ which is a contradiction.

Let R be a ring with identity. One of the fundamental theorems of commutative ring theory is the "prime avoidance" theorem, which states that if P_1, P_2, \ldots, P_n are prime ideals of R and I is an ideal of R such that $I \subseteq \bigcup_{i=1}^n P_i$, then $I \subseteq P_i$ for some $1 \le j \le n$. In the following Theorem we will prove the "prime avoidance" theorem for semirings. Now let us give a lemma for the theorem.

2.5. Lemma. Let P_1, P_2 be k-ideals of a commutative semiring R and I an ideal of R such that $I \subseteq P_1 \cup P_2$. Then $I \subseteq P_1$ or $I \subseteq P_2$.

Proof. Let $I \subseteq P_1 \cup P_2$ and we assume that P_1, P_2 are k-ideals. Suppose that $I \not\subseteq P_1$ and $I \not\subseteq P_2$. Thus there exist elements $a_1 \in I \setminus P_1$ and $a_2 \in I \setminus P_2$ so that $a_1 \in P_2$ and $a_2 \in P_1$. Since I is an ideal we get $a_1 + a_2 \in I \subseteq P_1 \cup P_2$, and thus $a_1 + a_2 \in P_1$ or $a_1 + a_2 \in P_2$. Since P_1, P_2 are k-ideals, we have $a_1 \in P_1$ or $a_2 \in P_2$, which is a contradiction. Therefore $I \subseteq P_1$ or $I \subseteq P_2$.

2.6. Theorem. Let P_1, \ldots, P_n , $n \geq 2$, be k-ideals of the commutative semiring R such that at most two of P_1, \ldots, P_n are not prime. Let I be an ideal of R such that $I \subseteq \bigcup_{i=1}^n P_i$. Then $I \subseteq P_j$ for some j with $1 \leq j \leq n$.

Proof. We will prove this using induction on n. Consider first the case n=2. This is given by Lemma 2.5. Now assume that it is true for n=k and let n=k+1. Let $I \subseteq \bigcup_{i=1}^{k+1} P_i$ and, since at most 2 of the P_i are not prime, we can assume that they have been indexed in such a way that P_{k+1} is prime.

Suppose that for each $j=1,\ldots,k+1$, it is the case that $I \nsubseteq \bigcup_{i=1,\,i\neq j}^{k+1} P_i$. We will obtain a contradiction, so by the induction hypothesis $I \subseteq P_t$ for some $t=1,\ldots,k+1$ where $t \neq j$. Now we have elements $a_j \in I \setminus \bigcup_{i=1,\,i\neq j}^{k+1} P_i$ with $a_j \in P_j$. Also, since P_{k+1} is prime, we have $a_1 \cdots a_k \notin P_{k+1}$. Thus $a_1 \cdots a_k \in \bigcap_{i=1}^k P_i \setminus P_{k+1}$ and $a_{k+1} \in P_{k+1} \setminus \bigcup_{i=1}^k P_i$. Now, consider the element $b=a_1\cdots a_k+a_{k+1}$. Since $a_1\cdots a_k \in I$ and $a_{k+1} \in I$ we get $b \in I \subseteq \bigcup_{i=1}^{k+1} P_i$. Thus we have $b \in P_{k+1}$ or $b \in P_j$ for some $1 \leq j \leq k$. If $b \in P_{k+1}$ then $a_1 \cdots a_k \in P_{k+1}$, which is a contradiction. If $b \in P_j$ for some $1 \leq j \leq k$ then $a_{k+1} \in P_j$, which is again a contradiction. Hence we get $I \subseteq \bigcup_{i=1,\,i\neq j}^{k+1} P_i$ for some j and by the induction hypothesis we get $j \subseteq P_j$ for some $j \in J$.

- **2.7. Definition.** Let R be a semiring with an absorbing zero element 0. Then we call R an *integral semidomain* if ab = 0 implies a = 0 or b = 0 for any $a, b \in R$.
- **2.8. Example.** 1) N, the set of all non-negative integers, is an integral semidomain.
- 2) \mathbb{N} is a semiring with the binary operations $a+b=\max\{a,b\}$ and $ab=\min\{a,b\}$. Then 0 is an absorbing zero of \mathbb{N} , and \mathbb{N} is an integral semidomain.

Note that, if R is a semiring and I is an ideal of R then R/κ_I has $\{\overline{I}\}=0_{K_I}$ as an absorbing zero.

2.9. Theorem. Let R be a semiring. Then a k-ideal P of R is a prime k-ideal if and only if R/κ_P is an integral semidomain.

Proof. Let P be a prime k-ideal of R and $[r_1][r_2] = \{P\} = 0_{\kappa_P}$ for some $r_1, r_2 \in R$. Then $[r_1r_2] = 0_{\kappa_P}$, so there exist $a_1, a_2 \in P$ such that $r_1r_2 + a_1 = a_2$. Since P is a k-ideal we get $r_1r_2 \in P$. Therefore, $r_1 \in P$ or $r_2 \in P$. Hence $[r_1] = 0_{\kappa_P}$ or $[r_2] = 0_{\kappa_P}$.

For the converse, suppose that R/κ_P is an integral semidomain. Assume that $r_1r_2 \in P$ and $r_2 \notin P$ for some $r_1, r_2 \in R$. Then $[r_1r_2] = [r_1][r_2] = 0_{\kappa_P}$. Since R/κ_P is an integral semidomain and $r_2 \notin P$ we obtain $[r_1] = 0_{\kappa_P}$. Thus, $r_1 \in P$.

2.10. Definition. Let R be a semiring. A k-ideal $\hbar \subset R$ is called a maximal k-ideal of R if there is no k-ideal I of R satisfying $\hbar \subset I \subset R$.

We note that a maximal k-ideal of R need not to be a maximal ideal of R. For example, by [5, Sen 4.2], let \mathbb{N} be the set of all non-negative integers. Then the maximal k-ideals of \mathbb{N} are of the form $(p) = \{pn : n \in \mathbb{N}\}$, where p is prime, but none of these are maximal ideals. Indeed, for a prime element p, (p) is properly contained in the ideal $B = \{b \in \mathbb{N} \mid b \geq p\}$.

2.11. Theorem. Let R be a semiring. Then every maximal k-ideal is a prime k-ideal.

Proof. See [5, Proposition 3.1].

- **2.12. Definition.** A semiring R is called a k-semifield if it has only the trivial k-ideals.
- **2.13. Theorem.** Let R be a semiring. Then \hbar is a maximal k-ideal of R if and only if R/κ_{\hbar} is a k-semifield.

Proof. Let \hbar be a maximal k-ideal of R. Assume that J is an k-ideal of R/κ_{\hbar} such that $J \neq {\hbar}$. By Lemma 2.1, $\Psi^{-1}(J)$ is an k-ideal and we get $\hbar \subseteq \Psi^{-1}(J)$. Since \hbar is a maximal k-ideal we obtain $\Psi^{-1}(J) = R$. Thus $J = R/\kappa_{\hbar}$.

Conversely, let $\hbar \subsetneq J$ be a k-ideals of R. Then $\Psi(J)$ is a k-ideal of R/κ_{\hbar} . Since R/κ_{\hbar} is a k-semifield we get $\Psi(J) = R/\kappa_{\hbar}$. Hence, J = R.

3. Prime k-subsemimodules and maximal k-subsemimodules

- **3.1. Lemma.** Let M be an R-semimodule, N a proper subsemimodule of M and consider the natural homomorphism $\Psi: M \to M/\kappa_N$ given by $\Psi(m) = [m]$. Then:
 - (i) If $N \subset K$ is a k-subsemimodule of M then $\Psi(K)$ is a k-subsemimodule of M/κ_N .
 - (ii) If K is a k-subsemimodule of M/κ_N then $\Psi^{-1}(K)$ is a k-subsemimodule of M.

Proof. Similar to the proof of Lemma 2.1.

3.2. Theorem. Let M be a semimodule over a commutative semiring R. If N is a k-subsemimodule of M, then $A_N(M)$ is a k-ideal of R.

<u>Proof.</u> We know that $A_N(M) \subseteq \overline{A_N(M)}$ by the property of k-closure. Now, let $x \in \overline{A_N(M)}$. Then there exist $r_1, r_2 \in A_N(M)$ such that $x + r_1 = r_2$. Therefore we obtain, for all $m \in M$, that $xm + r_1m = r_2m$. Since $r_1m, r_2m \in N$ and N is a k-subsemimodule we get $xm \in N$. Hence, $x \in A_N(M)$.

The converse of this theorem is not true in general. To show this we give the following example.

3.3. Example. Consider the semigroup $(\mathbb{Z}, +)$ as an \mathbb{N} -semimodule, where $(\mathbb{N}, +, .)$ is regarded as a semiring. The subset \mathbb{N} of \mathbb{Z} is a subsemimodule of \mathbb{Z} which is not a k-subsemimodule. Indeed, -2+2=0 for $2,0\in\mathbb{N}$ and $-2\in\mathbb{Z}$, but $-2\notin\mathbb{N}$. But on the other hand, $A_{\mathbb{N}}(\mathbb{Z})=\{0\}$, is a k-ideal of \mathbb{N} .

Recall that a subsemimodule N of a semimodule M is called prime if $rm \in N$ implies $r \in A_N(M)$ or $m \in N$ for $r \in R$ and $m \in M$. The reader is referred to [7] for details.

- **3.4. Definition.** Let M be an R-semimodule and N a prime subsemimodule of M. Then N is called a $prime\ k$ -subsemimodule if it is k-subsemimodule.
- **3.5. Theorem.** Let M be an R-semimodule and N be subsemimodule of M. Then $A_N(M)$ is a prime k-ideal of R if N is a prime k-subsemimodule.

Proof. Let N be a prime k-subsemimodule of M. By Theorem 3.2 above, $A_N(M)$ is a k-ideal. Now we will show that $A_N(M)$ is a prime ideal of R. Let $a, b \in R$ such that $ab \in A_N(M)$ but $b \notin A_N(M)$. Then there exists an element $m \in M$ such that $bm \notin N$ but $a(bm) \in N$. Since N is prime we get $a \in A_N(M)$.

Now we give an example showing that the converse of this theorem is not true in general.

3.6. Example. $(\mathbb{N} \times \mathbb{N}, +)$ is an \mathbb{N} -semimodule. It is clear that (0) is a prime k-ideal of \mathbb{N} . If we consider the subsemimodule $K = 0 \times 6\mathbb{N}$ of $\mathbb{N} \times \mathbb{N}$, then K is a k-subsemimodule but not prime even though the annihilator (0) is prime.

- **3.7. Definition.** Let M be an R-semimodule over a semiring R. We call M a k-multiplication semimodule if for all subsemimodules N of M there exists a k-ideal I of R such that N = IM.
- **3.8. Theorem.** Let M be a k-multiplication semimodule of the semiring R. Then a k-subsemimodule N is prime if and only if $A_N(M)$ is a prime k-ideal.

Proof. Let N be a k-subsemimodule of M such that $A_N(M)$ is a prime k-ideal. Assume that $rm \in N$ for some $r \in R$ and $m \in M$. Then $(r)(m) \subseteq N$. Since M is a k-multiplication semimodule, there exist a k-ideal of R such that (m) = IM. Thus $N \supseteq (r)(m) = (r)(IM) = (rI)M$. So we get $(rI) \subseteq A_N(M)$. Hence, $(r) \subseteq A_N(M)$ or $I \subseteq A_N(M)$. If $(r) \subseteq A_N(M)$, then $r \in A_N(M)$ and if $I \subseteq A_N(M)$, then $IM \subseteq N$. So $(m) \subseteq N$ and $m \in N$.

For the converse we may use the above theorem.

3.9. Definition. Let M be an R-semimodule. A k-subsemimodule $N \subset M$ is called a $maximal\ k$ -subsemimodule of M if there is no k-subsemimodule K of M satisfying $N \subset K \subset M$.

3.10. Theorem. A proper k-subsemimodule N of an R-semimodule M is maximal if and only if M/κ_N has only trivial k-subsemimodules.

Proof. Let N be maximal k-subsemimodule of M. Assume that C is a k-subsemimodule of M/κ_N such that $\{N\} \subset C \subseteq M/\kappa_N$. Since $\Psi^{-1}(C)$ is a k-subsemimodule we get $\Psi^{-1}(C) = M$. Thus, $C = M/\kappa_N$.

Conversely, assume that M/κ_N has only trivial k-subsemimodules. Consider a k-subsemimodule B of M such that $N \subset B \subseteq M$. Then $\Psi(B)$ is a k-subsemimodule of M/κ_N , so $\{N\} \subsetneq \Psi(B) \subset M/\kappa_N$. Therefore we obtain $\Psi(B) = M/\kappa_N$, which gives us B = M.

- **3.11. Theorem.** Let M be a finitely generated semimodule over a semiring R. Then each proper k-subsemimodule N of M is contained in a maximal k-subsemimodule of M.
- Proof. Let $M=(m_1,\ldots,m_n)$ be a finitely generated semimodule over a semiring R, N a k-subsemimodule of M and Σ the set of all k-subsemimodules K of M satisfying $N\subseteq K\subset M$. This set is partially ordered by inclusion. Consider a chain $\{K_i\mid i\in I\}$ in Σ , where I is a index set. Then the subsemimodule $K=\bigcup_{i\in I}K_i$ is a k-subsemimodule of M and $K\neq M$ since $M=(m_1,\ldots,m_n)$. Hence $K\in \Sigma$ is an upper bound of the chain. So, by Zorn's Lemma, Σ has a maximal element, as required.
- **3.12. Example.** If the semimodule M is cyclic then each proper k-subsemimodule of M is contained in a maximal k-subsemimodule of M.
- **3.13. Definition.** A semimodule M is said to satisfy condition (C) if and only if for all $a \in M' = M \setminus \{0\}$ and all $m \in M$ there are $r_1, r_2 \in R$ such that $m + r_1a = r_2a$.
- **3.14. Example.** Consider the semigroup $(\mathbb{N}, +)$. Then since every semigroup is a $(\mathbb{N}, +, \cdot)$ -semimodule, so is $(\mathbb{N}, +)$. Thus the \mathbb{N} -semimodule $(\mathbb{N}, +)$ satisfies condition (\mathbb{C}) .
- **3.15. Example.** The set $U = \{0\} \cup \{u \in \mathbb{N} \mid u \geq c\}$ is a semigroup under usual addition and is a \mathbb{N} -semimodule. Then U satisfies condition (C) since $u + 0 \cdot u = 1 \cdot u$ for all $u \in U$.
- **3.16. Lemma.** If a semimodule M satisfies condition (C), then $rm = \theta$ for $r \in R$, $m \in M$, implies $m = \theta$ or $r \in A_N(M)$.

Proof. Assume that $rm = \theta$ and $r \neq 0$, $m \neq \theta$ for some $r \in R$, $m \in M$. Then for all $s \in M$ there exist $r_1, r_2 \in R$ such that $s + r_1m = r_2m$. So, $rs + rr_1m = rr_2m$, which gives us $rs = \theta$ for all $s \in M$. There for $x \in M$, if we use condition (C), $x + r_3s = r_4s$ for some $r_3, r_4 \in R$. Hence, $x = \theta$.

3.17. Theorem. Let M be a semimodule. Then condition (C) implies that M contains only trivial k-subsemimodules. The converse is true if $Rm = \{rm \mid r \in R\} \neq \{\theta\}$ holds for all $m \in M'$.

Proof. Assume that M satisfies condition (C). Let $\{\theta\} \neq N$ be a k-subsemimodule of M, i.e N contains at least one element $a \in M'$. Then by condition (C), for all $m \in M$ there exist $r_1, r_2 \in R$ such that $m + r_1 a = r_2 a$, since $r_1 a, r_2 a \in N$, and N is a k-subsemimodule. This gives $m \in N$. Thus, N = M.

For the converse, let $\theta \neq m \in M$. Then $Rm \neq \{\theta\}$ is a subsemimodule of M. By our assumption, the k-subsemimodule \overline{Rm} is equal to M, i.e $\overline{Rm} = M$. This gives us

$$\{\theta\} \neq Rm \subseteq \overline{Rm} = \{\bar{m} \in M \mid \bar{m} + r_1 m = r_2 m \text{ for some } r_i \in R\} = M,$$

so the condition (C) is satisfied.

3.18. Theorem. Let M be a semimodule over a commutative semiring R, and N a k-subsemimodule of M. Then N is maximal if and only if M/N satisfies condition (C).

Proof. Suppose that N is a maximal k-subsemimodule of M. Let $c\rho_N \in (M/N)'$. Then $c \notin N$. Now let K be the smallest subsemimodule which contains N and c. Since $N \subset K$ we get

$$\overline{K} = M\overline{K} = \{ \overline{m} \in M \mid \overline{m} + \overline{s_1} = \overline{s_2}, \ \overline{s_i} \in K \},$$

where $\overline{s_i} = s_i c + n_i$ for $s_i \in R$, $n_i \in N$. So $\overline{m} + s_1 c + n_1 = s_2 c + n_2$, thus $\overline{m} \rho_N + s_1 (c \rho_N) = s_2 (c \rho_N)$. This shows that M/N satisfies condition (c).

For the converse suppose that M/N satisfies condition (c), and let K be a k-subsemimodule of M satisfying $N \subset K$. Then there is an element $c \in K/N$, so that $c\rho_N \in (M/N)'$. By condition (c), for all $m\rho_N \in M/N$ there exist $r_1, r_2 \in R$ such that $m\rho_N + r_1(c\rho_N) = r_2(c\rho_N)$. Hence there exist $n_1, n_2 \in N$ such that $m + r_1c + n_1 = r_2c + n_2$. Since K is a k-subsemimodule, $m \in K$. Thus K = M.

3.19. Theorem. Let M be a semimodule over a commutative semiring R. Then each maximal k-subsemimodule N of M is prime.

Proof. By Theorem 3.18, M/N satisfies condition (C). Then for $r \notin A_N(M)$, $m \notin N$ we have $r \neq 0$ and $m\rho_N \neq \theta\rho_N$. Now if we use Lemma 3.16, we get $r(m\rho_N) \neq \theta\rho_N$, thus $rm \notin N$.

References

- Allen, P. J. A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21, 412–416, 1969.
- [2] Allen, P. J. Neggers, J. and Kim, H. S. *Ideal theory in commutative A-semirings*, Kyungpook Math. J. 46, 261–271, 2006.
- [3] Iseki, K. Ideal theory of semirings, Proceedings Japan Academy 32, 554–559, 1956.
- [4] LaTorre, D. R. A note on quotient semirings, Proc. Amer. Math. Soc. 24, 463-465, 1970.
- [5] Chin-Pi Lu, C.-P. Unions of prime submodules, Houston J. Math. 23 (2), 203–213, 1997.
- [6] Sen, M. K. and Adhikari, M. R. On maximal k-ideals of semirings, Proc. Amer. Math. Soc. 118 (3), 699–703, 1993.
- [7] Shabir, M. and Iqbal, M.S. One-sided prime ideals in semirings, Kyungpook Math. J. 47, 473–480, 2007.

[8] Weinert, H. J., Sen, M. K. and Adhikari, M. R. One-sided k-ideals and h-ideals in semirings, Math. Pannon. 7(1), 147–162, 1996.