A NEW VIEW OF FUZZY GAMMA RINGS

Mehmet Ali Öztürk^{*†}, Young Bae Jun[‡] and Hasret Yazarli[§]

Received 11:08:2009 : Accepted 04:01:2010

Abstract

The aim of this paper is to define a new kind of fuzzy gamma ring. So the concepts of fuzzy gamma ring, fuzzy ideal, fuzzy quotient gamma ring, and fuzzy gamma homomorphism are introduced.

Keywords: Gamma ring, Fuzzy ideal, Fuzzy quotient gamma ring, Canonical gamma homomorphism, Fuzzy binary relation.

2000 AMS Classification: 16 D 30, 16 S 99, 16 Y 99, 03 E 72.

1. Introduction

In 1965, L. A. Zadeh introduced the notion of a fuzzy subset of a set as a method for representing uncertainty. Then, in 1971, A. Rosenfeld used the notion of a fuzzy subset of a set to introduce the notion of a fuzzy subgroup of a group. Rosenfeld's paper inspired the development of fuzzy abstract algebra. After these studies, many mathematicians have studied these subject. For more details, see [11].

In [4, 5], M. Demirci introduced the concept of smooth group by using a fuzzy binaryoperation and the concept of fuzzy equality, and then this concept was applied to a new kind of fuzzy group based on a fuzzy binary operation by X. Yuan and E.S. Lee [17]. Recently H. Aktaş and N. Çağman [1] considered a type of fuzzy ring based on Yuan and Lee's definition of a fuzzy group.

In [13], N. Nobusawa introduced the notion of a Γ -ring, which is more general than a ring. W. E. Barnes [2] weakened slightly the conditions in the definition of a Γ -ring in the sense of Nobusawa. After these two papers were published, many mathematicians obtained interesting results on Γ -rings in the sense of Barnes and Nobusawa which paralleled results in ring theory.

^{*}Adıyaman University, Faculty of Arts and Sciences, Department of Mathematics, 02040 Adıyaman, Turkey. E-mail: maozturk@adiyaman.edu.tr

[†]Corresponding Author.

[‡]Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea. E-mail: skywine@gmail.com

[§]Cumhuriyet University, Faculty of Arts and Sciences, Department of Mathematics, 58140 Sivas, Turkey. E-mail: hyazarli@cumhuriyet.edu.tr

In [7], Jun and Lee introduced the concept of fuzzy Γ -ring. After this study several mathematicians worked on this subject, see for instance [8, 9, 14, 15].

In this paper, we define a new kind of fuzzy gamma ring. We obtain the fuzzy quotient gamma ring induced by fuzzy ideals, and present some fuzzy gamma homomorphism theorems.

2. Preliminaries

In this section we summarize the preliminary definitions that will be required in this paper. Most of the contents of this section are contained in [2, 7] and [17].

2.1. Definition. [2] If $M = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ are additive abelian groups and for all $a, b, c \in M$ and all $\alpha, \beta \in \Gamma$, the following conditions are satisfied

- (i) $a\alpha b \in M$;
- (ii) $(a+b)\alpha c = a\alpha c + b\alpha c$, $a(\alpha + \beta)b = a\alpha b + a\beta b$, $a\alpha(b+c) = a\alpha b + a\alpha c$;

(iii) $(a\alpha b)\beta c = a\alpha (b\beta c);$

then M is called a Γ -ring.

2.2. Definition. [2] Let M be a Γ -ring. A subset U of M is a *left* (*right*) *ideal* of M if U is an additive subgroup of M and

 $M\Gamma U = \{a\alpha u \mid a \in M, \ \alpha \in \Gamma, \ u \in U\} \ (U\Gamma M)$

is contained in U. If U is both a left an right ideal, then U is a *two-sided ideal*, or simply an *ideal* of M.

Let M and M' be two Γ -rings. A mapping $f : M \to M'$ of Γ -rings is called a Γ homomorphism if f(x + y) = f(x) + f(y) and $f(x\gamma y) = f(x)\gamma f(y)$ for all $x, y \in M$ and all $\gamma \in \Gamma$. If f is one-to-one and onto, we say that f is a Γ -isomorphism and that M and M' are Γ -isomorphic, denoted by $M \cong M'$.

2.3. Definition. [7] Let M be a Γ -ring. A fuzzy subset μ of a Γ -ring M is called a *fuzzy* sub- Γ -ring of M if

i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$

ii) $\mu(x\gamma y) \ge \max\{\mu(x), \mu(y)\},\$

for all $x, y \in M$ and for all $\gamma \in \Gamma$.

2.4. Definition. [7] A fuzzy subset μ of a Γ -ring M is called a *fuzzy left* (resp. *right*) *ideal of* M if

i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$

ii) $\mu(x\gamma y) \ge \mu(y) \ (\mu(x\gamma y) \ge \mu(x)),$

for all $x, y \in M$ and for all $\gamma \in \Gamma$.

2.5. Definition. [17] Let G be a nonempty set and R a fuzzy subset of $G \times G \times G$. Then R is called a *fuzzy binary operation on* G if

(i) $\forall a, b \in G, \exists c \in G \text{ such that } R(a, b, c) > \theta$,

(ii) $\forall a, b, c_1, c_2 \in G$, $R(a, b, c_1) > \theta$ and $R(a, b, c_2) > \theta$ implies $c_1 = c_2$,

where $\theta \in [0, 1)$ is a fixed number.

Let R be a fuzzy binary operation on G. Then we may regard R as a mapping $R: F(G) \times F(G) \to F(G)$, where

$$F(G) = \{A \mid A : G \to [0, 1] \text{ is a mapping}\}$$

and for $A, B \in F(G), R(A, B)$ is defined by

(2.1)
$$R(A,B)(c) = \bigvee_{a,b\in G} (A(a) \wedge B(b) \wedge R(a,b,c))$$

for all $c \in G$.

For $A = \{a\}$ and $B = \{b\}$ we denote R(A, B) by $a \circ b$. Then

(2.2)
$$(a \circ b)(c) = R(a, b, c), \text{ for all } c \in G$$

$$(2.3) \qquad ((a \circ b) \circ c)(z) = \bigvee_{d \in G} (R(a, b, d) \wedge R(d, c, z), \text{ for all } z \in G,$$

$$(2.4) \qquad (a \circ (b \circ c))(z) = \bigvee_{d \in G} (R(b, c, d) \wedge R(a, d, z)), \text{ for all } z \in G.$$

2.6. Definition. [17] Let G be a nonempty set and R a fuzzy binary operation on G. Then (G, R) is called a *fuzzy group* if the following conditions are true:

- (G1) $\forall a, b, c, z_1, z_2 \in G$, $((a \circ b) \circ c)(z_1) > \theta$ and $(a \circ (b \circ c))(z_2) > \theta$ implies $z_1 = z_2$;
- (G2) $\exists e_0 \in G$ such that $(e_0 \circ a)(a) > \theta$ and $(a \circ e_0)(a) > \theta$ for any $a \in G$
- $(e_0 \text{ is unique and is called the$ *identity element*of <math>G);
- (G3) $\forall a \in G, \exists b \in G \text{ such that } (a \circ b)(e_0) > \theta$ (b is unique and is called the *inverse element of a*, denoted by a^{-1}).

3. Results

Let M and Γ be nonempty sets, R_M a fuzzy binary operation on M and R_{Γ} on Γ . Hence, R_M is a fuzzy subset of $M \times M \times M$, and R_{Γ} a fuzzy subset of $\Gamma \times \Gamma \times \Gamma$. We assume throughout that the value of θ is the same for R_M and R_{Γ} .

Let (M, R_M) and (Γ, R_Γ) be fuzzy groups. We now define a new fuzzy binary operation S on (M, Γ) which is a fuzzy subset of $M \times \Gamma \times M \times \Gamma \times M$.

3.1. Definition. Let M and Γ be two nonempty sets and S a fuzzy subset of $M \times \Gamma \times M \times \Gamma \times M$. Then S is called a *fuzzy binary operation on* (M, Γ) if

- (i) $\forall a, b \in M, \forall \alpha, \beta \in \Gamma, \exists c \in M \text{ such that } S(a, \alpha, b, \beta, c) > \theta$,
- (ii) $\forall a, b, c_1, c_2 \in M, \forall \gamma \in \Gamma, \bigvee_{\beta \in \Gamma} S(a, \gamma, b, \beta, c_1) > \theta \text{ and } \bigvee_{\beta \in \Gamma} S(a, \gamma, b, \beta, c_2) > \theta$ implies $c_1 = c_2$,

where $\theta \in [0, 1)$ is as above for R_M and R_{Γ} .

Let S be a fuzzy binary operation on (M, Γ) . Then we may regard S as the mapping

$$S: F(M) \times F(\Gamma) \times F(M) \to F(M), \ (A, G, B) \mapsto S(A, G, B),$$

where

$$F(M) = \{A \mid A : M \to [0,1] \text{ is a mapping}\},\$$

$$F(\Gamma) = \{G \mid G : \Gamma \to [0,1] \text{ is a mapping}\},\$$

and

(3.1)
$$S(A, G, B)(c) = \bigvee_{\substack{a, b \in M \\ \alpha, \beta \in \Gamma}} (A(a) \wedge G(\alpha) \wedge B(b) \wedge S(a, \alpha, b, \beta, c)), \ \forall c \in M.$$

Let $A = \{a\}$, $B = \{b\}$, $G = \{\alpha\}$ and $G' = \{\alpha'\}$. Let $R_M(A, B)$, $R_{\Gamma}(G, G')$ and S(A, G, B) be denoted by $a \circ b$, $\alpha \circ \alpha'$ and $a * \alpha * b$, respectively. We will use the following

notation to simplify the calculations:

$$(3.2) \qquad (a * \alpha * b)(c) = \bigvee_{\alpha' \in \Gamma} S(a, \alpha, b, \alpha', c) \text{ for all } c \in M,$$

$$(3.3) \qquad ((a * \alpha * b) * \beta * c)(z) = \bigvee_{\substack{d \in M \\ \alpha', \beta' \in \Gamma}} (S(a, \alpha, b, \alpha', d) \wedge S(d, \beta, c, \beta', z)),$$

$$(3.4) \qquad (a*\alpha*(b*\beta*c))(z) = \bigvee_{\substack{d \in M \\ \alpha',\beta' \in \Gamma}} (S(b,\beta,c,\alpha',d) \wedge S(a,\alpha,d,\beta',z)),$$

(3.5)
$$(a * \alpha * (b \circ c))(z) = \bigvee_{\substack{d \in M \\ \alpha' \in \Gamma}} (R_M(b, c, d) \wedge S(a, \alpha, d, \alpha', z)),$$

$$(3.6) \qquad ((a*\alpha*b)\circ(a*\alpha*c))(z) = \bigvee_{\substack{d,e\in M\\\alpha',\beta'\in\Gamma}} (S(a,\alpha,b,\alpha',d)\wedge S(a,\alpha,c,\beta',e)\wedge R_M(d,e,z)),$$

$$(3.7) \qquad (a*(\alpha\circ\beta)*b)(c)=\bigvee_{\gamma,\alpha'\in\Gamma}(R_{\Gamma}(\alpha,\beta,\gamma)\wedge S(a,\gamma,b,\alpha',c)),$$

$$(3.8) \qquad ((a*\alpha*b)\circ(a*\beta*b))(c) = \bigvee_{\substack{d,e\in M\\\alpha',\beta'\in\Gamma}} (S(a,\alpha,b,\alpha',d)\wedge S(a,\beta,b,\beta',e)\wedge R_M(d,e,c)),$$

(3.9)
$$((a \circ b) * \alpha * c)(z) = \bigvee_{\substack{d \in M \\ \alpha' \in \Gamma}} (R_M(a, b, d) \wedge S(d, \alpha, c, \alpha', z)),$$

$$(3.10) \quad ((a * \alpha * c) \circ (b * \alpha * c))(z) = \bigvee_{\substack{d, e \in M \\ \alpha', \beta' \in \Gamma}} (S(a, \alpha, c, \alpha', d) \wedge S(b, \alpha, c, \beta', e) \wedge R_M(d, e, z)),$$

3.2. Definition. Let M and Γ be nonempty sets, R_M , R_{Γ} and S fuzzy binary operations on M, Γ and (M, Γ) , respectively, all with the same value of θ . To simplify the notation, from now on we denote both R_M and R_{Γ} by R. Then (M, Γ, R, S) is called a *fuzzy gamma ring* if the following conditions hold.

 $(M,\Gamma)_1$ (M,R) and (Γ,R) are abelian fuzzy groups,

 $(M,\Gamma)_2 \quad \forall a, b, c, z_1, z_2 \in M, \forall \gamma, \beta \in \Gamma, ((a*\gamma*b)*\beta*c)(z_1) > \theta \text{ and } (a*\gamma*(b*\beta*c))(z_2) > \theta \text{ implies } z_1 = z_2,$

 $(M, \Gamma)_3 \quad \forall a, b, c, z_1, z_2 \in M, \forall \gamma, \beta \in \Gamma,$

- (i) $(a * \gamma * (b \circ c))(z_1) > \theta$ and $((a * \gamma * b) \circ (a * \gamma * c))(z_2) > \theta$ implies $z_1 = z_2$, (ii) $(a * (\gamma \circ \beta) * b)(z_1) > \theta$ and $((a * \gamma * b) \circ (a * \beta * b))(z_2) > \theta$ implies $z_1 = z_2$,
- (iii) $((a \circ b) * \gamma * c)(z_1) > \theta$ and $((a * \gamma * c) \circ (b * \gamma * c))(z_2) > \theta$ implies $z_1 = z_2$.

The identity element of the fuzzy group (M, R) is called the *zero element* of (M, Γ, R, S) , and is denoted by e_0 .

3.3. Definition. A fuzzy gamma ring (M, Γ, R, S) is called *commutative* if

$$(a*\gamma*b)(z)>\theta\iff (b*\gamma*a)(z)>\theta.$$

for all $a, b, z \in M$ and for all $\gamma \in \Gamma$.

For a fuzzy gamma ring (M, Γ, R, S) ,

$$C(M,\Gamma,R,S) = \{a \in M \mid (a * \gamma * b)(z) > \theta \iff (b * \gamma * a)(z) > \theta$$

for all $b, z \in M$ and for all $\gamma \in \Gamma\}$

is called the *center* of (M, Γ, R, S) . It follows that (M, Γ, R, S) is commutative if and only if $M = C(M, \Gamma, R, S)$.

We now prove some elementary properties of fuzzy gamma rings.

3.4. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring, $a, b, c \in M$ and $\gamma \in \Gamma$. Then

- (1) i) $(a * \gamma * b)(b) > \theta$ and $(a * \gamma * b)(e_0) > \theta$ implies $b = e_0$, and ii) $(b * \gamma * a)(a) > \theta$ and $(b * \gamma * a)(e_0) > \theta$ implies $a = e_0$.
- (2) Let b^{-1} be the inverse of b in (M, R). Then
 - i) $(a * \gamma * b^{-1})(v) > \theta$ and $(a * \gamma * b)(w) > \theta$ implies $v = w^{-1}$,
 - ii) $(a^{-1} * \gamma * b)(u) > \theta$ and $(a * \gamma * b)(s) > \theta$ implies $u = s^{-1}$,
 - iii) $(a^{-1} * \gamma * b^{-1})(t) > \theta$ and $(a * \gamma * b)(r) > \theta$ implies t = r,
- (3) i) $(a * \gamma * (b \circ c^{-1}))(z_1) > \theta$ and $((a * \gamma * b) \circ (a * \gamma * c^{-1}))(z_2) > \theta$ implies $z_1 = z_2$,
 - ii) $((a \circ b^{-1}) * \gamma * c)(z_1) > \theta$ and $((a * \gamma * c) \circ (b^{-1} * \gamma * c))(z_2) > \theta$ implies $z_1 = z_2$,
 - iii) $(a * (\gamma \circ \beta^{-1}) * b)(z_1) > \theta$ and $((a * \gamma * b) \circ (a * \beta^{-1} * b))(z_2) > \theta$ implies $z_1 = z_2$.

Proof. (1)(i) Let $(a * \gamma * b)(b) > \theta$ and $(a * \gamma * b)(e_0) > \theta$. Thus, we have for all $a, b \in M$ and for all $\gamma, \alpha \in \Gamma$ that $(a * \gamma * b)(b) = \bigvee_{\beta \in \Gamma} S(a, \gamma, b, \beta, b) > \theta$ and $(a * \gamma * b)(e_0) = \bigvee_{\beta \in \Gamma} S(a, \gamma, b, \beta, e_0) > \theta$ from (3.2), and so $b = e_0$ by Definition 3.1 (ii).

(1)(ii) Similarly, it may be shown that $a = e_0$.

(2)(i) Let $c \in M$ such that $R(v, w, c) > \theta$. Then

$$((a*\gamma*b^{-1})\circ(a*\gamma*b))(c) \ge S(a,\gamma,b^{-1},\beta,v) \land S(a,\gamma,b,\alpha,w) \land R(v,w,c) > b$$

and

$$(a * \gamma * (b^{-1} \circ b))(e_0) \ge R(b^{-1}, b, e_0) \land S(a, \gamma, e_0, \alpha', e_0) > \theta.$$

Thus we get that $c = e_0$ from $(M, \Gamma)_3(i)$, and so $R(v, w, e_0) > \theta$.

Let $c \in M$ be such that $R(w, v, c) > \theta$. Then

$$((a*\gamma*b)\circ(a*\gamma*b^{-1}))(c) \ge S(a,\gamma,b,\alpha,w) \wedge S(a,\gamma,b^{-1},\beta,v) \wedge R(w,v,c) > \theta$$

and

$$(a * \gamma * (b \circ b^{-1}))(e_0) \ge R(b, b^{-1}, e_0) \land S(a, \gamma, e_0, \beta, e_0) > \theta.$$

Thus we get that $c = e_0$ from $(M, \Gamma)_3(i)$, and so $R(w, v, e_0) > \theta$. Hence we obtain $v = w^{-1}$ from (G3).

(2)(ii) Similarly, it may be shown that $u = s^{-1}$.

(2)(iii) Let $(a^{-1} * \gamma * b^{-1})(t) > \theta$. In this case, $(a^{-1} * \gamma * b)(t^{-1}) > \theta$ by (2)(i) and $S(e_0, \gamma, b, \alpha, e_0) > \theta$ by (1). If $k \in M$ is such that $R(r, t^{-1}, k) > \theta$, then

$$((a*\gamma*b) \circ (a^{-1}*\gamma*b))(k) \ge S(a,\gamma,b,\alpha',r) \land S(a^{-1},\gamma,b,\beta,t^{-1}) \land R(r,t^{-1},k) > 6$$

and

$$((a \circ a^{-1}) * \gamma * b)(e_0) \ge R(a, a^{-1}, e_0) \land S(e_0, \gamma, b, \alpha, e_0) > \theta.$$

It follows that $k = e_0$ from $(M, \Gamma)_3$ (*iii*) and $R(r, t^{-1}, e_0) > \theta$. Also, similarly $R(t^{-1}, r, e_0) > \theta$. Consequently, t = r by (G3).

(3)(i) Let $(b \circ c^{-1})(z_1) > \theta$ and $(b \circ w)(z_1) > \theta$. In this case, we have $c^{-1} = w$ by [17, Proposition 2.1 (3)]. If $a \neq e_0$, then $(a * \gamma * (b \circ c^{-1}))(z_1) > \theta$, and we have that $(a * \gamma * (b \circ w))(z_1) > \theta$, where $\gamma \in \Gamma$. Let $k \in M$ be such that $R(u, v, k) > \theta$. Then

$$((a*\gamma*b)\circ(a*\gamma*w))(k) \ge S(a,\gamma,b,\alpha,u) \land S(a,\gamma,w,\alpha',v) \land R(u,v,k) > \theta,$$

and so we get that $z_1 = k$ from $(M, \Gamma)_3(i)$. Since $((a * \gamma * b) \circ (a * \gamma * c^{-1}))(z_2) > \theta$, we have $((a * \gamma * b) \circ (a * \gamma * w))(z_2) > \theta$, and so $z_1 = z_2$ from $(M, \Gamma)_3(i)$.

(3)(ii) and (3)(iii) may be shown in a similar way.

3.5. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring.

- (i) (M, Γ, R, S) is called a *ring with identity* if there is an element e_* in (M, Γ, R, S) such that $(e_* * \gamma * a)(a) > \theta$ and $(a * \gamma * e_*)(a) > \theta$ for all $a \in M$, and all $\gamma \in \Gamma$.
- (ii) Let (M, Γ, R, S) be a fuzzy gamma ring with identity. If $(a * \gamma * b)(e_*) > \theta$ and $(b * \gamma * a)(e_*) > \theta$ for all $a, b \in M$, and all $\gamma \in \Gamma$, then b is called an *invertible* (or *unit*) element of a, and is denoted by a_*^{-1} .

3.6. Theorem. If (M, Γ, R, S) is a fuzzy gamma ring with identity, then e_* is unique.

Proof. Let e'_*, e''_* be identity elements of (M, Γ, R, S) . In this case, $(e'_* * \gamma * e''_*)(e'_*) > \theta$ and $(e'_* * \gamma * e''_*)(e''_*) > \theta$, where $\gamma \in \Gamma$. Thus $\bigvee_{\beta \in \Gamma} S(e'_*, \gamma, e''_*, \beta, e'_*) > \theta$ and $\bigvee_{\beta \in \Gamma} S(e'_*, \gamma, e''_*, \beta, e''_*) > \theta$. So we get $e'_* = e''_*$ by Definition 3.1.

3.7. Definition. A nonzero element a in a fuzzy gamma ring (M, Γ, R, S) is called a *zero divisor* if there exists b in (M, Γ, R, S) such that $b \neq e_0$ and either $(a * \gamma * b)(e_0) > \theta$ or $(b * \gamma * a)(e_0) > \theta$, where $\gamma \in \Gamma$.

The following theorem establishes a relation between zero divisors and the cancellation property of a fuzzy gamma ring.

3.8. Theorem. A fuzzy gamma ring (M, Γ, R, S) has no zero divisor if and only if for all $a, b, c, v \in M$ with $a \neq e_0$ and all $\gamma \in \Gamma$, $(a * \gamma * b)(v) > \theta$ and $(a * \gamma * c)(v) > \theta$ implies b = c (left cancellation law) or $(b * \gamma * a)(v) > \theta$ and $(c * \gamma * a)(v) > \theta$ implies b = c (right cancellation law).

Proof. \implies Suppose that (M, Γ, R, S) has no zero divisor. If $(a * \gamma * c)(v) > \theta$, then $(a * \gamma * c^{-1})(v^{-1}) > \theta$ by Theorem 3.4 (2). Let $k, m \in M$ be such that $R(a, c^{-1}, k) > \theta$ and $S(a, \gamma, k, \alpha, m) > \theta$, for all $a \neq e_0, b, c \in M$ and all $\gamma, \beta, \alpha \in \Gamma$. Then

$$((a*\gamma*b)\circ(a*\gamma*c^{-1}))(e_0) \ge S(a,\gamma,b,\beta,v) \land S(a,\gamma,c^{-1},\beta',v^{-1}) \land R(v,v^{-1},e_0) > b$$

and

$$(a * \gamma * (b \circ c^{-1}))(m) \ge R(b, c^{-1}, k) \land S(a, \gamma, k, \alpha, m) > \theta.$$

Thus $m = e_0$ by $(M, \Gamma)_3(i)$, and so $S(\alpha, \gamma, k, \alpha, e_0) > \theta$. Since $a \neq e_0$ and (M, Γ, R, S) has no zero divisor, we get $k = e_0$ and so

(3.11) $R(a, c^{-1}, e_0) > \theta.$

On the other hand, if $(a * \gamma * b)(v) > \theta$, then $(a * \gamma * b^{-1})(v^{-1}) > \theta$ by Theorem 3.4 (2). Let $t, n \in M$ be such that $R(c, b^{-1}, t) > \theta$ and $S(a, \gamma, t, \beta, n) > \theta$. For all $a \neq e_0, b, c \in M$ and all $\gamma, \beta, \beta' \in \Gamma$,

$$\begin{aligned} ((a*\gamma*c) \circ (a*\gamma*b^{-1}))(e_0) \\ &\geq S(a,\gamma,c,\beta,v^{-1}) \wedge S(a,\gamma,b^{-1},\beta',v^{-1}) \wedge R(v,v^{-1},e_0) \\ &> \theta \end{aligned}$$

and

$$(a*\gamma*(c\circ b^{-1}))(n) \ge R(c, b^{-1}, t) \land S(a, \gamma, t, \beta, n) > \theta.$$

Thus we get $n = e_0$ by $(M, \Gamma)_3(i)$, and so $S(a, \gamma, t, \beta, e_0) > \theta$. Since $a \neq e_0$ and (M, Γ, R, S) has no zero divisor, we get $t = e_0$ and so

$$(3.12) \quad R(c, b^{-1}, e_0) > \theta.$$

From (3.11) and (3.12), we have b = c by Definition 2.5. Similarly, it may be shown that $(b * \gamma * a)(v) > \theta$ and $(c * \gamma * a)(v) > \theta$ implies b = c.

 \Leftarrow Suppose one of the cancellation laws holds, say, the left one, i.e., if $a, b \in M$ with $a \neq e_0$ and $\gamma \in \Gamma$, then $(a * \gamma * b)(e_0) > \theta$ and $(a * \gamma * e_0)(e_0) > \theta$ implies $b = e_0$. Similarly, the right cancellation law implies $b = e_0$. Thus, (M, Γ, R, S) has no zero divisors. \Box

Now, we introduce the idea of a fuzzy gamma subring of a fuzzy gamma ring.

Let (M, Γ, R, S) be a fuzzy gamma ring and N a nonempty subset of M. Let $R_N(a, b, c) = R(a, b, c)$ and $S_N(a, \gamma, b, \beta, c) = S(a, \gamma, b, \beta, c)$ for all $a, b, c \in N$ and all $\gamma, \beta \in \Gamma$. Then we have

$$(3.13) \qquad (a \triangle b)(c) = R_N(a, b, c) = R(a, b, c), \text{ for all } a, b, c \in N$$

$$(3.14) \quad (a \diamond \gamma \diamond b)(c) = \bigvee_{\beta \in \Gamma} S_N(a, \gamma, b, \beta, c) = \bigvee_{\beta \in \Gamma} S(a, \gamma, b, \beta, c) \text{ for all } a, b, c \in N, \ \gamma \in \Gamma.$$

3.9. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring and N be nonempty subset of M for which:

- (i) $(a \circ b)(c) > \theta$ implies $c \in N$ and $(a * \gamma * b)(c) > \theta$ implies $c \in N$ for all $a, b \in N$, all $c \in M$ and all $\gamma \in \Gamma$, and
- (ii) (N, Γ, R_N, S_N) is fuzzy gamma ring.

Then, (N, Γ, R_N, S_N) is called a *fuzzy gamma subring* of (M, Γ, R, S) .

3.10. Proposition. Let (M, Γ, R, S) be a fuzzy gamma ring and N a nonempty subset of M. Then (N, Γ, R_N, S_N) is a fuzzy gamma subring of M if and only if

- (i) $(a \circ b)(c) > \theta$ implies $c \in N$ and $(a * \gamma * b)(c) > \theta$ implies $c \in N$, for all $a, b \in N$, all $c \in M$ and all $\gamma \in \Gamma$
- (ii) $a^{-1} \in N$ for all $a \in N$.

Proof. Straightforward.

3.11. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring and x an element of M. If

$$C(x) = \{a \in M \mid (x * \gamma * a)(c) > \theta \iff (a * \gamma * x)(c) > \theta, \ \forall c \in M \ \forall \gamma \in \Gamma\}$$

then C(x) is a fuzzy gamma subring of M.

Proof. Clearly $e_0 \in C(x)$ and so $C(x) \neq \emptyset$.

(i) $a_1, a_2 \in C(x)$ and $(a_1 \circ a_2)(b) = R(a_1, a_2, b) > \theta$ implies $b \in C(x)$. Let $x, b, c, b_1, b_2, d_1, d_2 \in M$ be such that $S(b, \gamma, x, \beta, c) > \theta$, $S(x, \gamma, b, \beta, d_1) > \theta$, $S(x, \gamma, a_1, \beta, b_1) > \theta$, $S(x, \gamma, a_2, \beta, b_2) > \theta$, and $R(b_1, b_2, d_2) > \theta$.

From $R(a_1, a_2, b) > \theta$ and $R(a_2, a_1, b) > \theta$, we have

$$(x*\gamma*(a_1\circ a_2))(d_1) \ge R(a_1,a_2,b) \land S(x,\gamma,b,\beta,d_1) > \theta,$$

and

$$((x*\gamma*a_1) \circ (x*\gamma*a_2))(d_2) \ge S(x,\gamma,a_1,\beta,b_1) \land S(x,\gamma,a_2,\beta,b_2) \land R(b_1,b_2,d_2) > \theta.$$

Thus, $d_1 = d_2$ by $(M, \Gamma)_3(i)$ and $R(b_1, b_2, d_1) > \theta$. For $a_1, a_2 \in C(x)$, $S(a_1, \gamma, x, \beta, b_1) > \theta$, $S(a_2, \gamma, x, \beta, b_2) > \theta$ and $R(b_2, b_1, d_1) > \theta$, and so

$$((a_2 \circ a_1) * \gamma * x)(c) \ge R(a_2, a_1, b) \land S(b, \gamma, x, \beta, c) > \theta,$$

and

$$((a_2 * \gamma * x) \circ (a_1 * \gamma * x))(d_1) \ge S(a_2, \gamma, x, \beta, b_2) \land S(a_1, \gamma, x, \beta, b_1) \land R(b_2, b_1, d_1) > \theta_2$$

Thus $c = d_1$ by $(M, \Gamma)_3$ (*iii*) and $S(x, \gamma, b, \beta, c) > \theta$. Therefore, we get that $S(b, \gamma, x, \beta, c) > \theta$ implies $S(x, \gamma, b, \beta, c) > \theta$. Similarly, it may be shown that $S(x, \gamma, b, \beta, c) > \theta$ implies $S(b, \gamma, x, \beta, c) > \theta$, and so $b \in C(x)$.

Let $x, b, c, b_2, d, d_1 \in M$ and $\alpha, \beta, \gamma_2, \tau, \beta_1 \in \Gamma$ be such that $S(x, \alpha, b, \tau, c) > \theta$, $S(x, \alpha, a_2, \gamma_2, b_2) > \theta$, $S(b, \alpha, x, \tau, d) > \theta$ and $S(a_1, \alpha, a_2, \beta, b) > \theta$ and $S(a_1, \alpha, b_2, \beta_1, d_1) > \theta$. From $S(a_2, \alpha, x, \gamma_2, b_2) > \theta$, we have

$$((a_1 * \alpha * a_2) * \alpha * x))(d) \ge S(a_1, \alpha, a_2, \beta, b) \land S(b, \alpha, x, \tau, d) > \theta$$

and

$$(a_1 * \alpha * (a_2) * \alpha * x)(d_1) \ge S(a_2, \alpha, x, \gamma_2, b_2) \land S(a_1, \alpha, b_2, \beta_1, d_1) > \theta.$$

Thus $d_1 = d$ by $(M, \Gamma)_2$, and so $S(a_1, \alpha, b_2, \beta_1, d) > \theta$. Let $b_1, d_2 \in M$ and $\gamma_1, \beta_2 \in \Gamma$ be such that $S(a_1, \alpha, x, \gamma_1, b_1) > \theta$ and $S(b_1, \alpha, a_2, \beta_2, d_2) > \theta$. From $S(x, \alpha, a_2, \gamma_2, b_2) > \theta$, we have

$$((a_1 * \alpha * a_2) * \alpha * x)(d_2) \ge S((a_1, \alpha, a_2, \beta, b) \land S(b, \alpha, x, \tau, d) > \theta$$

and

$$(a_1 * \alpha * (x * \alpha * a_2))(d) \ge S(x, \alpha, a_2, \gamma_2, b_2) \land S(a_1, \alpha, b_2, \beta_1, d) > \theta.$$

Thus, $d_2 = d$ by $(M, \Gamma)_2$, and so $S(b_1, \alpha, a_2, \beta_2, d) > \theta$. From $S(a_1, \alpha, x, \gamma_1, b_1) > \theta$ we have

$$((x * \alpha * a_1) * \alpha * a_2)(d) \ge S(a_1, \alpha, x, \gamma_1, b_1) \land S(b_1, \alpha, a_2, \beta_2, d) > \theta$$

and

$$(x * \alpha * (a_1 * \alpha * a_2))(c) \ge S(a_1, \alpha, a_2, \beta, b) \land S(x, \alpha, b, \tau, c) > \theta.$$

Thus c = d by $(M, \Gamma)_2$, and so $S(b, \alpha, x, \tau, c) > \theta$. Similarly, $S(b, \alpha, x, \tau, c) > \theta$ implies $S(x, \alpha, b, \tau, c) > \theta$, and then $b \in C(x)$.

(ii) Let $a \in C(x)$. If $b, c, d, b, b_2, d_1 \in M$ are such that $S(x, \gamma, a^{-1}, \beta, d) > \theta$, $S(a^{-1}, \gamma, x, \beta, c) > \theta$, $S(x, \gamma, a, \gamma', b_1) > \theta$, $R(b_1, d, d_1) > \theta$ and $R(b_1, d, d_1) > \theta$, then we get

$$((a^{-1} \circ a) * \gamma * x)(e_0) \ge R(a^{-1}, a, e_0) \land S(e_0, \gamma, x, \alpha, e_0) > \theta$$

and

$$((a^{-1}*\gamma*x) \circ (a*\gamma*x))(b_2) \ge S(a^{-1},\gamma,x,\beta,c) \land S(a,\gamma,x,\gamma',b_1) \land R(c,b_1,b_2) > \theta$$

Thus $e_0 = b_2$ and so $R(c, b_1, e_0) > \theta$. Also,

$$(x * \gamma * (a^{-1} \circ a))(e_0) \ge R(a^{-1}, a, e_0) \land S(x, \gamma, e_0, \alpha, e_0) > \theta,$$

and

$$((x*\gamma*a^{-1})\circ(x*\gamma*a)(d_1) \ge S(x,\gamma,a^{-1},\beta,d) \land (x,\gamma,a,\gamma',b_1) \land R(d,b_1,d_1) > \theta,$$

from which we get $e_0 == d_1$ and $R(d, b_1, e_0) > \theta$. Since $R(c, b_1, e_0) > \theta$, $R(d, b_1, e_0) > \theta$ and (M, R) is an abelian fuzzy group, e have d = c. Similarly, $a \in C(x)$ and $S(a^{-1}, \gamma, x, \beta, d) > \theta$ implies $S(x, \gamma, a^{-1}, \beta, d) > \theta$. Hence, $a^{-1} \in C(x)$. Then, C(x) is a fuzzy gamma subring of M by Proposition 3.10.

3.12. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring. A nonempty subset I of M is called a *left (right) fuzzy ideal of* M if for all $a, b \in I$, all $n, m \in M$, and all $\gamma \in \Gamma$, $(a \circ b)(m) > \theta$ implies $m \in I$, $a^{-1} \in I$, $(n * \gamma * a)(m) > \theta$ implies $m \in I$ $((a * \gamma * n)(m) > \theta$ implies $m \in I$).

A nonempty subset I of a fuzzy gamma ring (M, Γ, R, S) is called a *fuzzy* (*two-sided*) *ideal of* (M, Γ, R, S) if I is both a left and a right ideal of (M, Γ, R, S) .

3.13. Remark. From the definition of a fuzzy left (right) ideal I of (M, Γ, R, S) , then I is a fuzzy gamma subring of (M, Γ, R, S) . Also, if M is a commutative fuzzy gamma ring, then every left fuzzy ideal is a right fuzzy ideal and every right fuzzy ideal is a left fuzzy ideal.

3.14. Proposition. Let I_i , $i \in \Lambda$, be a fuzzy ideal of fuzzy gamma ring (M, Γ, R, S) , where Λ is a index set. Then $\bigcap_{i \in \Lambda} I_i$ is a fuzzy ideal of M.

Proof. Straightforward.

Let I be a fuzzy ideal of fuzzy gamma ring (M, Γ, R, S) and $\Delta = \{a \circ I \mid a \in M\}$, where $(a \circ I)(u) = \bigvee_{x \in I} R(a, x, u)$ for all $a \in M$. We define a relation over Δ by

 $a_1 \circ I \sim a_2 \circ I \iff \exists u \in I \text{ such that } R(a_1^{-1}, a_2, u) > \theta.$

The fuzzy relation ~ on the set Δ is a fuzzy equivalence relation by [17, Theorem 4.1]. Let $[a \circ I] = \{a' \circ I \mid a' \circ I \sim a \circ I\}, \bar{a} = \{a' \mid a' \in M, a' \circ I \sim a \circ I\}$ and $M/I = \{[a \circ I] \mid a \in M\}$. Also, (I, R) is a fuzzy subgroup of (M, R), and since (M, R) is abelian, (I, R) is a normal fuzzy group of (M, R) by [17, Theorem 3.1]. Hence $(M/I, \overline{R})$ is a commutative fuzzy group by [17, Theorem 4.2], where

$$(3.15) \quad \left([a \circ I] \oplus [b \circ I]\right)\left([c \circ I]\right) = \overline{R}\left([a \circ I], [b \circ I], [c \circ I]\right) = \bigvee_{(a', b', c') \in \bar{a} \times \bar{b} \times \bar{c}} R(a', b', c')$$

Given the fuzzy groups $(M/I, \overline{R})$ and (Γ, R) , let \overline{S} be a fuzzy binary operation on $(M/I, \Gamma)$, that is a fuzzy subset of $M/I \times \Gamma \times M/I \times \Gamma \times M/I$ with the same value of θ as for R and \overline{R} . Then we may associate with \overline{S} the mapping $\overline{S} : F(M/I) \times F(\Gamma) \times F(M/I) \to F(M/I)$ given by

$$\overline{S}(\overline{A}, G, \overline{B})(c') = \bigvee_{\substack{a', b' \in M/I \\ \gamma, \beta \in \Gamma}} \left(\overline{A}(a') \land G(\gamma) \land \overline{B}(b') \land \overline{S}(a', \gamma, b', \beta, c')\right)$$

where

$$F(M/I) = \{\overline{A} \mid \overline{A} : M/I \to [0, 1] \text{ is a mapping} \}.$$

With \overline{R} and \overline{S} as above, we have

$$([a \circ I] \otimes \gamma \otimes [b \circ I])([c \circ I]) = \overline{S}([a \circ I], [b \circ I], [c \circ I]) = \overline{S}([a \circ I], [b \circ I], [c \circ I]) = \sum_{(a', \gamma, b', \beta, c') \in \overline{a} \times \gamma \times \overline{b} \times \beta \times \overline{c}} S(a', \gamma, b', \beta, c'),$$

$$(([a \circ I] \oplus [b \circ I]) \oplus [c \circ I])([u \circ I]) = \sum_{d \in M} (\overline{R}([a \circ I], [b \circ I], [d \circ I]) \wedge \overline{R}([d \circ I], [c \circ I], [u \circ I])),$$

$$([a \circ I] \oplus ([b \circ I] \oplus [c \circ I]))([w \circ I]) = \sum_{d \in M} (\overline{R}([b \circ I], [c \circ I], [d \circ I]) \wedge \overline{R}([a \circ I], [d \circ I], [w \circ I])),$$

$$([a \circ I] \otimes \gamma \otimes ([b \circ I] \otimes [c \circ I]))([z \circ I]) = \sum_{d \in M, \beta \in \Gamma} (\overline{R}([b \circ I], [c \circ I], [d \circ I]) \wedge \overline{S}([a \circ I], \gamma, [d \circ I], \beta, [z \circ I])))$$

3.15. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring and I a fuzzy ideal of M. Then the quotient fuzzy group $(M/I, \overline{R})$ is a fuzzy gamma ring with

$$([a \circ I] \otimes \gamma \otimes [b \circ I]) ([c \circ I]) = \overline{S} ([a \circ I], \gamma, [b \circ I], \beta, [c \circ I])$$

=
$$\bigvee_{(a', \gamma, b', \beta, c') \in \overline{a} \times \gamma \times \overline{b} \times \beta \times \overline{c}} S(a', \gamma, b', \beta, c')$$

Proof. The proof of $(M, \Gamma)_2$ is similar to the proof of [17, Theorem 4.3], and is omitted. It only remains to check that $(M, \Gamma)_3$ is satisfied.

(i) Let

 $([a \circ I] \otimes \gamma \otimes ([b \circ I] \oplus [c \circ I]))([d \circ I]) > \theta$

and

$$\big(([a \circ I] \otimes \gamma \otimes [b \circ I]) \oplus ([a \circ I] \otimes \gamma \otimes [c \circ I])\big)\big([w \circ I]\big) > \theta$$

Thus, we have $a_1, a'_1, b_1, b'_1, c_1, c'_1, d_1, w_1 \in M$ such that $a_1 \circ I \sim a'_1 \circ I \sim a \circ I$, $b_1 \circ I \sim b'_1 \circ I \sim b \circ I$, $c_1 \circ I \sim c'_1 \circ I \sim c \circ I$, $d_1 \circ I \sim d \circ I$, $w_1 \circ I \sim w \circ I$, and there exist elements $u_1, u_2, u_3 \in I$, $x'_1, x'_2, x'_3 \in M$ and $\alpha, \beta, \alpha', \beta' \in \Gamma$ such that

$$\begin{split} &R(b_1, c_1, x'_1) \wedge S(a_1, \gamma, x'_1, \alpha, d_1) > \theta, \\ &S(a'_1, \gamma, b'_1, \beta, x'_2) \wedge S(a'_1, \gamma, c'_1, \alpha', x'_3) \wedge R(x'_2, x'_3, w_1) > \theta, \\ &R(a'_1, u_1, a_1) > \theta, \ R(b'_1, u_2, b_1) > \theta \text{ and } R(c'_1, u_3, c_1) > \theta \end{split}$$

by (3.15) and (3.16).

Let $z_1 \in M$ be such that $R(b'_1, c'_1, z_1) > \theta$. Then by $R(b_1, c_1, x'_1) > \theta$, $R(b'_1, u_2, b_1) > \theta$, $R(b'_1, c'_1, z_1) > \theta$, $R(c'_1, u_3, c_1) > \theta$, and the proof of [17, Theorem 4.2], we have $R(z_1, u, x'_1) > \theta$ for any $u \in I$.

Since I is a fuzzy ideal, there exist elements $u', u'_3, u_4, u_5, u_6 \in I$ such that $S(u_3, \gamma, z_1, \beta, u'_3) > \theta$, $S(u, \gamma, b'_1, \beta', u') > \theta$, $S(u, \gamma, u_3, \beta, u_4) > \theta$, $R(u'_3, u', u_5) > \theta$ and $R(u_5, u_4, u_6) > \theta$.

Let $z_1 \in M$ be such that $S(a'_1, \gamma, z_1, \beta, z_2) > \theta$. By $S(a_1, \gamma, x'_1, \alpha, d_1) > \theta$, $R(z_1, u, x'_1) > \theta$, $R(c'_1, u_3, c_1) > \theta$, $S(a'_1, \gamma, z_1, \beta, z_2) > \theta$, and similarly to the proof of [17, Theorem 4.2], we have $R(z_2, u_6, d_1) > \theta$. Hence,

$$(a_1' * \gamma * (b_1' \circ c_1'))(z_2) \ge R(b_1', c_1', z_1) \land S(a_1', \gamma, z_1, \beta, z_2) > \theta$$

and

$$\begin{aligned} ((a'_1 * \gamma * b'_1) \circ (a'_1 * \gamma * c'_1))(w_2) &\geq S(a'_1, \gamma, b'_1, \beta, x'_2) \wedge S(a'_1, \gamma, c'_1, \beta', x'_3) \\ &\wedge R(x'_2, x'_3, w_2) \\ &\geq \theta. \end{aligned}$$

Therefore, $z_2 = w_2$ and $R(w_2, u_6, d_1) > \theta$. In this case, $w_1 \circ I \sim d_1 \circ I$, and so $[w_1 \circ I] = [d_1 \circ I]$.

Similarly, it may be shown that (ii) and (iii) of $(M, \Gamma)_3$ also hold.

3.16. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring and I a fuzzy ideal of M. Then the fuzzy gamma ring $(M/I, \Gamma, \overline{R}, \overline{S})$ is called the *fuzzy quotient gamma ring of* M by I.

Finally, we introduce the notion of a fuzzy gamma homomorphism of fuzzy gamma rings. This concept is the analog of homomorphism for rings.

3.17. Definition. Let (M_1, Γ, R_1, S_1) and (M_2, Γ, R_2, S_2) be fuzzy gamma rings and f a function from M_1 into M_2 . Then f is called a *fuzzy gamma homomorphism* of M_1 into M_2 if

(i) $R_1(a,b,c) > \theta$ implies $R_2(f(a), f(b), f(c)) > \theta$,

(ii) $S(a, \gamma, b, \beta, c) > \theta$ implies $S(f(a), \gamma, f(b), \beta, f(c)) > \theta$,

for all $a, b, c \in M_1$, and all $\gamma, \beta \in \Gamma$.

A homomorphism f of the fuzzy gamma ring M_1 into the fuzzy gamma ring M_2 is called

- (1) A monomorphism if f is one-one,
- (2) An epimorphism if f is onto M_2 , and
- (3) An isomorphism if f is a one-one and map of M_1 onto M_2 .

If f is an isomorphism of M_1 onto M_2 , then the fuzzy gamma rings M_1 and M_2 are called *isomorphic*, denoted by $M_1 \cong M_2$.

3.18. Theorem. Let (M_1, Γ, R_1, S_1) and (M_2, Γ, R_2, S_2) be fuzzy gamma rings, and let f be a fuzzy gamma homomorphism of M_1 into M_2 . Then

- (i) $f(e_0) = e'_0$, where e'_0 is the zero of M_2 ,
- (ii) $f(a^{-1}) = f(a)^{-1}$ for all $a \in M_1$,
- (iii) $\operatorname{Im} f = \{f(a) \mid a \in M_1\}$ is a fuzzy gamma subring of M_2 .

Proof. (i) Since f is a fuzzy gamma ring homomorphism, for all $a \in M_1$,

 $R_1(a, e_0, a) > \theta \text{ implies } R_2(f(a), f(e_0), f(a)) > \theta,$

and for $f(a) \in M_2$ we get $R_2(f(a), e'_0, f(a)) > \theta$. Now

$$(f(a)^{-1} \circ (f(a) \circ f(e_0)))(f(e_0)) \ge R_2(f(a), f(e_0), f(a)) \land R_2(f(a)^{-1}, f(a), f(e_0)) > \theta.$$

Therefore, we get that $f(e_0) = e'_0$ by G1.

(ii) Since f is a fuzzy gamma homomorphism, for all $a \in M_1$,

$$R_1(a, a^{-1}, e_0) > \theta$$
 implies $R_2(f(a), f(a^{-1}), f(e_0)) > \theta$,

and so $R_2(f(a), f(a^{-1}), e'_0) > \theta$ by (i). Hence we get that $f(a^{-1}) = f(a)^{-1}$.

(iii) Since f is a fuzzy gamma homomorphism, we have $f(e_0) = e'_0 \in \text{Im}f$, $e_0 \in M_1$, by (i). Hence $\text{Im}f \neq \emptyset$.

(1) If $a_1, a_2, a \in M_1$ are such that $R_1(a_1, a_2, a) > \theta$, then $R_2(f(a_1), f(a_2), f(a)) > \theta$, and so $f(a) \in \text{Im}f$. Let $a_1, a_2, a \in M_1$ and $\gamma, \beta \in \Gamma$ be such that $S_1(a_1, \gamma, a_2, \beta, a) > \theta$. Then $S_2(f(a_1), \gamma, f(a_2), \beta, f(a)) > \theta$, and so $f(a) \in \text{Im}f$.

(2) Let $b \in \text{Im} f$ be such that $b = f(a), a \in M_1$. Since f is a fuzzy Γ homomorphism and $a^{-1} \in M_1$, we get $b^{-1} = f(a)^{-1} = f(a^{-1}) \in \text{Im}(f)$.

3.19. Theorem. Let (M_1, Γ, R_1, S_1) and (M_2, Γ, R_2, S_2) be fuzzy gamma rings, and let f be a fuzzy gamma homomorphism of M_1 into M_2 . Then

- (i) Ker $f = \{a \in M_1 \mid f(a) = e'_0\}$ is a fuzzy ideal of M_1
- (ii) If B is a fuzzy ideal of M_2 , then $f^{-1}(B)$ is a fuzzy ideal of M_1 ,
- (iii) If f is surjective and A is a fuzzy ideal of M_1 , then f(A) is a fuzzy ideal of M_2 .

Proof. (i) Since $f(e_0) = e'_0, e_0 \in \text{Ker} f$, and so $\text{Ker} f \neq \emptyset$.

If $a, b \in \text{Ker} f$ are such that $R_1(a, b, m_1) > \theta$, $m_1 \in M_1$, then

 $R_2(f(a), f(b), f(m_1)) = R_2(e'_0, e'_0, f(m_1)) > \theta$

since f is a fuzzy gamma homomorphism. Therefore, $f(m_1) = e'_0$ and so $m_1 \in \text{Ker} f$.

If $a \in \text{Ker} f$ is such that $R_1(a, a^{-1}, e_0) > \theta$, then

$$R_2(f(a), f(a^{-1}), f(e_0)) = R_2(f(a), f(a^{-1}), e'_0) > \theta,$$

and so $f(a^{-1}) = e'_0$, i.e. $a^{-1} \in \operatorname{Ker} f$.

Finally, if $S_1(a, \gamma, m_1, \beta, w) > \theta$ for all $m_1, w \in M_1$ and all $\gamma, \beta \in \Gamma$, then

$$S_2(f(a), \gamma, f(m_1), \beta, f(w)) > \theta.$$

Since $f(a) = e'_0$, $S_2(e'_0, \gamma, f(m_1), \beta, f(w)) > \theta$. In this case, we have $(e'_0 * \gamma * f(m_1))(f(w)) > \theta$ and $(e'_0 * \gamma * f(m_1))(e'_0) > \theta$, and so $f(w) = e'_0$ by Theorem 3.4.

Similarly, if $S_1(m_1, \gamma, a, \beta, u) > \theta$, then $S_2(f(m_1), \gamma, f(a), \beta, f(u)) > \theta$. Since $f(a) = e'_0$,

$$S_2(f(m_1), \gamma, f(a), \beta, f(u)) = (f(m_1) * \gamma * e'_0)(f(u)) > \theta.$$

Also, since $(f(m_1) * \gamma * e'_0)(e'_0) > \theta$, we have $f(u) = e'_0$ by Theorem 3.4. Therefore, we get that $w, u \in \text{Ker} f$, and so Ker f is a fuzzy ideal of M_1 .

(ii) and (iii) may be proved similarly.

3.20. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring and I a fuzzy ideal of M. Then, the mapping $\Pi : M \to M/I$ defined by $\Pi(a) = a \circ I$ for all $a \in M$ is a fuzzy gamma homomorphism, called the fuzzy canonical gamma homomorphism.

Proof. Let $a, b, c \in M$ be such that $R(a, b, c) > \theta$. Then

$$\overline{R}(\Pi(a),\Pi(b),\Pi(c)) = \overline{R}(a \circ I, b \circ I, c \circ I) = ([a \circ I] \oplus [b \circ I]) [c \circ I]$$

$$= \bigvee_{(a',b',c')\in\bar{a}\times\bar{b}\times\bar{c}} R(a',b',c')$$

$$\geq R(a,b,c)$$

$$> \theta$$

by (3.15). If $a, b, c \in M$ and $\gamma, \beta \in \Gamma$ are such that $S(a, \gamma, b, \beta, c) > \theta$, then

$$\overline{S}(\Pi(a),\gamma,\Pi(b),\beta,\Pi(c)) = \overline{S}(a \circ I,\gamma,b \circ I,\beta,c \circ I)$$

$$= ([a \circ I] \otimes \gamma \otimes [b \circ I])[c \circ I]$$

$$= \bigvee_{(a',\gamma,b',\beta,c')\in\bar{a}\times\gamma\times\bar{b}\times\beta\times\bar{c}} S(a',\gamma,b',\beta,c')$$

$$\geq S(a',\gamma,b',\beta,c')$$

$$> \theta$$

by (3.16).

3.21. Theorem. Let $f : (M_1, \Gamma, R_1, S_1) \to (M_2, \Gamma, R_2, S_2)$ be a fuzzy gamma epimorphism. Then $M_1/N \cong M_2$, where N = Kerf

Proof. Define the mapping $\varphi : M_1/N \to M_2$ by $\varphi([a \circ N]) = f(a)$ for all $a \in M_1$. In this case, φ is a well defined one-to-one fuzzy group homomorphism by [17, Theorem 5.3]. Therefore, it is only remains to show that if $\overline{S}_1([a \circ N], \gamma, [b \circ N], \beta, [c \circ N]) > \theta$, then $S_2(\varphi([a \circ N]), \gamma, \varphi([b \circ N]), \beta, \varphi([c \circ N])) > \theta$. In this case, there exist $a_1, b_1, c_1 \in M_1$, $\gamma, \beta \in \Gamma$ and $n_1, n_2, n_3 \in N$ such that $R_1(a, n_1, a_1) > \theta$, $R_1(b, n_2, b_1) > \theta$, $R_1(c, n_3, c_1) > \theta$, and $S_1(a_1, \gamma, b_1, \beta, c_1) > \theta$.

Let $u \in M_1$ be such that $S_1(a, \gamma, b, \beta, u) > \theta$. Then, as in the proof of [17, Theorem 4.2] we have $R_1(u, n', c) > \theta$ for any $n' \in N$. Thus, $w \circ N \sim c \circ N$ and so f(c) = f(w). Since $S_1(a, \gamma, b, \beta, u) > \theta$, we have $S_2(f(a), \gamma, f(b), \beta, f(u)) > \theta$. Then, $S_2(f(a), \gamma, f(b), \beta, f(c)) > \theta$.

3.22. Theorem. Let $f: (M_1, \Gamma, R_1, S_1) \to (M_2, \Gamma, R_2, S_2)$ be a fuzzy gamma homomorphism, and let A and B be fuzzy ideals of M_1 and M_2 , respectively such that $A \subseteq f^{-1}(B)$. Then there exists a fuzzy gamma homomorphism $f^*: M_1/A \to M_2/B$ such that the following diagram commutes:

Proof. Left to the reader.

Acknowledgement The authors are highly grateful to the referees for their valuable comments and suggestions for improving this paper.

References

- [1] Aktaş, H. and Çağman, N. A type of fuzzy ring, Arch. Math. Logic 46 (3-4), 117–165, 2007.
- [2] Barnes, W. E. On the Γ-rings of Nobusawa, Pasific J. Math. 18, 411–422, 1966.
- [3] Yong-Chai, Y. Fuzzy ideal and fuzzy quotient rings, J. Fuzzy Math. 12, 19–26, 1985.
- [4] Demirci, M. Smooth groups, Fuzzy Sets and Systems 117, 431–437, 2001.
- [5] Demirci, M. Smooth subgroups and smooth homomorphisms, Fuzzy Sets and Systems 117, 439–446, 2001.
- [6] Hong, S. M. and Jun, Y. B. A note on fuzzy ideals in gamma rings, Bull. Honam Math. Soc. 12, 39–48, 1995.
- [7] Jun, Y. B. and Lee, C. Y. Fuzzy Γ-rings, Pusan Kyongnam Math. J. 8, 163–170, 1992.
- [8] Jun, Y.B. and Lee, C.Y. Fuzzy prime ideals in Γ-rings, Pusan Kyongnam Math. J. (Presently, East Asian Math. J.) 9(1), 105–111, 1993.
- [9] Jun, Y.B., Uçkun, M. and Öztürk, M.A. Fuzzy quotient gamma rings, J. Fuzzy Math. 15 (2), 363–374, 2007.
- [10] Kyuno, S. On prime gamma rings, Pacific J. Math. 75 (1), 185–190, 1978.
- [11] Morderson, J. M. and Malik, D. S. Fuzzy Commutative Algebra (World Scientitific, Singapore, 1998).
- [12] Mukherjee, T.K. and Sen, M.K. On fuzzy ideals of a ring I, Fuzzy Sets and Systems 21 (1), 99–104, 1987.
- [13] Nobusawa, N. On generalization of the ring theory, Osaka J. Math. 1, 185–190, 1978.
- [14] Öztürk, M. A., Uçkun, M. and Jun, Y.B. Characterizations of artinian and noetherian gamma-rings in terms of fuzzy ideals, Turk J. Math. 26 (2), 199–205, 2002.
- [15] Öztürk, M. A., Uçkun, M. and Jun, Y. B. Fuzzy ideals in gamma rings, Turk J. Math. 27 (3), 369–374, 2003.
- [16] Rosenfeld, A. Fuzzy groups, J. Math. Anal. Appl. 35, 512–517, 1971.
- [17] Yuan, X. and Lee, E. S. Fuzzy group based on fuzzy binary operation, Comput. Math. Appl. 47, 631–641, 2004.
- [18] Zadeh, L. A. Fuzzy sets, Inform Control 8, 338–353, 1965.