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Abstract

The aim of this paper is to define a new kind of fuzzy gamma ring. So
the concepts of fuzzy gamma ring, fuzzy ideal, fuzzy quotient gamma
ring, and fuzzy gamma homomorphism are introduced.
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1. Introduction

In 1965, L. A. Zadeh introduced the notion of a fuzzy subset of a set as a method for
representing uncertainty. Then, in 1971, A. Rosenfeld used the notion of a fuzzy subset of
a set to introduce the notion of a fuzzy subgroup of a group. Rosenfeld’s paper inspired
the development of fuzzy abstract algebra. After these studies, many mathematicians
have studied these subject. For more details, see [11].

In [4, 5], M. Demirci introduced the concept of smooth group by using a fuzzy binary-
operation and the concept of fuzzy equality, and then this concept was applied to a new
kind of fuzzy group based on a fuzzy binary operation by X. Yuan and E. S. Lee [17].
Recently H. Aktaş and N. Çağman [1] considered a type of fuzzy ring based on Yuan and
Lee’s definition of a fuzzy group.

In [13], N. Nobusawa introduced the notion of a Γ-ring, which is more general than
a ring. W. E. Barnes [2] weakened slightly the conditions in the definition of a Γ-ring
in the sense of Nobusawa. After these two papers were published, many mathemati-
cians obtained interesting results on Γ-rings in the sense of Barnes and Nobusawa which
paralleled results in ring theory.
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In [7], Jun and Lee introduced the concept of fuzzy Γ-ring. After this study several
mathematicians worked on this subject, see for instance [8, 9, 14, 15].

In this paper, we define a new kind of fuzzy gamma ring. We obtain the fuzzy quotient
gamma ring induced by fuzzy ideals, and present some fuzzy gamma homomorphism
theorems.

2. Preliminaries

In this section we summarize the preliminary definitions that will be required in this
paper. Most of the contents of this section are contained in [2, 7] and [17].

2.1. Definition. [2] If M = {a, b, c, . . .} and Γ = {α, β, γ, . . .} are additive abelian
groups and for all a, b, c ∈ M and all α, β ∈ Γ, the following conditions are satisfied

(i) aαb ∈ M ;
(ii) (a + b)αc = aαc + bαc, a(α + β)b = aαb + aβb, aα(b + c) = aαb + aαc;
(iii) (aαb)βc = aα(bβc);

then M is called a Γ-ring.

2.2. Definition. [2] Let M be a Γ-ring. A subset U of M is a left (right) ideal of M if
U is an additive subgroup of M and

MΓU = {aαu | a ∈ M, α ∈ Γ, u ∈ U} (UΓM)

is contained in U . If U is both a left an right ideal, then U is a two-sided ideal, or simply
an ideal of M .

Let M and M ′ be two Γ-rings. A mapping f : M → M ′ of Γ-rings is called a Γ-

homomorphism if f(x + y) = f(x) + f(y) and f(xγy) = f(x)γf(y) for all x, y ∈ M and
all γ ∈ Γ. If f is one-to-one and onto, we say that f is a Γ-isomorphism and that M and
M ′ are Γ-isomorphic, denoted by M ∼= M ′.

2.3. Definition. [7] Let M be a Γ-ring. A fuzzy subset µ of a Γ-ring M is called a fuzzy

sub-Γ-ring of M if

i) µ(x − y) ≥ min{µ(x), µ(y)},
ii) µ(xγy) ≥ max{µ(x), µ(y)},

for all x, y ∈ M and for all γ ∈ Γ.

2.4. Definition. [7] A fuzzy subset µ of a Γ-ring M is called a fuzzy left (resp. right)
ideal of M if

i) µ(x − y) ≥ min{µ(x), µ(y)},
ii) µ(xγy) ≥ µ(y) (µ(xγy) ≥ µ(x)),

for all x, y ∈ M and for all γ ∈ Γ.

2.5. Definition. [17] Let G be a nonempty set and R a fuzzy subset of G×G×G. Then
R is called a fuzzy binary operation on G if

(i) ∀ a, b ∈ G, ∃ c ∈ G such that R(a, b, c) > θ,
(ii) ∀ a, b, c1, c2 ∈ G, R(a, b, c1) > θ and R(a, b, c2) > θ implies c1 = c2,

where θ ∈ [0, 1) is a fixed number.

Let R be a fuzzy binary operation on G. Then we may regard R as a mapping
R : F (G) × F (G) → F (G), where

F (G) = {A | A : G → [0, 1] is a mapping}
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and for A, B ∈ F (G), R(A, B) is defined by

(2.1) R(A, B)(c) =
∨

a,b∈G

(A(a) ∧ B(b) ∧ R(a, b, c))

for all c ∈ G.

For A = {a} and B = {b} we denote R(A, B) by a ◦ b. Then

(a ◦ b)(c) = R(a, b, c), for all c ∈ G,(2.2)

((a ◦ b) ◦ c)(z) =
∨

d∈G

(R(a, b, d) ∧ R(d, c, z), for all z ∈ G,(2.3)

(a ◦ (b ◦ c))(z) =
∨

d∈G

(R(b, c, d) ∧ R(a, d, z)), for all z ∈ G.(2.4)

2.6. Definition. [17] Let G be a nonempty set and R a fuzzy binary operation on G.
Then (G, R) is called a fuzzy group if the following conditions are true:

(G1) ∀ a, b, c, z1, z2 ∈ G, ((a ◦ b) ◦ c)(z1) > θ and (a ◦ (b ◦ c))(z2) > θ implies z1 = z2;
(G2) ∃ e0 ∈ G such that (e0 ◦ a)(a) > θ and (a ◦ e0)(a) > θ for any a ∈ G

(e0 is unique and is called the identity element of G);
(G3) ∀ a ∈ G, ∃ b ∈ G such that (a ◦ b)(e0) > θ

(b is unique and is called the inverse element of a, denoted by a−1).

3. Results

Let M and Γ be nonempty sets, RM a fuzzy binary operation on M and RΓ on Γ.
Hence, RM is a fuzzy subset of M × M × M , and RΓ a fuzzy subset of Γ × Γ × Γ. We
assume throughout that the value of θ is the same for RM and RΓ.

Let (M, RM ) and (Γ, RΓ) be fuzzy groups. We now define a new fuzzy binary operation
S on (M, Γ) which is a fuzzy subset of M × Γ × M × Γ × M .

3.1. Definition. Let M and Γ be two nonempty sets and S a fuzzy subset of M × Γ ×
M × Γ × M . Then S is called a fuzzy binary operation on (M, Γ) if

(i) ∀ a, b ∈ M , ∀α, β ∈ Γ, ∃ c ∈ M such that S(a, α, b, β, c) > θ,
(ii) ∀ a, b, c1, c2 ∈ M , ∀ γ ∈ Γ,

∨

β∈Γ S(a, γ, b, β, c1) > θ and
∨

β∈Γ S(a, γ, b, β, c2) > θ
implies c1 = c2,

where θ ∈ [0, 1) is as above for RM and RΓ.

Let S be a fuzzy binary operation on (M, Γ). Then we may regard S as the mapping

S : F (M) × F (Γ) × F (M) → F (M), (A,G, B) 7→ S(A, G, B),

where

F (M) = {A | A : M → [0, 1] is a mapping},

F (Γ) = {G | G : Γ → [0, 1] is a mapping},

and

(3.1) S(A, G, B)(c) =
∨

a,b∈M

α,β∈Γ

(A(a) ∧ G(α) ∧ B(b) ∧ S(a, α, b, β, c)), ∀ c ∈ M.

Let A = {a}, B = {b}, G = {α} and G′ = {α′}. Let RM (A,B), RΓ(G, G′) and
S(A,G, B) be denoted by a◦b, α◦α′ and a∗α∗b, respectively. We will use the following
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notation to simplify the calculations:

(a ∗ α ∗ b)(c) =
∨

α′∈Γ

S(a, α, b, α′, c) for all c ∈ M,(3.2)

((a ∗ α ∗ b) ∗ β ∗ c)(z) =
∨

d∈M
α′,β′∈Γ

(S(a,α, b, α′, d) ∧ S(d, β, c, β′, z)),(3.3)

(a ∗ α ∗ (b ∗ β ∗ c))(z) =
∨

d∈M
α′,β′∈Γ

(S(b, β, c, α′, d) ∧ S(a, α, d, β′, z)),(3.4)

(a ∗ α ∗ (b ◦ c))(z) =
∨

d∈M

α′∈Γ

(RM (b, c, d) ∧ S(a, α, d, α′, z)),(3.5)

((a ∗ α ∗ b) ◦ (a ∗ α ∗ c))(z) =
∨

d,e∈M

α′,β′∈Γ

(S(a, α, b, α′, d) ∧ S(a, α, c, β′, e) ∧ RM (d, e, z)),(3.6)

(a ∗ (α ◦ β) ∗ b)(c) =
∨

γ,α′∈Γ

(RΓ(α, β, γ) ∧ S(a, γ, b, α′, c)),(3.7)

((a ∗ α ∗ b) ◦ (a ∗ β ∗ b))(c) =
∨

d,e∈M

α′,β′∈Γ

(S(a, α, b, α′, d) ∧ S(a, β, b, β′, e) ∧ RM (d, e, c)),(3.8)

((a ◦ b) ∗ α ∗ c)(z) =
∨

d∈M
α′∈Γ

(RM (a, b, d) ∧ S(d, α, c, α′, z)),(3.9)

((a ∗ α ∗ c) ◦ (b ∗ α ∗ c))(z) =
∨

d,e∈M

α′,β′∈Γ

(S(a, α, c, α′, d) ∧ S(b, α, c, β′, e) ∧ RM (d, e, z)),(3.10)

3.2. Definition. Let M and Γ be nonempty sets, RM , RΓ and S fuzzy binary operations
on M , Γ and (M, Γ), respectively, all with the same value of θ. To simplify the notation,
from now on we denote both RM and RΓ by R. Then (M, Γ, R, S) is called a fuzzy gamma

ring if the following conditions hold.

(M, Γ)1 (M, R) and (Γ, R) are abelian fuzzy groups,
(M, Γ)2 ∀ a, b, c, z1, z2 ∈ M , ∀ γ, β ∈ Γ, ((a∗γ∗b)∗β∗c)(z1) > θ and (a∗γ∗(b∗β∗c))(z2) > θ

implies z1 = z2,
(M, Γ)3 ∀ a, b, c, z1, z2 ∈ M , ∀ γ, β ∈ Γ,

(i) (a ∗ γ ∗ (b ◦ c))(z1) > θ and ((a ∗ γ ∗ b) ◦ (a ∗ γ ∗ c))(z2) > θ implies z1 = z2,
(ii) (a ∗ (γ ◦ β) ∗ b)(z1) > θ and ((a ∗ γ ∗ b) ◦ (a ∗ β ∗ b))(z2) > θ implies z1 = z2,
(iii) ((a ◦ b) ∗ γ ∗ c)(z1) > θ and ((a ∗ γ ∗ c) ◦ (b ∗ γ ∗ c))(z2) > θ implies z1 = z2.

The identity element of the fuzzy group (M, R) is called the zero element of (M, Γ, R, S),
and is denoted by e0.

3.3. Definition. A fuzzy gamma ring (M, Γ, R, S) is called commutative if

(a ∗ γ ∗ b)(z) > θ ⇐⇒ (b ∗ γ ∗ a)(z) > θ.

for all a, b, z ∈ M and for all γ ∈ Γ.

For a fuzzy gamma ring (M, Γ, R, S),

C(M, Γ, R, S) = {a ∈ M | (a ∗ γ ∗ b)(z) > θ ⇐⇒ (b ∗ γ ∗ a)(z) > θ

for all b, z ∈ M and for all γ ∈ Γ}
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is called the center of (M, Γ, R, S). It follows that (M, Γ, R, S) is commutative if and
only if M = C(M, Γ, R, S).

We now prove some elementary properties of fuzzy gamma rings.

3.4. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring, a, b, c ∈ M and γ ∈ Γ. Then

(1) i) (a ∗ γ ∗ b)(b) > θ and (a ∗ γ ∗ b)(e0) > θ implies b = e0, and

ii) (b ∗ γ ∗ a)(a) > θ and (b ∗ γ ∗ a)(e0) > θ implies a = e0.

(2) Let b−1 be the inverse of b in (M, R). Then

i) (a ∗ γ ∗ b−1)(v) > θ and (a ∗ γ ∗ b)(w) > θ implies v = w−1,

ii) (a−1 ∗ γ ∗ b)(u) > θ and (a ∗ γ ∗ b)(s) > θ implies u = s−1,

iii) (a−1 ∗ γ ∗ b−1)(t) > θ and (a ∗ γ ∗ b)(r) > θ implies t = r,
(3) i) (a ∗ γ ∗ (b ◦ c−1))(z1) > θ and ((a ∗ γ ∗ b) ◦ (a ∗ γ ∗ c−1))(z2) > θ implies

z1 = z2,

ii) ((a ◦ b−1) ∗ γ ∗ c)(z1) > θ and ((a ∗ γ ∗ c) ◦ (b−1 ∗ γ ∗ c))(z2) > θ implies

z1 = z2,

iii) (a ∗ (γ ◦ β−1) ∗ b)(z1) > θ and ((a ∗ γ ∗ b) ◦ (a ∗ β−1 ∗ b))(z2) > θ implies

z1 = z2.

Proof. (1)(i) Let (a ∗ γ ∗ b)(b) > θ and (a ∗ γ ∗ b)(e0) > θ. Thus, we have for all a, b ∈ M
and for all γ, α ∈ Γ that (a ∗ γ ∗ b)(b) =

∨

β∈Γ S(a, γ, b, β, b) > θ and (a ∗ γ ∗ b)(e0) =
∨

β∈Γ S(a, γ, b, β, e0) > θ from (3.2), and so b = e0 by Definition 3.1 (ii).

(1)(ii) Similarly, it may be shown that a = e0.

(2)(i) Let c ∈ M such that R(v, w, c) > θ. Then

((a ∗ γ ∗ b−1) ◦ (a ∗ γ ∗ b))(c) ≥ S(a, γ, b−1, β, v)∧ S(a, γ, b, α, w)∧ R(v, w, c) > θ

and

(a ∗ γ ∗ (b−1 ◦ b))(e0) ≥ R(b−1, b, e0) ∧ S(a, γ, e0, α
′, e0) > θ.

Thus we get that c = e0 from (M, Γ)3(i), and so R(v,w, e0) > θ.

Let c ∈ M be such that R(w, v, c) > θ. Then

((a ∗ γ ∗ b) ◦ (a ∗ γ ∗ b−1))(c) ≥ S(a, γ, b, α, w)∧ S(a, γ, b−1, β, v)∧ R(w, v, c) > θ

and

(a ∗ γ ∗ (b ◦ b−1))(e0) ≥ R(b, b−1, e0) ∧ S(a, γ, e0, β, e0) > θ.

Thus we get that c = e0 from (M, Γ)3 (i), and so R(w, v, e0) > θ. Hence we obtain
v = w−1 from (G3).

(2)(ii) Similarly, it may be shown that u = s−1.

(2)(iii) Let (a−1 ∗ γ ∗ b−1)(t) > θ. In this case, (a−1 ∗ γ ∗ b)(t−1) > θ by (2)(i) and
S(e0, γ, b, α, e0) > θ by (1). If k ∈ M is such that R(r, t−1, k) > θ, then

((a∗γ∗b)◦(a−1∗γ∗b))(k) ≥ S(a, γ, b, α′, r)∧S(a−1, γ, b, β, t−1)∧R(r, t−1, k) > θ

and

((a ◦ a−1) ∗ γ ∗ b)(e0) ≥ R(a, a−1, e0) ∧ S(e0, γ, b, α, e0) > θ.

It follows that k = e0 from (M, Γ)3 (iii) and R(r, t−1, e0) > θ. Also, similarly R(t−1, r, e0)
> θ. Consequently, t = r by (G3).

(3)(i) Let (b ◦ c−1)(z1) > θ and (b ◦ w)(z1) > θ. In this case, we have c−1 = w by
[17, Proposition 2.1 (3)]. If a 6= e0, then (a ∗ γ ∗ (b ◦ c−1))(z1) > θ, and we have that
(a ∗ γ ∗ (b ◦ w))(z1) > θ, where γ ∈ Γ. Let k ∈ M be such that R(u, v, k) > θ. Then

((a ∗ γ ∗ b) ◦ (a ∗ γ ∗ w))(k) ≥ S(a, γ, b, α, u) ∧ S(a, γ, w, α′, v) ∧ R(u, v, k) > θ,
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and so we get that z1 = k from (M, Γ)3 (i). Since ((a ∗ γ ∗ b) ◦ (a ∗ γ ∗ c−1))(z2) > θ, we
have ((a ∗ γ ∗ b) ◦ (a ∗ γ ∗ w))(z2) > θ, and so z1 = z2 from (M, Γ)3 (i).

(3)(ii) and (3)(iii) may be shown in a similar way. �

3.5. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring.

(i) (M, Γ, R, S) is called a ring with identity if there is an element e∗ in (M, Γ, R, S)
such that (e∗ ∗ γ ∗ a)(a) > θ and (a ∗ γ ∗ e∗)(a) > θ for all a ∈ M, and all γ ∈ Γ.

(ii) Let (M, Γ, R, S) be a fuzzy gamma ring with identity. If (a ∗ γ ∗ b)(e∗) > θ and
(b ∗ γ ∗ a)(e∗) > θ for all a, b ∈ M, and all γ ∈ Γ, then b is called an invertible

(or unit) element of a, and is denoted by a−1
∗ .

3.6. Theorem. If (M, Γ, R, S) is a fuzzy gamma ring with identity, then e∗ is unique.

Proof. Let e′∗, e
′′
∗ be identity elements of (M, Γ, R, S). In this case, (e′∗ ∗ γ ∗ e′′∗)(e′∗) >

θ and (e′∗ ∗ γ ∗ e′′∗)(e′′∗) > θ, where γ ∈ Γ. Thus
∨

β∈Γ S(e′∗, γ, e′′∗ , β, e′∗) > θ and
∨

β∈Γ S(e′∗, γ, e′′∗ , β, e′′∗) > θ. So we get e′∗ = e′′∗ by Definition 3.1. �

3.7. Definition. A nonzero element a in a fuzzy gamma ring (M, Γ, R, S) is called a
zero divisor if there exists b in (M, Γ, R, S) such that b 6= e0 and either (a ∗ γ ∗ b)(e0) > θ
or (b ∗ γ ∗ a)(e0) > θ, where γ ∈ Γ.

The following theorem establishes a relation between zero divisors and the cancellation
property of a fuzzy gamma ring.

3.8. Theorem. A fuzzy gamma ring (M, Γ, R, S) has no zero divisor if and only if for

all a, b, c, v ∈ M with a 6= e0 and all γ ∈ Γ, (a∗γ ∗ b)(v) > θ and (a∗γ ∗ c)(v) > θ implies

b = c ( left cancellation law) or (b ∗ γ ∗ a)(v) > θ and (c ∗ γ ∗ a)(v) > θ implies b = c
(right cancellation law).

Proof. =⇒ Suppose that (M, Γ, R, S) has no zero divisor. If (a ∗ γ ∗ c)(v) > θ, then
(a ∗ γ ∗ c−1)(v−1) > θ by Theorem 3.4 (2). Let k, m ∈ M be such that R(a, c−1, k) > θ
and S(a, γ, k, α, m) > θ, for all a 6= e0, b, c ∈ M and all γ, β, α ∈ Γ. Then

((a∗γ∗b)◦(a∗γ∗c−1))(e0) ≥ S(a, γ, b, β, v)∧S(a, γ, c−1, β′, v−1)∧R(v, v−1, e0) > θ

and

(a ∗ γ ∗ (b ◦ c−1))(m) ≥ R(b, c−1, k) ∧ S(a, γ, k, α, m) > θ.

Thus m = e0 by (M, Γ)3 (i), and so S(α, γ, k, α, e0) > θ. Since a 6= e0 and (M, Γ, R, S)
has no zero divisor, we get k = e0 and so

(3.11) R(a, c−1, e0) > θ.

On the other hand, if (a ∗ γ ∗ b)(v) > θ, then (a ∗ γ ∗ b−1)(v−1) > θ by Theorem 3.4 (2).
Let t, n ∈ M be such that R(c, b−1, t) > θ and S(a, γ, t, β, n) > θ. For all a 6= e0, b, c ∈ M
and all γ, β, β′ ∈ Γ,

((a ∗ γ ∗ c) ◦ (a ∗ γ ∗ b−1))(e0)

≥ S(a, γ, c, β, v−1) ∧ S(a, γ, b−1, β′, v−1) ∧ R(v, v−1, e0)

> θ

and

(a ∗ γ ∗ (c ◦ b−1))(n) ≥ R(c, b−1, t) ∧ S(a, γ, t, β, n) > θ.

Thus we get n = e0 by (M, Γ)3 (i), and so S(a, γ, t, β, e0) > θ. Since a 6= e0 and
(M, Γ, R, S) has no zero divisor, we get t = e0 and so

(3.12) R(c, b−1, e0) > θ.
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From (3.11) and (3.12), we have b = c by Definition 2.5. Similarly, it may be shown that
(b ∗ γ ∗ a)(v) > θ and (c ∗ γ ∗ a)(v) > θ implies b = c.

⇐= Suppose one of the cancellation laws holds, say, the left one, i.e., if a, b ∈ M with
a 6= e0 and γ ∈ Γ, then (a∗γ ∗b)(e0) > θ and (a∗γ ∗e0)(e0) > θ implies b = e0. Similarly,
the right cancellation law implies b = e0. Thus, (M, Γ, R, S) has no zero divisors. �

Now, we introduce the idea of a fuzzy gamma subring of a fuzzy gamma ring.

Let (M, Γ, R, S) be a fuzzy gamma ring and N a nonempty subset of M . Let
RN(a, b, c) = R(a, b, c) and SN (a, γ, b, β, c) = S(a, γ, b, β, c) for all a, b, c ∈ N and all
γ, β ∈ Γ. Then we have

(a△b)(c) = RN (a, b, c) = R(a, b, c), for all a, b, c ∈ N(3.13)

(a ⋄ γ ⋄ b)(c) =
∨

β∈Γ

SN (a, γ, b, β, c) =
∨

β∈Γ

S(a, γ, b, β, c) for all a, b, c ∈ N, γ ∈ Γ.(3.14)

3.9. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring and N be nonempty subset of
M for which:

(i) (a ◦ b)(c) > θ implies c ∈ N and (a ∗ γ ∗ b)(c) > θ implies c ∈ N for all a, b ∈ N ,
all c ∈ M and all γ ∈ Γ, and

(ii) (N, Γ, RN , SN) is fuzzy gamma ring.

Then, (N, Γ, RN , SN) is called a fuzzy gamma subring of (M, Γ, R, S).

3.10. Proposition. Let (M, Γ, R, S) be a fuzzy gamma ring and N a nonempty subset

of M . Then (N, Γ, RN , SN ) is a fuzzy gamma subring of M if and only if

(i) (a◦ b)(c) > θ implies c ∈ N and (a∗γ ∗ b)(c) > θ implies c ∈ N , for all a, b ∈ N ,

all c ∈ M and all γ ∈ Γ
(ii) a−1 ∈ N for all a ∈ N .

Proof. Straightforward. �

3.11. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring and x an element of M . If

C(x) = {a ∈ M | (x ∗ γ ∗ a)(c) > θ ⇐⇒ (a ∗ γ ∗ x)(c) > θ, ∀ c ∈ M ∀ γ ∈ Γ}

then C(x) is a fuzzy gamma subring of M .

Proof. Clearly e0 ∈ C(x) and so C(x) 6= ∅.

(i) a1, a2 ∈ C(x) and (a1 ◦ a2)(b) = R(a1, a2, b) > θ implies b ∈ C(x). Let x, b, c, b1, b2,
d1, d2 ∈ M be such that S(b, γ, x, β, c) > θ, S(x, γ, b, β, d1) > θ, S(x, γ, a1, β, b1) > θ,
S(x, γ, a2, β, b2) > θ, and R(b1, b2, d2) > θ.

From R(a1, a2, b) > θ and R(a2, a1, b) > θ, we have

(x ∗ γ ∗ (a1 ◦ a2))(d1) ≥ R(a1, a2, b) ∧ S(x, γ, b, β, d1) > θ,

and

((x∗γ∗a1)◦(x∗γ∗a2))(d2) ≥ S(x, γ, a1, β, b1)∧S(x, γ, a2, β, b2)∧R(b1, b2, d2) > θ.

Thus, d1 = d2 by (M, Γ)3 (i) and R(b1, b2, d1) > θ. For a1, a2 ∈ C(x), S(a1, γ, x, β, b1) >
θ, S(a2, γ, x, β, b2) > θ and R(b2, b1, d1) > θ, and so

((a2 ◦ a1) ∗ γ ∗ x)(c) ≥ R(a2, a1, b) ∧ S(b, γ, x, β, c) > θ,

and

((a2∗γ∗x)◦(a1∗γ∗x))(d1) ≥ S(a2, γ, x, β, b2)∧S(a1, γ, x, β, b1)∧R(b2, b1, d1) > θ.
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Thus c = d1 by (M, Γ)3 (iii) and S(x, γ, b, β, c) > θ. Therefore, we get that S(b, γ, x, β, c) >
θ implies S(x, γ, b, β, c) > θ. Similarly, it may be shown that S(x, γ, b, β, c) > θ implies
S(b, γ, x, β, c) > θ, and so b ∈ C(x).

Let x, b, c, b2, d, d1 ∈ M and α, β, γ2, τ, β1 ∈ Γ be such that S(x, α, b, τ, c) > θ,
S(x,α, a2, γ2, b2) > θ, S(b, α, x, τ, d) > θ and S(a1, α, a2, β, b) > θ and S(a1, α, b2, β1, d1) >
θ. From S(a2, α, x, γ2, b2) > θ, we have

((a1 ∗ α ∗ a2) ∗ α ∗ x))(d) ≥ S(a1, α, a2, β, b) ∧ S(b, α, x, τ, d) > θ,

and

(a1 ∗ α ∗ (a2) ∗ α ∗ x)(d1) ≥ S(a2, α, x, γ2, b2) ∧ S(a1, α, b2, β1, d1) > θ.

Thus d1 = d by (M, Γ)2, and so S(a1, α, b2, β1, d) > θ. Let b1, d2 ∈ M and γ1, β2 ∈ Γ be
such that S(a1, α, x, γ1, b1) > θ and S(b1, α, a2, β2, d2) > θ. From S(x, α, a2, γ2, b2) > θ,
we have

((a1 ∗ α ∗ a2) ∗ α ∗ x)(d2) ≥ S((a1, α, a2, β, b) ∧ S(b, α, x, τ, d) > θ

and

(a1 ∗ α ∗ (x ∗ α ∗ a2))(d) ≥ S(x, α, a2, γ2, b2) ∧ S(a1, α, b2, β1, d) > θ.

Thus, d2 = d by (M, Γ)2, and so S(b1, α, a2, β2, d) > θ. From S(a1, α, x, γ1, b1) > θ we
have

((x ∗ α ∗ a1) ∗ α ∗ a2)(d) ≥ S(a1, α, x, γ1, b1) ∧ S(b1, α, a2, β2, d) > θ

and

(x ∗ α ∗ (a1 ∗ α ∗ a2))(c) ≥ S(a1, α, a2, β, b) ∧ S(x,α, b, τ, c) > θ.

Thus c = d by (M, Γ)2, and so S(b, α, x, τ, c) > θ. Similarly, S(b, α, x, τ, c) > θ implies
S(x,α, b, τ, c) > θ, and then b ∈ C(x).

(ii) Let a ∈ C(x). If b, c, d, b,b2, d1 ∈ M are such that S(x, γ, a−1, β, d) > θ, S(a−1, γ, x,
β, c) > θ, S(x, γ, a, γ′, b1) > θ, R(b1, d, d1) > θ and R(b1, d, d1) > θ, then we get

((a−1 ◦ a) ∗ γ ∗ x)(e0) ≥ R(a−1, a, e0) ∧ S(e0, γ, x, α, e0) > θ,

and

((a−1∗γ∗x)◦(a∗γ∗x))(b2) ≥ S(a−1, γ, x, β, c)∧S(a, γ, x, γ′, b1)∧R(c, b1, b2) > θ.

Thus e0 = b2 and so R(c, b1, e0) > θ. Also,

(x ∗ γ ∗ (a−1 ◦ a))(e0) ≥ R(a−1, a, e0) ∧ S(x, γ, e0, α, e0) > θ,

and

((x∗γ ∗a−1)◦(x∗γ ∗a)(d1) ≥ S(x, γ, a−1, β, d)∧(x, γ, a, γ′, b1)∧R(d, b1, d1) > θ,

from which we get e0 == d1 and R(d, b1, e0) > θ. Since R(c, b1, e0) > θ, R(d, b1, e0) >
θ and (M, R) is an abelian fuzzy group, e have d = c. Similarly, a ∈ C(x) and
S(a−1, γ, x, β, d) > θ implies S(x, γ, a−1, β, d) > θ. Hence, a−1 ∈ C(x). Then, C(x)
is a fuzzy gamma subring of M by Proposition 3.10. �

3.12. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring. A nonempty subset I of M
is called a left (right) fuzzy ideal of M if for all a, b ∈ I , all n, m ∈ M, and all γ ∈ Γ,
(a◦b)(m) > θ implies m ∈ I , a−1 ∈ I , (n∗γ ∗a)(m) > θ implies m ∈ I ((a∗γ ∗n)(m) > θ
implies m ∈ I).

A nonempty subset I of a fuzzy gamma ring (M, Γ, R, S) is called a fuzzy (two-sided)
ideal of (M, Γ, R, S) if I is both a left and a right ideal of (M, Γ, R, S).
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3.13. Remark. From the definition of a fuzzy left (right) ideal I of (M, Γ, R, S), then
I is a fuzzy gamma subring of (M, Γ, R, S). Also, if M is a commutative fuzzy gamma
ring, then every left fuzzy ideal is a right fuzzy ideal and every right fuzzy ideal is a left
fuzzy ideal.

3.14. Proposition. Let Ii, i ∈ Λ, be a fuzzy ideal of fuzzy gamma ring (M, Γ, R, S),
where Λ is a index set. Then

⋂

i∈Λ Ii is a fuzzy ideal of M .

Proof. Straightforward. �

Let I be a fuzzy ideal of fuzzy gamma ring (M, Γ, R, S) and ∆ = {a ◦ I | a ∈ M},
where (a ◦ I)(u) =

∨

x∈I R(a, x, u) for all a ∈ M . We define a relation over ∆ by

a1 ◦ I ∼ a2 ◦ I ⇐⇒ ∃ u ∈ I such that R
(

a−1
1 , a2, u

)

> θ.

The fuzzy relation ∼ on the set ∆ is a fuzzy equivalence relation by [17, Theorem 4.1]. Let
[a◦I ] = {a′◦I | a′◦I ∼ a◦I}, ā = {a′ | a′ ∈ M, a′◦I ∼ a◦I} and M/I = {[a◦I ] | a ∈ M}.
Also, (I, R) is a fuzzy subgroup of (M, R), and since (M, R) is abelian, (I,R) is a normal

fuzzy group of (M, R) by [17, Theorem 3.1]. Hence (M/I,R) is a commutative fuzzy
group by [17, Theorem 4.2], where

(3.15)
(

[a ◦ I ] ⊕ [b ◦ I ]
)(

[c ◦ I ]
)

= R
(

[a ◦ I ], [b ◦ I ], [c ◦ I ]
)

=
∨

(a′,b′,c′)∈ā×b̄×c̄

R(a′, b′, c′)

Given the fuzzy groups (M/I, R) and (Γ, R), let S be a fuzzy binary operation on
(M/I,Γ), that is a fuzzy subset of M/I ×Γ×M/I×Γ×M/I with the same value of θ as
for R and R. Then we may associate with S the mapping S : F (M/I)×F (Γ)×F (M/I) →
F (M/I) given by

S(A, G, B)(c′) =
∨

a′,b′∈M/I

γ,β∈Γ

(

A(a′) ∧ G(γ) ∧ B(b′) ∧ S(a′, γ, b′, β, c′)
)

where

F (M/I) = {A | A : M/I → [0, 1] is a mapping}.

With R and S as above, we have
(

[a ◦ I ] ⊗ γ ⊗ [b ◦ I ]
)

([c ◦ I ])

= S
(

[a ◦ I ], [b ◦ I ], [c ◦ I ]
)

=
∨

(a′,γ,b′,β,c′)∈ā×γ×b̄×β×c̄

S(a′, γ, b′, β, c′),
(3.16)

(

([a ◦ I ] ⊕ [b ◦ I ]) ⊕ [c ◦ I ]
)

([u ◦ I ])

=
∨

d∈M

(R
(

[a ◦ I ], [b ◦ I ], [d ◦ I ]
)

∧ R
(

[d ◦ I ], [c ◦ I ], [u ◦ I ]
)

,

(

[a ◦ I ] ⊕ ([b ◦ I ] ⊕ [c ◦ I ])
)

([w ◦ I ])

=
∨

d∈M

(

R
(

[b ◦ I ], [c ◦ I ], [d ◦ I ]
)

∧ R
(

[a ◦ I ], [d ◦ I ], [w ◦ I ]
))

,

(

[a ◦ I ] ⊗ γ ⊗ ([b ◦ I ] ⊗ [c ◦ I ])
)

([z ◦ I ])

=
∨

d∈M,β∈Γ

(

R
(

[b ◦ I ], [c ◦ I ], [d ◦ I
)

∧ S
(

[a ◦ I ], γ, [d ◦ I ], β, [z ◦ I ]
))
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(

([a ◦ I ] ⊗ γ ⊗ [b ◦ I ]) ⊕ ([a ◦ I ] ⊗ γ ⊗ [c ◦ I ])
)

([z ◦ I ])

=
∨

d1,d2∈M

β,β′∈Γ

(

S
(

[a ◦ I ], γ, [b ◦ I ], β, [d ◦ I ]) ∧ S
(

[a ◦ I ], γ, [c ◦ I ], β′, [d2 ◦ I ])

∧ R
(

[d1 ◦ I ], [d2 ◦ I ], [z ◦ I ]
))

,
(

[a ◦ I ] ⊗ (γ ◦ γ′) ⊗ [b ◦ I ]
)

([z ◦ I ])

=
∨

β,β′∈Γ

(

R(γ, γ′, β) ∧ S
(

[a ◦ I ], β, [b ◦ I ], β′, [z ◦ I ]
))

,

(

([a ◦ I ] ⊗ γ ⊗ [b ◦ I ]) ⊕ ([a ◦ I ] ⊗ γ′ ⊗ [b ◦ I ])
)

([z ◦ I ])

=
∨

c,d∈M

α,α
′
∈Γ

(

S
(

[a ◦ I ], γ, [b ◦ I ], α, [c ◦ I ]
)

∧ S
(

[a ◦ I ], γ′, [b ◦ I ], α′, [d ◦ I ])

∧ R
(

[c ◦ I ], [d ◦ I ], [z ◦ I ])
)

,
(

([a ◦ I ] ⊕ [b ◦ I ]) ⊗ β ⊗ (c ◦ I
)

([z ◦ I ])

=
∨

d∈M
β′∈Γ

(

R
(

[a ◦ I ], [b ◦ I ], [d ◦ I ]
)

∧ S
(

[d ◦ I ], β, [c ◦ I ], β′, [z ◦ I ])
)

,

(

([a ◦ I ] ⊗ β ⊗ [c ◦ I ]) ⊕ ([b ◦ I ] ⊗ β ⊗ [c ◦ I ])
)

([z ◦ I ])

=
∨

d1,d2∈M

β′,β′′∈Γ

(

S
(

[a ◦ I ], β, [c ◦ I ], β′, [d1 ◦ I ]
)

∧ S
(

[b ◦ I ], β, [c ◦ I ], β′′, [d2 ◦ I ])

∧ R([d1 ◦ I ], [d2 ◦ I ], [z ◦ I ])
)

.

3.15. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring and I a fuzzy ideal of M . Then

the quotient fuzzy group (M/I, R) is a fuzzy gamma ring with
(

[a ◦ I ] ⊗ γ ⊗ [b ◦ I ]
)(

[c ◦ I ]
)

= S
(

[a ◦ I ], γ, [b ◦ I ], β, [c ◦ I ]
)

=
∨

(a′,γ,b′,β,c′)∈ā×γ×b̄×β×c̄

S
(

a′, γ, b′, β, c′
)

Proof. The proof of (M, Γ)2 is similar to the proof of [17, Theorem 4.3], and is omitted.
It only remains to check that (M, Γ)3 is satisfied.

(i) Let
(

[a ◦ I ] ⊗ γ ⊗ ([b ◦ I ] ⊕ [c ◦ I ])
)(

[d ◦ I ]
)

> θ

and
(

([a ◦ I ] ⊗ γ ⊗ [b ◦ I ]) ⊕ ([a ◦ I ] ⊗ γ ⊗ [c ◦ I ])
)(

[w ◦ I ]
)

> θ.

Thus, we have a1, a
′
1, b1, b

′
1, c1, c

′
1, d1, w1 ∈ M such that a1 ◦ I ∼ a′

1 ◦ I ∼ a ◦ I , b1 ◦ I ∼
b′1 ◦ I ∼ b ◦ I , c1 ◦ I ∼ c′1 ◦ I ∼ c ◦ I, d1 ◦ I ∼ d ◦ I , w1 ◦ I ∼ w ◦ I , and there exist elements
u1, u2, u3 ∈ I , x′

1, x
′
2, x

′
3 ∈ M and α, β, α′, β′ ∈ Γ such that

R(b1, c1, x
′
1) ∧ S(a1, γ, x′

1, α, d1) > θ,

S(a′
1, γ, b′1, β, x′

2) ∧ S(a′
1, γ, c′1, α

′, x′
3) ∧ R(x′

2, x
′
3, w1) > θ,

R(a′
1, u1, a1) > θ, R(b′1, u2, b1) > θ and R(c′1, u3, c1) > θ

by (3.15) and (3.16).



A New View of Fuzzy Gamma Rings 375

Let z1 ∈ M be such that R(b′1, c
′
1, z1) > θ. Then by R(b1, c1, x

′
1) > θ, R(b′1, u2, b1) >

θ, R(b′1, c
′
1, z1) > θ, R(c′1, u3, c1) > θ, and the proof of [17, Theorem 4.2], we have

R(z1, u, x′
1) > θ for any u ∈ I .

Since I is a fuzzy ideal, there exist elements u′, u′
3, u4, u5, u6 ∈ I such that S(u3, γ, z1, β,

u′
3) > θ, S(u, γ, b′1, β

′, u′) > θ, S(u, γ, u3, β, u4) > θ, R(u′
3, u

′, u5) > θ and R(u5, u4, u6) >
θ.

Let z1 ∈ M be such that S(a′
1, γ, z1, β, z2) > θ. By S(a1, γ, x′

1, α, d1) > θ, R(z1, u, x′
1)

> θ, R(c′1, u3, c1) > θ, S(a′
1, γ, z1, β, z2) > θ, and similarly to the proof of [17, Theo-

rem 4.2], we have R(z2, u6, d1) > θ. Hence,

(a′
1 ∗ γ ∗ (b′1 ◦ c′1))(z2) ≥ R(b′1, c

′
1, z1) ∧ S(a′

1, γ, z1, β, z2) > θ

and

((a′
1 ∗ γ ∗ b′1) ◦ (a′

1 ∗ γ ∗ c′1))(w2) ≥ S(a′
1, γ, b′1, β, x′

2) ∧ S(a′
1, γ, c′1, β

′, x′
3)

∧ R(x′
2, x

′
3, w2)

> θ.

Therefore, z2 = w2 and R(w2, u6, d1) > θ. In this case, w1 ◦ I ∼ d1 ◦ I , and so [w1 ◦ I ] =
[d1 ◦ I ].

Similarly, it may be shown that (ii) and (iii) of (M, Γ)3 also hold. �

3.16. Definition. Let (M, Γ, R, S) be a fuzzy gamma ring and I a fuzzy ideal of M .

Then the fuzzy gamma ring (M/I,Γ, R, S) is called the fuzzy quotient gamma ring of M
by I .

Finally, we introduce the notion of a fuzzy gamma homomorphism of fuzzy gamma
rings. This concept is the analog of homomorphism for rings.

3.17. Definition. Let (M1, Γ, R1, S1) and (M2, Γ, R2, S2) be fuzzy gamma rings and f
a function from M1 into M2. Then f is called a fuzzy gamma homomorphism of M1 into
M2 if

(i) R1(a, b, c) > θ implies R2(f(a), f(b), f(c)) > θ,
(ii) S(a, γ, b, β, c) > θ implies S(f(a), γ, f(b), β, f(c)) > θ,

for all a, b, c ∈ M1, and all γ, β ∈ Γ.

A homomorphism f of the fuzzy gamma ring M1 into the fuzzy gamma ring M2 is
called

(1) A monomorphism if f is one-one,
(2) An epimorphism if f is onto M2, and
(3) An isomorphism if f is a one-one and map of M1 onto M2.

If f is an isomorphism of M1 onto M2, then the fuzzy gamma rings M1 and M2 are
called isomorphic, denoted by M1

∼= M2.

3.18. Theorem. Let (M1, Γ, R1, S1) and (M2, Γ, R2, S2) be fuzzy gamma rings, and let

f be a fuzzy gamma homomorphism of M1 into M2. Then

(i) f(e0) = e′0, where e′0 is the zero of M2,

(ii) f(a−1) = f(a)−1 for all a ∈ M1,

(iii) Imf = {f(a) | a ∈ M1} is a fuzzy gamma subring of M2.

Proof. (i) Since f is a fuzzy gamma ring homomorphism, for all a ∈ M1,

R1(a, e0, a) > θ implies R2(f(a), f(e0), f(a)) > θ,
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and for f(a) ∈ M2 we get R2(f(a), e′0, f(a)) > θ. Now

(f(a)−1 ◦ (f(a) ◦ f(e0)))(f(e0)) ≥ R2(f(a), f(e0), f(a)) ∧ R2(f(a)−1, f(a), f(e0))

> θ.

Therefore, we get that f(e0) = e′0 by G1.

(ii) Since f is a fuzzy gamma homomorphism, for all a ∈ M1,

R1(a, a−1, e0) > θ implies R2(f(a), f(a−1), f(e0)) > θ,

and so R2(f(a), f(a−1), e′0) > θ by (i). Hence we get that f(a−1) = f(a)−1.

(iii) Since f is a fuzzy gamma homomorphism, we have f(e0) = e′0 ∈ Imf , e0 ∈ M1, by
(i). Hence Imf 6= ∅.

(1) If a1, a2, a ∈ M1 are such that R1(a1, a2, a) > θ, then R2(f(a1), f(a2), f(a)) > θ,
and so f(a) ∈ Imf . Let a1, a2, a ∈ M1 and γ, β ∈ Γ be such that S1(a1, γ, a2, β, a) > θ.
Then S2(f(a1), γ, f(a2), β, f(a)) > θ, and so f(a) ∈ Imf .

(2) Let b ∈ Imf be such that b = f(a), a ∈ M1. Since f is a fuzzy Γ homomorphism
and a−1 ∈ M1, we get b−1 = f(a)−1 = f(a−1) ∈ Im(f). �

3.19. Theorem. Let (M1, Γ, R1, S1) and (M2, Γ, R2, S2) be fuzzy gamma rings, and let

f be a fuzzy gamma homomorphism of M1 into M2. Then

(i) Kerf = {a ∈ M1 | f(a) = e′0} is a fuzzy ideal of M1

(ii) If B is a fuzzy ideal of M2, then f−1(B) is a fuzzy ideal of M1,

(iii) If f is surjective and A is a fuzzy ideal of M1, then f(A) is a fuzzy ideal of M2.

Proof. (i) Since f(e0) = e′0, e0 ∈ Kerf , and so Kerf 6= ∅.

If a, b ∈ Kerf are such that R1(a, b, m1) > θ, m1 ∈ M1, then

R2(f(a), f(b), f(m1)) = R2(e
′
0, e

′
0, f(m1)) > θ

since f is a fuzzy gamma homomorphism. Therefore, f(m1) = e′0 and so m1 ∈ Kerf .

If a ∈ Kerf is such that R1(a, a−1, e0) > θ, then

R2(f(a), f(a−1), f(e0)) = R2(f(a), f(a−1), e′0) > θ,

and so f(a−1) = e′0, i.e. a−1 ∈ Kerf .

Finally, if S1(a, γ, m1, β, w) > θ for all m1, w ∈ M1 and all γ, β ∈ Γ, then

S2(f(a), γ, f(m1), β, f(w)) > θ.

Since f(a) = e′0, S2(e
′
0, γ, f(m1), β, f(w)) > θ. In this case, we have (e′0∗γ∗f(m1))(f(w))

> θ and (e′0 ∗ γ ∗ f(m1))(e
′
0) > θ, and so f(w) = e′0 by Theorem 3.4.

Similarly, if S1(m1, γ, a, β, u) > θ, then S2(f(m1), γ, f(a), β, f(u)) > θ. Since f(a) =
e′0,

S2(f(m1), γ, f(a), β, f(u)) = (f(m1) ∗ γ ∗ e′0)(f(u)) > θ.

Also, since (f(m1) ∗ γ ∗ e′0)(e
′
0) > θ, we have f(u) = e′0 by Theorem 3.4. Therefore, we

get that w, u ∈ Kerf , and so Kerf is a fuzzy ideal of M1.

(ii) and (iii) may be proved similarly. �

3.20. Theorem. Let (M, Γ, R, S) be a fuzzy gamma ring and I a fuzzy ideal of M . Then,

the mapping Π : M → M/I defined by Π(a) = a ◦ I for all a ∈ M is a fuzzy gamma

homomorphism, called the fuzzy canonical gamma homomorphism.
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Proof. Let a, b, c ∈ M be such that R(a, b, c) > θ. Then

R
(

Π(a),Π(b), Π(c)
)

= R(a ◦ I, b ◦ I, c ◦ I) =
(

[a ◦ I ] ⊕ [b ◦ I ]
)[

c ◦ I ]

=
∨

(a′,b′,c′)∈ā×b̄×c̄

R
(

a′, b′, c′
)

≥ R(a, b, c)

> θ

by (3.15). If a, b, c ∈ M and γ, β ∈ Γ are such that S(a, γ, b, β, c) > θ, then

S
(

Π(a), γ, Π(b), β, Π(c)
)

= S
(

a ◦ I, γ, b ◦ I, β, c ◦ I
)

=
(

[a ◦ I ] ⊗ γ ⊗ [b ◦ I ])[c ◦ I ]

=
∨

(a′,γ,b′,β,c′)∈ā×γ×b̄×β×c̄

S
(

a′, γ, b′, β, c′)

≥ S(a′, γ, b′, β, c′)

> θ

by (3.16). �

3.21. Theorem. Let f : (M1, Γ, R1, S1) → (M2, Γ, R2, S2) be a fuzzy gamma epimor-

phism. Then M1/N ∼= M2, where N = Kerf

Proof. Define the mapping ϕ : M1/N → M2 by ϕ([a ◦N ]) = f(a) for all a ∈ M1. In this
case, ϕ is a well defined one-to-one fuzzy group homomorphism by [17, Theorem 5.3].

Therefore, it is only remains to show that if S1([a ◦ N ], γ, [b ◦ N ], β, [c ◦ N ]) > θ, then
S2(ϕ([a ◦ N ]), γ, ϕ([b ◦ N ]), β, ϕ([c ◦ N ])) > θ. In this case, there exist a1, b1, c1 ∈ M1,
γ, β ∈ Γ and n1, n2, n3 ∈ N such that R1(a, n1, a1) > θ, R1(b, n2, b1) > θ, R1(c, n3, c1) >
θ, and S1(a1, γ, b1, β, c1) > θ.

Let u ∈ M1 be such that S1(a, γ, b, β, u) > θ. Then, as in the proof of [17, The-
orem 4.2] we have R1(u, n′, c) > θ for any n′ ∈ N . Thus, w ◦ N ∼ c ◦ N and so
f(c) = f(w). Since S1(a, γ, b, β, u) > θ, we have S2(f(a), γ, f(b), β, f(u)) > θ. Then,
S2(f(a), γ, f(b), β, f(c)) > θ. �

3.22. Theorem. Let f : (M1, Γ, R1, S1) → (M2, Γ, R2, S2) be a fuzzy gamma homomor-

phism, and let A and B be fuzzy ideals of M1 and M2, respectively such that A ⊆ f−1(B).
Then there exists a fuzzy gamma homomorphism f∗ : M1/A → M2/B such that the fol-

lowing diagram commutes:

M1
f

//

π

��

M2

π′

��

M1/A
f∗

// M2/B

Proof. Left to the reader. �
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