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Abstract

In this paper, we sharpen and generalize Carlson’s double inequality
for the arc cosine function.
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1. Introduction and main results

In [1, p. 700, (1.14)] and [3, p. 246, 3.4.30], it was listed that

1—2)l/2 YA (1 — )12
(1.1) _ -2 " < arccos T < \/_(7?)6, 0<z<1.
2V2 + (1 + x)1/2 (1+ )Y/

In [2], the right-hand side inequality in (1.1) was sharpened and generalized.

On the other hand, the left-hand side inequality in (1.1) was also generalized slightly
in [2] as follows: For z € (0,1), the function

22 + (1 +xz)'/?
(1.2) F1/2’1/2y2\/§ (z) = W arccos x

is strictly decreasing. Consequently, the double inequality
—z)1/? 1/2 +v2)7(1 — z)1/?
(1.3) L k) < arccos T < (1/2+v2)m( )
2v2 + (14 x)1/2 2v2 4 (1 + x)1/2
holds on (0,1) and the constants 6 and (% + \/5)71' are the best possible.
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The aim of this paper is to further generalize the left-hand side inequality in (1.1).

Our main results may be stated as follows.

1.1. Theorem. Let a be a real number and

a+ (1 +xz)'/?

(14 R =75

arccosz, z € (0,1).

1) Ifa < %, the function F,(x) is strictly increasing;

(2) If a > 2v/2, then the function F,(z) is strictly decreasing;

(3) If % < a < 2v2, the function Fu(x) has a unique minimum.

1.2. Theorem. For a < 2=2

4—m 7

(2+\/§a)(1—x)1/2
a+ (1+z)1/2

[r(1+a)/2)(1 —a)*/2

, ¢ €(0,1).

< arccosx <

For%<a<2\/§,

8(1 —2/a?)(1 —x)'/?
a+ (1+xz)1/2

< arccosx

o _ max{2+ VEa,m(l +a)/2}(1 - 2)'2

a+ (1+x)1/2

, ¢ €(0,1).

For a > 2v/2, the inequality (1.5) reverses on (0,1).
Moreover, the constants 24++v/2a and 5(1+a) in (1.5) and (1.6) are the best possible.

2. Remarks
Before proving our theorems, we give several remarks on them as follows.

2.1. Remark. The left-hand side inequality in (1.1) and the double inequality (1.3) are
the special case a = 2v/2 of the double inequality (1.6). This shows that Theorem 1.1
and Theorem 1.2 sharpen and generalize the left-hand side inequality in (1.1).

2.2. Remark. It is easy to verify that the function a — W is increasing and the

24v2a

function a +— TE

(1.5) are

is decreasing. Therefore, the sharp inequalities deduced from

7T2(1 _ 50)1/2
) < arccosx

2[2(m —2) + (4 —m)(1 + x)'/?]

(2.1)
_ 2202 VB) + (v ~ )1 — o)
2(r—2)+ (4 —m)(1 +x)1/2
and
m(1+2v2)(1 —2)'/? arccos T LGl z)'/?
@2 2[2v2 + (14 z)1/2) ” v (1+z)1/2
on (0,1).

Furthermore, it is not difficult to see that the double inequalities (2.1) and (2.2) do
not include each other.
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2.3. Remark. Let

1-2/a®

R

for % < a<2v2 and z € (0,1). Direct calculation yields

41+ 2z + 6a — a®

h;(a): 2
a3(a+\/1+:c)

which satisfies

2+a)(V3 —1+a)(1+V3 —a) =4 +6a —a®
a?’(a-i-\/l-&-—l’)zh,z(a)
=4/1+4z +6a —a®
<4V2 +6a —d’
= (a+\/§)2(2\/§ —a).
Accordingly,

(1) When % < a <14 /3, the function a — h,(a) is increasing;
(2) When 1+ +/3 < a < 2v/2, the function a — h;(a) attains its maximum

4 cos? (3 arctan \/7V1+> -1
4[2\/5 cos(% arctan Hx ) + 1+ x] COSz(; arctan \/%)
at the point
Vi—z )
2v/2 cos arctan .
( Vvi+z
As a result, the sharp inequalities deduced from (1.6) are
2 1/2 1/2
81 —2/(14++3 11—z 2—V2)1—x
(2.3) [ /( \/_) ]( ) < arccos T < ﬁ( \/_)( )
1+vV3 +(1+4x)/2 4—m+ (r—2v2)(1+2)/2
and
Vi=z 1/2
2[4cos ( arctan \/1+_;> — 1] 1-2x) /
(2.4) < arccos
[2\/§ COS(% arctan ) +V1+ JJ] COSQ( arctan \/% )
n (0,1).

2.4. Remark. By the famous software MATHEMATICA 7.0 and standard computation,
we show that

(1) The inequality (2.4) includes the right-hand side inequality in (2.2) and the
left-hand side inequality in (2.3);

(2) The left-hand side inequality (2.1) and the inequality (2.4) are not included in
each other;

(3) The upper bound in (2.3) is better than those in (2.1) and (2.2).
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In conclusion, we obtain the following best and sharp double inequality

m(2—v2)(1- x)'/?
4—m4 (r—2v2)(1 +2)/?
(2.5) > arccos x

)
2v2A(z) + (1 +2)/2]A2(2) 2[2(7 — 2) + (4 — 7)(1 + z)1/?]

2, _ _ p)i/2
>max{[ 2[422(z) — 1] (1 — z)

for z € (0, 1), where

(2.6)  A(z) = cos (% arctan \/;_z

2.5. Remark. Letting arccosxz =t in (2.5) leads to

>7 z € (0,1).

(1 — z)}/?
)

2 sin(t/2)

i { 2[4 cos?(t/6) — 1] sin(t/2)
[

2cos(t/6) + cos(t/2)] cos?(t/6)’ 2[V2 (7 —2) + (4 — ) cos(t/2)]

(2.7) <t

2m (V2 — 1) sin(t/2)

< 4—m+V2(m—2v2)cos(t/2)

This may be rearranged as

[2cos(t/6) + cos(t/2)] cos®(t/6) 4[v2(m —2) + (4 — 7) cos(t/2)]

,0<t

max{ 4cos?(t/6) — 1 ’
sin(t/2)
t/2

w2

- 4—m+V2(m—2v2) cos(t/2)
ﬁ(\/§ — 1)

Therefore, we have

max{ [2cos(t/3) + cost] cos®(t/3) 4[V2(m —2) + (4 — 7) cost] }

4dcos?(t/3) — 1 ’

(2.9) S _Si? t

4—71'—&—\/5(71'—2\/5)00515

2

71'(\/5 — 1)

It is noted that the double inequality (2.9) improves related inequalities surveyed in [4,

Section 3] and [8, Section 1.7].

2.6. Remark. The approach used in this paper to prove Theorem 1.1 and Theorem 1.2
has been utilized in [2, 5, 6, 7, 9, 10] to establish similar monotonicity and inequalities
related to the arc sine, arc cosine and arc tangent functions. For more information on
this topic, please see the expository and survey article [8].

3. Proofs of Theorem 1.1 and Theorem 1.2

Now we are in a position to verify our theorems.

L0<t< =,

}

™
5

}

s
,0<t< =,
2

}
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Proof of Theorem 1.1. Straightforward differentiation yields
VI—2?(avz+1+2)[2(z—1)(avz+1 +2+1)

2(z — 1)*(z + 1) VI—a? (avo+1 +2)
A VI—2Z(avz +1 +2)

Fi(a) =

+ arccos ©

B T e R
and
G;(:c) _ (az\/:c——b-l —a:c—a—4\/:c——|—1)m
(1+z)(avz+1 +2)2
A Ha(z)V1—x

(1+z)(avz+1+ 2)2

It is clear that only if a ¢ (—2, —v/2) the denominators of G, (z) and Ga(z) do not equal
zero on (0, 1) and that the function H,(z) has two zeros

z+1—+a2+ 18z + 17
ai(x) = SNCED and az(z) =

z+1+vVx?2+ 18z + 17
2v/x +1

whose derivatives are

V2 4+ 18z + 17 —xz —1

’
a)(z) =
(@) 4,/ + z)(a2 + 18z + 17)
and
, 1+z4+ Va2 + 18z +17
az(z) =
4/ (1 + z) (22 + 18z + 17)
with
lim ai(z) = g7 lim a(z) = —V2,
z—0F 2 rz—1—
lim+ az(x) = #, lim as(z) = 2V2.
z—0 r—1—

Since the functions a1 (x) and a2 (z) are strictly increasing on (0, 1), the following conclu-
sions can be derived:

(1) When a < -2 < # < —V/2 or a > 2v/2, the function H,(z) and the
derivative G (x) are always positive on (0,1), and so the function G.(z) is

strictly increasing on (0, 1). From

(m=at2r=2) 0 tim Galw) =0,
2(a+2) 1~
it follows that the functions G,(z) and F,(z) are negative, and so the function
F,(x) is strictly decreasing on (0,1).

(2) When —v2 < a < @, the function H,(z) and the derivative G (x) are
negative on (0,1), and so the function Gq(zx) is strictly decreasing on (0, 1).
From (3.1), it is obtained that the function G, (z) and the derivative F}(z) are
positive. So the function Fy(z) is strictly increasing on (0, 1).

(3) When % < a < 2v/2, the functions H,(x) and G (z) have a unique zero
which is the unique maximum point of G4(x). From (3.1), it is deduced that

(a) If % <a< %7 the functions Go(z) and F,(z) are positive, and so
the function Fy(z) is strictly increasing on (0, 1).

(b) If % < a < 22, the functions Go(z) and F,(x) have a unique zero
which is the unique minimum point of the function F,(z) on (0,1).

(3.1) lim Gu(z) =
z—0t



408 B.-N. Guo, F. Qi

On the other hand, the derivative F},(z) can be rearranged as
V1—a? {2(1} —D(avz+1 +ax+1)

2(x — 1)2(z + 1) V1—22?

A V1—2a2

BT R

Fi(x) = + (avz +1 +2) arccos

with

, arccos T 44/1 — x
Qu(x) = a—
2v/x +1 arccos x

A arccosT

= W[G—P(m)L
_ 2z +1
T V1V 22

a 2(x +1

C Vrrilv1i—2a?

~—

P'()

— arccosx

2v/1 — x2
T+ 1

—

arccos x)?2

~—

_R(x)

—

arccos x)

and
z—1
R'(z) = —————— <0.
@) (z+1)v1—2x?
From lim,_,,- R(z) = 0 and the decreasingly monotonic property of R(x), we obtain
that R(xz) > 0, and so the function P(x) is strictly increasing. Since
lim P(z) = 8 and lim P(z) =2v2,
z—0F ™ rz—1—
the function Qq(x) is strictly decreasing (or increasing, respectively) with respect to
€ (0,1) for a < £ (or a > 2v/2, respectively). By virtue of lim, ;- Qa(z) = 0, it
follows that
(1) If a < £, the function Qa () is positive on (0, 1);
(2) If a > 2v/2, the function Q. (z) is negative on (0, 1).
These imply that the function F,(z) is strictly increasing for a < % < % and strictly
decreasing for a > 2v/2. The proof of Theorem 1.1 is complete. O

Proof of Theorem 1.2. Easy calculation gives

= E(1—|—a) and  lim F,(z)=2+Vv2a.

lim Fy
zi‘r})l+ (m) 2 rz—1—

By the monotonicity of F,(x) procured in Theorem 1.1, it follows that
(1) Ifa< %, then
g(1 ta) < Fu(z) <2+V2a

on (0,1), which can be rearranged as the inequality (1.5);
(2) If a > 2v/2, the inequality (1.5) is reversed;
(3) It % < a < 22, the function F,(z) has a unique minimum, so

Fo(z) < max{g(l +a),2+ \/ia}

on (0,1), which is equivalent to the right-hand side inequality (1.6).

Furthermore, the minimum point zo € (0,1) of the function Fg(x) satisfies

2(1—xo)(ax/xo+1 —l—:co—i—l)
VIi—ad(avzo+1+2) '

arccos ro —



Sharpening and Generalizations of Carlson’s Inequality 409

and so
F(x)_2(a+\/l’o+1)(a\/£€o+1+130+1)AQ(a+u)2>8(1 3)
o) VI+zo (avoo+1 +2) T oau+42 T a2 )’

where u = /T + 2o € (1,v2). The left-hand side inequality in (1.6) follows.
The proof of Theorem 1.2 is complete. d

4. An open problem
Finally, we propose the following open problem.

4.1. Open Problem. For real numbers «, 8 and v, let

B
(4.1)  Fapn~(z)= % arccosz, x € (0,1).
Find the ranges of the constants «, 5 and 7 such that the function Fi, g ~(x) is monotonic
on (0,1).
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