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Abstract

H. K. Nickerson and Gerald S. Manning (Intrinsic equations for a re-
laxed elastic line on an oriented surface, Geometriae Dedicate 27, 127–
136, 1988) derived the intrinsic equations for a relaxed elastic line on
an oriented surface in Euclidean 3-dimensional space E3. In this pa-
per, we define a generalized relaxed elastic line and derive the intrinsic
equations for a generalized relaxed elastic line on an oriented surface
in Euclidean 3-dimensional space E3, and give some applications of the
result.
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1. Introduction

A brief mathematical background for curvature, including fundamental definitions and
theorems, may be found in [1, 2, 4, 7, 9] and [10]. In this section, we will recall some
fundamental definitions and theorems. Let κ denote the curvature of a curve α and let
P (κ) be a smooth function. The geometric importance of minimizing a curvature energy
functional of the type Θ(α) =

∫

α
P (κ) ds is discussed for a certain space of curves in the

Euclidean 3-dimensional space E3 in [1].

The natural variational integrals in geometry are the common integrals on space curves
α(s). These include the length L(α) =

∫

ds, total torsion T (α) =
∫

τ ds, total squared

curvature K(α) =
∫

κ2 ds, used in [6, 8], and the integral H(α) =
∫

κ2τ ds.
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E-mail: (A. Görgülü) agorgulu@ogu.edu.tr (C. Ekici) cekici@ogu.edu.tr



198 A. Görgülü, C. Ekici

Let α(s) denote an arc on a connected oriented surface S in E3, parameterized by arc
length, 0 ≤ s ≤ l, with curvature κ(s) and torsion τ (s). Let the energy density be given
as some function f(κ, τ ) of the curvature and torsion. Then

(1.1) H =

∫

f(κ, τ ) ds

define Hamiltonians for the curve [3]. Thus the following integral can be taken as a
special Hamiltonian for the curve α:

(1.2) H =

l
∫

0

κ2τ ds.

Also, the filament model (FM) is often known as localized induction. The Hamiltonians
are given simply by

Fn =
1

n − 2

∫

α

fn−1 ds, n = 1, 3, 4, 5, . . . ,

where fn is obtained in terms of X1, X2, . . . , Xn−1 from ∂fn = 〈X1, JXn〉 since J2 = −Id
on a normal vector field, and the Xn depends on the n derivatives of T (s) = α′(s). It is
known that Fn is a FM constant of motion in involution [5].

1.1. Definition. The arc α is called a generalized relaxed elastic line if it is extremal
for the variational problem of minimizing the value of H within the family of all arcs of
length l on S having the same initial point and initial direction as α.

We shall require that the coordinate functions of S are sufficiently smooth and that
the equations of α as functions of s, are sufficiently smooth in these coordinates.

In this study, we would like to calculate the intrinsic equations for a curve α that is
extremal for (1.2).

At a point α(s) of α, let T (s) = α′(s) denote the unit tangent vector to α, N(s) the
unit normal to S, and let Q(s) = N × T . Then {T, Q, N} gives an orthonormal basis
for all vectors at α(s) and {T, Q} gives a basis for the vectors tangent to S at α(s). Let
Π denote the second fundamental form of S. The surface analogue of the Frenet-Serret
formulas is

(1.3)





T ′

Q′

N ′



 =





0 kg kn

−kg 0 τg

−kn −τg 0









T
Q
N





Here, kg is the geodesic curvature of α, kn = Π(T, T ) the normal curvature, and τg =
Π(T,Q) the geodesic torsion. The square curvature κ2 of α is given by

(1.4) κ2 =
〈

T ′, T ′
〉

= k2
g + k2

n [2, 9].

1.2. Theorem. For any regular curve α the following formulas hold:

κ =
‖α′ × α′′‖

‖α′‖3 and τ =
〈α′ × α′′, α′′′〉

‖α′ × α′′‖2 [4].

2. Obtaining the equations

Now, assume that α lies in a coordinate patch (u, v) → x(u, v) of S, and let xu =
∂x

∂u
,

xv =
∂x

∂v
. Then α is expressed as α(s) = x(u(s), v(s)), 0 ≤ s ≤ l, with

T (s) = α′(s) =
du

ds
xu +

dv

ds
xv
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and

Q(s) = p(s)xu + q(s)xv

for suitable scalar functions p(s) and q(s).

Next, we must define variational fields for our problem. In order to obtain variational
arcs of length l, it is generally necessary to extend α to an arc α∗(s) defined for 0 ≤ s ≤ l∗,
with l∗ > l but sufficiently close to l so that α∗ lies in the coordinate patch. Let
µ(s), 0 ≤ s ≤ l∗, be a scalar function which is sufficiently smooth and does not vanish
identically. Define

η(s) = µ(s)p∗(s), ξ(s) = µ(s)q∗(s).

Then

(2.1) η(s)xu + ξ(s)xv = µ(s)Q(s)

along α. Also, assume that

(2.2) µ(0) = 0, µ′(0) = 0 and µ′′(0) = 0.

No further restrictions need to be placed on µ. Now define

(2.3) β(σ; t) = x (u(σ) + tη(σ), v(σ) + tξ(σ)) ,

for 0 ≤ σ ≤ l∗. For |t| < ε (where ε > 0 depends upon the choice of α∗ and of µ), the
point β(σ; t) lies in the coordinate patch. For fixed t, β(σ; t) gives an arc with the same
initial point and initial direction as α, because of (2.2).

For t = 0, β(σ; 0) is the same as α∗ and σ is the arc length. For t 6= 0, the parameter
σ is not the arc length in general.

For fixed t, |t| < ε, let L∗(t) denote the length of the arc β(σ; t), 0 ≤ σ ≤ l∗. Then

(2.4) L∗(t) =

l∗
∫

0

√

〈

∂β

∂σ
(σ; t) ,

∂β

∂σ
(σ; t)

〉

dσ

with

(2.5) L∗(0) = l∗ > l.

It is clear from (2.3) and (2.4) that L∗(t) is continuous in t. In particular, it follows from
(2.5) that

(2.6) L∗(t) >
l + l∗

2
> l, |t| < ε∗

for a suitable ε∗ satisfying 0 < ε∗ ≤ ε. Because of (2.6), we can restrict β(σ; t), 0 ≤ |t| <
ε∗, to an arc of length l by restricting the parameter σ to an interval 0 ≤ σ ≤ λ(t) ≤ l∗

by requiring

(2.7)

λ(t)
∫

0

√

〈

∂β

∂σ
,
∂β

∂σ

〉

dσ = l.

Note that λ(0) = l. The function λ(t) need not be determined explicitly, but we shall

need
dλ

dt

∣

∣

∣

∣

t=0

.

2.1. Lemma.

(2.8)
dλ

dt

∣

∣

∣

∣

t=0

=

l
∫

0

µkg ds.
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Proof. The proof of (2.8) and other results below will depend on results obtained from
(2.3); such as

(2.9)
∂β

∂σ

∣

∣

∣

∣

t=0

= T, 0 ≤ σ ≤ l.

Further differentiation of (2.9) gives

(2.10)
∂2β

∂σ2

∣

∣

∣

∣

t=0

= T ′ = kgQ + knN,

and

(2.11)
∂3β

∂σ3

∣

∣

∣

∣

t=0

=
(

−k2
g − k2

n

)

T +
(

k′

g − knτg

)

Q +
(

k′

n + kgτg

)

N.

Also,

(2.12)
∂β

∂t

∣

∣

∣

∣

t=0

= µQ,

because of (2.1). Further differentiation of (2.12) gives

(2.13)
∂2β

∂t∂σ

∣

∣

∣

∣

t=0

=
∂2β

∂σ∂t

∣

∣

∣

∣

t=0

= −µkgT + µ′Q + µτgN

using (1.3), and

(2.14)

∂3β

∂t∂σ2

∣

∣

∣

∣

t=0

=
(

−2µ′kg − µk′

g − µτgkn

)

T +
(

µ′′ − µk2
g − µτ 2

g

)

Q

+
(

2µ′τg − µkgkn + µτ ′

g

)

N

and

(2.15)

∂4β

∂t∂σ3

∣

∣

∣

∣

t=0

=
(

µk3
g − 3µ′k′

g − 3µ′′kg − 3µ′τgkn − 2µτ ′

gkn − µτgk′

n

+ µτ 2
g kg + µkgk2

n − µk′′

g

)

T

+
(

− 3µ′k2
g − 3µ′τ 2

g − 3µkgk′

g − 3µτgτ ′

g + µ′′′
)

Q

+
(

− 2µk′

gkn − µkgk′

n − µτ 3
g + 3µ′τ ′

g + 3µ′′τg

− µk2
gτg + µτ ′′

g − 3µ′kgkn − µτgk2
n

)

N.

To prove (2.8), differentiate (2.7) with respect to t, remembering that l is constant, and
evaluate at t = 0 using (2.9) and (2.13), with λ(0) = l. Since

dλ
dt

∣

∣

∣

t=0

√

〈

∂β
∂σ

∣

∣

∣

t=0
, ∂β

∂σ

∣

∣

∣

t=0

〉

+

l
∫

0

〈

∂β
∂σ

∣

∣

∣

t=0
, ∂2β

∂σ∂t

∣

∣

∣

t=0

〉〈

∂β
∂σ

∣

∣

∣

t=0
, ∂β

∂σ

∣

∣

∣

t=0

〉

−1/2

ds

= 0,

we obtain that

dλ

dt

∣

∣

∣

∣

t=0

=

l
∫

0

µkg ds.

�

2.2. Theorem. The intrinsic equations for a generalized relaxed elastic line of length l
on a connected oriented surface in E3 are given by the equalities

(BC I) kn(l) = 0,
(BC II) k′

n(l) = −2kg(l)τg(l),
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(BC III) 2k′′

n(l) = −kn(l)[k2
g(l) − 5τ 2

g (l) + k2
n(l)] − 6τg(l)k′

g(l) − kg(l)τ
′

g(l),

and the differential equation

(DE)

2k′′′

n + 6τgk′′

g + 3k2
nk′

n + 3k2
gk′

n − 2kgτ 3
g + 2kgτ ′′

g − 6knτgτ ′

g

− 6τ 2
g k′

n + 3kgτgk2
n + 3k3

gτg + 6τ ′

gk′

g + kg[−kn(l)k′

g(l)

+ k2
n(l)τg(l) + k2

g(l)τg(l) + kg(l)k
′

n(l)] = 0.

Here kg, kn and τg are the functions giving the geodesic curvature, the normal curvature
and the geodesic torsion as functions of arc length along the line, respectively.

Proof. We begin by calculating H(t) for the arc β(σ; t), 0 ≤ σ ≤ λ(t), |t| < ε∗. Since σ
is not generally the arc length for t 6= 0, H(t) is given by

H(t) =

λ(t)
∫

0

〈

∂β
∂σ

× ∂2β
∂σ2 , ∂3β

∂σ3

〉〈

∂β
∂σ

, ∂β
∂σ

〉

−5/2
d σ.

A necessary condition for α to be extremal is that H ′(0) = 0 for arbitrary µ satisfying
(2.2). We now calculate H ′(t):

H ′(t) = dλ
dt

{〈

∂β
∂σ

× ∂2β
∂σ2 , ∂3β

∂σ3

〉〈

∂β
∂σ

, ∂β
∂σ

〉

−5/2}

σ=λ(t)

+

λ(t)
∫

0

{〈

∂2β
∂t∂σ

× ∂2β
∂σ2 , ∂3β

∂σ3

〉

+
〈

∂β
∂σ

× ∂3β
∂t∂σ2 , ∂3β

∂σ3

〉

+
〈

∂β
∂σ

× ∂2β
∂σ2 , ∂4β

∂t∂σ3

〉}〈

∂β
∂σ

, ∂β
∂σ

〉

−5/2

dσ

− 5

λ(t)
∫

0

〈

∂β
∂σ

× ∂2β
∂σ2 , ∂3β

∂σ3

〉〈

∂β
∂σ

, ∂β
∂σ

〉

−7/2〈
∂2β
∂t∂σ

, ∂β
∂σ

〉

dσ.

Using (2.7), (2.8), (2.9), (2.10), (2.11), (2.13), (2.14) and (2.15), we find

H ′(0) =

( l
∫

0

µkg ds

)

(

− kn(l)k′

g(l) + k2
n(l)τg(l) + k2

g(l)τg(l) + kg(l)k′

n(l)
)

+

l
∫

0

{(

kgτ ′′

g + 2k2
gk′

n − 2kgτ 3
g + 3k3

gτg − τ ′

gk′

g + 4knτgτ ′

g

+ 3kgτgk2
n − 2knkgk′

g − τ 2
g k′

n

)

µ + (−knk2
g + 5knτ 2

g − k3
n

− 2τgk′

g + 3kgτ ′

g

)

µ′ +
(

4kgτg + k′

n

)

µ′′ − knµ′′′
}

ds.
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However, using integration by parts and (2.2),

−

l
∫

0

µ′′′knds = −µ′′(l)kn(l) + µ′(l)k′

n(l) − µ(l)k′′

n(l) +

l
∫

0

µk′′′

n ds,

l
∫

0

µ′′(4kgτg + k′

n) ds = µ′(l)
[

4kg(l)τg(l) + k′

n(l)
]

− µ(l)
[

4τg(l)k′

g(l) + 4kg(l)τ ′

g(l) + k′′

n(l)
]

+

l
∫

0

µ(8τ ′

gk′

g + 4τgk′′

g + 4kgτ ′′

g + k′′′

n ) ds

and

l
∫

0

µ′
[

− knk2
g + 5knτ 2

g − k3
n − 2τgk′

g + 3kgτ ′

g

]

ds

= µ(l)
[

− kn(l)k2
g(l) + 5kn(l)τ 2

g (l) − k3
n(l) − 2τg(l)k

′

g(l)

+ 3kg(l)τ ′

g(l)
]

−

l
∫

0

µ
[

− k2
gk′

n − 2knkgk′

g + 5τ 2
g k′

n

+ 10knτgτ ′

g − 3k2
nk′

n + τ ′

gk′

g − 2τgk′′

g + 3kgτ ′′

g

]

ds.

Thus H ′(0) can be written as

(2.16)

H ′(0) =

l
∫

0

µ
{

2k′′′

n + 6τgk′′

g + 3k2
nk′

n + 3k2
gk′

n − 2kgτ 3
g + 2kgτ ′′

g

− 6knτgτ ′

g − 6τ 2
g k′

n + 3kgτgk2
n + 3k3

gτg + 6τ ′

gk′

g

+ kg[−kn(l)k′

g(l) + k2
n(l)τg(l) + k2

g(l)τg(l) + kg(l)k
′

n(l)]
}

ds

+ µ(l)
[

− kn(l)k2
g(l) + 5kn(l)τ 2

g (l) − 6τg(l)k
′

g(l) − kg(l)τ
′

g(l)

− 2k′′

n(l) − k3
n(l)

]

+ µ′(l)
[

4kg(l)τg(l) + 2k′

n(l)
]

− µ′′(l)kn(l).

In order that H ′(0) = 0 for all choices of the function µ(s) satisfying (2.2), with arbitrary
values of µ(l), µ′(l) and µ′′(l), the given arc α must satisfy the three boundary conditions

(BC I) kn(l) = 0,
(BC II) k′

n(l) = −2kg(l)τg(l),
(BC III) 2k′′

n(l) = −kn(l)[k2
g(l) − 5τ 2

g (l) + k2
n(l)] − 6τg(l)k′

g(l) − kg(l)τ
′

g(l),

and the differential equation

(DE)

2k′′′

n + 6τgk′′

g + 3k2
nk′

n + 3k2
gk′

n − 2kgτ 3
g + 2kgτ ′′

g − 6knτgτ ′

g

− 6τ 2
g k′

n + 3kgτgk2
n + 3k3

gτg + 6τ ′

gk′

g + kg[−kn(l)k′

g(l)

+ k2
n(l)τg(l) + k2

g(l)τg(l) + kg(l)k
′

n(l)] = 0.

Although the derivation of the equations uses a particular local coordinate system, the
final equations, namely the differential equation (DE) together with the boundary con-
ditions (BC I), (BC II) and (BC III) at the free end are coordinate free, so they must hold
in general. �
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3. Applications

3.1. Theorem. If α is any ruling of the ruled surface, then α is a generalized relaxed
elastic line.

Proof. Since any ruling of the ruled surface is both asymptotic and geodesic, it follows
that kg = kn = 0. Hence the proof is clear. �

3.2. Theorem. In the plane, any arc is a generalized relaxed elastic line.

Proof. Since kn = τg = 0, the proof is clear. �

3.3. Theorem. On a sphere of radius R, there is no generalized relaxed elastic line.

Proof. For any arc on a sphere, kn = 1
R

and τg = 0. Therefore (BC I), (BC II) and (DE)
cannot be satisfied. �

3.4. Theorem. On a right circular cylinder, an arc of an oblique geodesic (helix) cannot
be a generalized elastic line.

Proof. Let the cylinder be parameterized by

X(u, v) = (R cos u
R

, R sin u
R

, v),

where R is the radius of the cylinder. For an arbitrary arc α(s) we find kg = dθ
ds

= 0,

kn = − 1
R

cos2 θ = constant and τg = 1
R

cos θ sin θ [8]. The geodesics on the cylinder are
characterized by θ = constant and the boundary condition (BC I) can be satisfied only
if θ = ±π/2. �

4. Conclusion

In [8], “Intrinsic equations for a relaxed elastic line on an oriented surface”, such
equations were studied by H.K. Nickerson and G. S. Manning. In their study, the authors
calculated the internal equations of elastic lines with the aid of kg by using just the
curvature of the elastic curve. In this study, since the energy density is given as some
function f(κ, τ ) of the curvature and torsion, the equations are given in E3 with the aid
of kn by using both the curvature and the torsion of the elastic curve.
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