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Abstract

In this paper, we derive the general expression of the r** power (reN)
for one type of tridiagonal matrix.
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1. Introduction

In the present paper, we derive a general expression for the rth power for one type of
tridiagonal matrix, where r € N and N denotes the set of natural numbers. In [4], Rimas
derived a general expression for the lth power for one type of symmetric tridiagonal
matrices of even order.

General expressions for the rth power of a matrix are obtained by using the equality
A" = PJ"P~! [2], where J is the Jordan form of A and P the transforming matrix. We
need the eigenvalues and eigenvectors of the matrix A to compute the matrices J and P.
The eigenvalues of A are the roots

Tnk = COS k=1,2,...,n

n+1’
of the nth degree Chebyshev polynomial
sin((n + 1) arccos(z))
sin(arccos(x))

Un(z) = , —1 <z <1,

of the second kind.
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2. Main results

Let A be the following n-square tridiagonal matrix

|
—
—

(21) A= -1 0

The eigenvalues of A are the roots of the characteristic equation
|[A—AE| =0,

and also the roots of Uy (z), the nth degree Chebyshev polynomial of the second kind [3].

In the present paper, we investigate integer powers of this matrix. Initially we will
scrutinize the integer powers for even orders. Let us write

a —1
-1 « 1
1 a -1
(2.2) Dy(a)=|A—NE| = -1 «
1
1 a -1
-1 «
and
a 1
1 a -1
-1 « 1
(2.3)  Ap(a)= 1 «a
4
-1 « 1
1 a

where a = -\ € R.
By (2.2) and (2.3), we obtain the following two results

(2.4)  Du(a) = An(a)

(2.5)  Ap(a) =aAn_1(a) — Apn_2(w),
where Az(a) = o — 1, A1(a) = a and Ag(a) = 1.
We obtain (2.4) by the induction principle. For n = 2,

Dy(a) = Az(a) = a® — 1.
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Let Dop(a) = Agi(a) for n = 2k. We have to show that Dapio(a) = Aapia(a) for
n =2k + 2. Let

(2.6)  Dapta(a) =

(2k+2) x (2k+2)

If we expand the determinant (2.6) according to first row, then we have

(27) D2k+2(a) =« +

and if we expand the first determinant in (2.7) according to last row and the second
determinant according to first column, then we obtain

a 1 a 1
1 o -1 1 o -1
D2k+2(a):a « +
-1 a 1 -1 « 0
1 « 1 -1
Aoy (o)
a -1
-1 « 1
1 a —1
-1 «

Do (a)=Az (a)
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Then

Dok y2(a) = a § alor(a) — — Agi(a)

Agp—1(a)
= ook (a) — Agp—1(a)] — Aok (e)

Agpyi(e)
= aAopta () — Ao ()
= Agpi2(a).

By solving the difference equation (2.5), we obtain [1]

(2.8)  Anla) = Un(%)

It is known that the roots of the polynomial U, (z) are [3]

(2.9) @k = cos

,k=1,2,...,n,
n+1

which are included in the interval [—1, 1].

Taking (2.6) and (2.7) into account, we find the eigenvalues of the matrix A to be

(2.10) Ax = —2cos nk—:—rl’ k=1,2,...,n.

Since the multiplicity of each of the eigenvalues Ay is 1, and applying the relation

e = —Anpsr, (k=1,2,..., g)

we write down the Jordan form of the matrix A as
(2.11) J =diag(—An, —An—1, —An—2,..., “Anp A, A2, An, An).
Let us solve the homogeneous linear equations

(ME — A)z =0,

where \; is the ith eigenvalue of the matrix A (1 < i < n). By elementary row operations,
the coefficient matrix of the system is

m x -1 0 0 -~ 0 0 0
01 -x -1 0 -~ 0 O 0
o0 1 Xx -1 -+ 0 0 0
0 0 o0 0 o0 1 =\ -1
0 0 0 0 0 0 1 i
0 0 0 0 0 0 Dy (=)
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Since Dp(—X;) = 0, rank(ME — A) =n — 1. Then

T1+ Nixo — 13 = 0,
Tro — )\ix3 — T4 = O,

Tn—2 — NiTn—1 — Ty = 07

Tn—1+ Nixyn = 0.

Now we will scrutinize the solutions of the above system of linear equations according to
n and k.

Let 2, = -1 = —U()(%), and for any n and k define

1 n—k=1or2 mod 4,
a =
—1 n—k=0or3 mod 4,

1 n—1=1or2 mod 4,
e =
-1 n—1=0o0or3 mod 4.
We consider the following two cases:
Case 1. Let n be an even number.

i) If k is an odd number, then

Tn-1=X =U1 (ﬁ)

2
A
Tn—2 = )\22 —1= U2<7>
Thpo = —a\} P2 g ARty "%k_l,\i = —aUn,k,2<%)
Thpr = —aANTF T L BATTR TR LR 1 = Uk (’\7)
2 =a\! P (—a =N (=N
n—k+1 . i
n—1 n—3 n )\1
zi=e\ T —e(n—2)A\""+ -+ 5)\@ eUn—1 (3)
where
b=a(n—k—2),
c=a(n—k—3),
and d is the sum of the coefficients of the terms )\?7]“5 in zx_3 and )\;“’“6 in Tp_o.
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ii) If k is an even number, then

2
Tpyz = —aXf P4 n-k 2)\1' = aUn7k73<ﬁ>y
2 2
Thpo = —aX} " PN 1= —aUanc72<%)7
n—k—1 n—k—3 n—k—>5 n—~k Al
Bt = N T T BT T e B =t (),
e =a\ A b= )N ek AT 1 = aUn,k<%),
n—1 n—3 n Ai
z1=e\  —e(n—2)\; +---+§)\¢:€Un—1<?>y
where
b=—a(n—k—2),
c=a(n—k—3),
and d is the difference of the coefficients of the terms )\?7]“5 in xx+3 and
Th+2-
Case 2 Let n be an odd number.
i) If £ is an odd number
Ai
Tn—1=Xi =U1 (7)7
A
w2 =X —1=Us(5),
ek —k—-2 by
Tpps = —aA] Tl 4 g W _aUn7k73(_>7
2 2
Ai
Thio = —a)\;“k*2 + c)\;“k*4 4. —1= —aUn7k72(3)7
n—k—1 n—k—3 n—k—5 n—Fk Ai
Bror = oA T DN T AT g BB =l (),
ze=a\ b=\ e+ AT — 1 = alU, (5)
n—1 n—3 )\i
rzi=e\  —en—2)A\ "+ —1=eUp_1 (5)7

where

b=—a(n—k—2),
c=aln—k—3),

n—k—6 -
)\i

m

and d is the difference of the coefficients of the terms A’ "~ in 2,3 and A7 %75 in

Tk+2.
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ii) If k is an even number, then

Tno1 =X = Uy (ﬁ)

2
Ai
n zfAf—l—U2(2>
—k—-1 i
Tppo = —aA} " e g n#)\i —aUp_k—2 (?)
Ai
Thp1 = _a)\;Lfkrfl + b)\;Lfkrf?) + dA?7k75 fo—1= _aUn7k71(7>

T A (R i D N ) DV

1 :6)\?71 —e(n_2))\’.“3 B

3

where

b=a(n—k—2),
c=a(n—k—3),

and d is the sum of the coefficients of the terms A7 ~*

Taking
Pi =T,
into account,

P=[P P P

PR (B,

-5 . —k— .
°in zp_3 and A} k=6 in zp_o.

Using this expression, we can write down the transforming matrix P as

_6Un71(%) 6U7L71(>\2_2)
aUnfkr(%) aUnfk(kQ_z)
(212) P = : :
~Us(3)  —Us(%)
Us (%) Us(32)
Ur (3 U (32
~Uo(3)  —Uo(42)

eUnfl(%)—

CLU,,L,]C()\" )

2

Uz(3)
Ui (22)

3
—Uo(3) |

Denoting the ith row of P by R; (i = 1,n), from (2.12) we have

(213) Wi = [tiUn-i(3) tiUn—i(32)

2
where

o 1 n—4t=1or2 mod 4,
"7 1=-1 n—i=0or3 mod 4.

tzUnf'L()\Tn)] )
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Denoting jth column of the inverse matrix P~* by p;17 we obtain

)
214) ot = | mi (524 Uns(
)

where

1 n—j=1lor2 mod 4,
mj =
! —1 n—j=0o0r3 mod 4.

Taking expression (2.14) into account, we obtain the matrix P~' as follows:

(33 )Unr(3) oo = (5)0a(3) (323 Ua(3)
oo |G () - () ) (52)0 (%)
e(55 ) Una(3) - = (5535 Us (3) (52%) ()

Using the equality A™ = PJ"P~!, we derive

imi@;iz)Unfj(A—;)
2 J’(AS;ﬁ)Unfj(A—f)
[}, = {PI P =W gy = R | Ny (53 ) Uy ()
Ny (3555 ) Ve ()
~nts S k= U () v, (2,
k=1

where \; are the eigenvalues of the matrix A, Ux(x) is the kth degree Chebyshev poly-
nomial of the second kind (i, = 1,n), and we equate this 1 X 1 matrix with its unique

element as usual.
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Now we consider the case when the order n is odd. Working as before, we obtain

a -1
-1 « 1
1 a -1
(2.15) Dnp(a)=|A—AE| = -1 «
SO
-1 « 1
1 a
and
o 1
1 a -1
-1 « 1
(2.16) Ap(a) = 1 «a
1
1 a -1
-1 «
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for odd orders, where a = —XA € R. Also, the equalities (2.4), (2.5), (2.8), (2.10), (2.12)

and (2.13) are valid for odd orders.
Since the multiplicity of all the eigenvalues A is 1, and applying the relation

n—1
Ao = —Anhils (k: =12, " )
and An+1 = 0 we can write down the Jordan form of the matrix A as:
2

(2.17) J = diag(—)\m _)\n—h _)\n—27 ey —)\n_+3 5 07 )\n_+3 TERE )\n727 )\n717 )\n)
2 2

Denoting jth column of the inverse matrix P~! by p;l, we obtain

(2.18) p;' = Moy

where

1 n—j=1lor2 mod 4,
mj; =
! —1 n—73=00r3 mod 4.
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Taking the expression (2.18) into account, we obtain the matrix P! as follows:
[ /A2 A2 A2
n+1 n+1 nt1l
7 +1 A1 _ 7 +1 A1 = ! A
6( T2 )U" 1(2)"‘ ( T2 )US(Q) ( nt2 )UQ(z)
A2 A2 A2
n+1 n+1 nt1
o 2 Az =2 Az o 2 Az
pl_ e( T2 )Unfl(z)"' ( T2 )U3(2) ( T2 )Uz(z)

>

A A A
nElin by nrlin by n +n A
2 An - — An 2 An
6( ni2 )Unfl( 2) ni2 U3( 2) nt2 UQ( 2)

o) A ]
2§+2+1 1(%) - 2721+;1 UO(Az_l)

Using the equality A™ = PJ"P~!, we derive

(AT}, =PI P} =R o =R | yr

s St e () (3

where \; are the eigenvalues of the matrix A, Uy (x) is the kth degree Chebyshev poly-
nomial of the second kind (i, = T,n), and we equate the 1 x 1 matrix with its unique

element.

3. Numerical examples

Taking into account the derived expressions for n even, one can see the effectiveness
of the formula. For n = 4, we obtain;

J = diag(—A4, —As, A3, A1) = diag(—a, —b, b, a),

2
a:2cosg7 szcos%.
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If r is even,
(4}, = 1_10(2({(4 —a®)(a® — 2a)” + 267 (4 — ) (b — 2b)?),

{4}, ={4"}, =0

{47}, = (A Jor = — 5 (2077 (4= @) (a® — 20) + 27 (4~ 02) 0 — 20),
(A} ={4}, =0

{AT}22 = 1%(2,f(4 —a®)(a® = 1) + 2" (4 — b*)(b* — 1)?),

{4} ={4"}, =0,

(A7) = 147}y =~ (207 = )@ = 1) + 267 (4 = )07 ~ 1),
{47}, = 1%(2!1”2(4 —a®) + 22 (4 - b?)),

{4} ={a"}, =0

{4} = 1—10(2ar(4 —a?) + 2" (4 b%)).

For example for r = 4;

2 0 -3 0
. |0 5 0o -3
A=13 o 5 ol
0 -3 0 2
If r is odd,
{A }11 :07
(A7), = {47}, =~ [207 (4 - a¥)(@® — 20)(a® — 1),
10

+2b"(4 - b*) (b — 2b)(b* — 1)]
{4}, ={4}, =0
{47}, = (A7} = 15 (207 (4 — a)(a® — 20) + 26" (4 — 1) 5° — 20),
{4'},,=0
{47} = (A )y = 35 (207 (= )@ = 1) + 207 (4= )7 — 1)),

{AT}24 = {AT}42 = 07

{4}, =0
r r 1 r r
(A ={A = @ =a’) + 27 (4= 17)),
{AT}44 =0.
For example, for r = 5,
0 -5 0 3
5 |-5 0 8 0
A= 0 8 0 -5
3 0 -5 0
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We will now see the effectiveness of the formula for odd orders. For example if n =5 we
obtain,

J = diag(—Xs, —A4, 0, Mg, Xs) = diag(—c, —d, 0, d, ¢), ¢ = V3, d = 1.

If r is even,

= Yty
{A"}, ={4"},, =0,

{4}, ={4"}, = —%crd2 = (V32

{47}, ={4"}, =0,

(AT}, = {47}, = %(Crdz ) = é((\/g)r 3,
{A”"}22 — é(cwzdz +c2dr) _ %((\/g)r,w L3,
{A7},, ={4"},, =0,

(AT}, ={a}, = %(gdr- _ g
{A"} s ={A"},, =0,

{ay,, = %mbz _ %CT 902 = o(y3)2,
(A7}, = {4}, =0,

(A} ={A4"}, = —%crd2 — ()" 2= (V32
{4} = é(cmd2 + ) =
{A},, ={4"},, =0,
X0 Y

| =

For example, for » = 4 we have,

2 0 -3 0 1
0 5 0 —4 O
A'=|-3 0 6 0 -3
0 -4 0 5 0
1 0 -3 0 2
If r is odd,
{Ar}ll :07
T T 1 r T 1 r
(AT}, = (A}, = L@ s ) = (B 1),
{Ar}m = {Ar}m =0,
r r 1, ., ” 1 -
{A }14 = {A }41 = g(c +1d2 - Czd ) = g((\/g) i _3)7

Il
o

{AT}LS = {AT}SI
{Ar}zz =0,

)
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{47}, = {4}, = 30 = (VB)
{AT}24 = {AT.}42 =0

)

(A = (A7) = 50— ) = (3= (VD).
{A7},, =0,

{A”"}34 = {A"}43 = _%CT'+1d2 S _(\/g)ril7
{4}, ={4"}, =0,

{47}, =0,

{AT}45 - {AT}M _ %(Cr+1d2 +C2d'r) _ %((\/g)rﬂ 3,
{4}, =0

For example, for r = 3 we have:
0 -2 0 1 0

-2 0 3 0 -1
A*=10 3 0 -3 0
1 0 -3 0 2
0 -1 0 2 0
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