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Abstract

In this paper, a characterization of [0, 1]-matroids is given. It is proved
that a [0, 1]-matroid is equivalent to a hereditary fuzzy pre-matroid,
and that a perfect [0, 1]-matroid is equivalent to a Goetschel-Voxman
fuzzy matroid. It is proved that there is a one-to-one correspondence
between the family of closed perfect [0, 1]-matroids on E and the set of
their fuzzy bases.
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1. Introduction

Matroids were introduced by Whitney [9] in 1935. They generalize both graphs and
matrices and play an important role in mathematics, especially in applied mathemat-
ics. Matroids are precisely the structures for which the very simple and efficient greedy
algorithm works.

In 1988, R. Goetschel and W. Voxman [1] introduced the concept of fuzzy matroids.
Subsequently, many scholars researched Goetschel-Voxman fuzzy matroids (see [2, 3, 4, 5],
etc.).

Recently, Shi [7] introduced a new approach to the fuzzification of matroids, namely
M-fuzzifying matroids. This approach preserves many basic properties of crisp matroids,
and an M-fuzzifying matroid and its M-fuzzifying rank function are in one-to-one cor-
respondence. Further, Shi [8] presented the concept of an (L, M)-fuzzy matroid, which
is a wider generalization of M-fuzzifying matroids. An (L, 2)-fuzzy matroid is called an
L-matroid, and can be applied to fuzzy algebras and fuzzy graphs.
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In this paper, characterizations of [0, 1]-matroids are given. In particular, it is proved
that a [0, 1]-matroid is equivalent to a hereditary fuzzy pre-matroid, and that a perfect
[0, 1]-matroid is equivalent to a Goetschel-Voxman fuzzy matroid; see Theorem 3.2 and
Corollary 3.5.

The family of fuzzy bases of a [0, 1]-matroid is also considered. A [0, 1]-matroid (E,J)
does not generally have a basis; however, when (E,J) is closed and perfect, its base exists;
see [2, Theorem 1.10] or Lemma 4.2. Indeed, it is proved that there exists a one-to-one
correspondence between the family of closed perfect [0, 1]-matroids on F and the set of
their fuzzy bases; see Theorem 4.9.

2. Preliminaries

In the sequel, we shall consider [0,1]-matroids. Let E be a finite set, denote the
power set of E by 27, and for any A C E, denote by |A| and x4 the cardinality and the
characteristic function of A, respectively.

A fuzzy set A on E is a mapping A : E — [0,1]. The family of all fuzzy sets on E is
denoted by [0,1]. For any A, B € [0,1]7, the relation A < B is defined by A(z) < B(x)

for all z € E. Let A € 27 and a € [0, 1]. The fuzzy set a A A on E is defined by
A

(anA)@)={> TS0

0, z¢A.

For A,B € [0,1]F, a € (0,1] and A C [0,1]F, we use the following operations and
notations:

supp A = {x € E: A(z) > 0}; m(A) = inf{A(z) : x € supp 4};
(AV B)(z) = max{A(z), B(z)};  (AAB)(z)=min{A(z), B(z)};
A ={z € E: A(z) > a}; Ala] = {Ajq) : A € A};
Max (A) = {A € [0,1]" : A< B € A implies A = B};

—~ o~

Low (A) = {A € [0,1]" : there exists B € A such that A < B}.

2.1. Definition. [9] Let E be a finite set and J C 2. If J satisfies the following
statements:

(I1) 0 eJ;

(12) If A,B€ 2 AC Band B €7, then A€ J;

(I3) If A, B €7 and |B| > |A|, then there exists e € B — A such that AU {e} € 7,

then the pair (E,J) is called a (crisp) matroid.
2.2. Definition. [1] Suppose that E is a finite set and J C [0,1]” a non-empty family
of fuzzy sets satisfying:
(i) f A,B€[0,1]¥, A< B,and B €7, then A €7;
(ii) If A,B € J and |supp A| < |supp B, then there exists C' € J such that
(a) A<C<AVB;
(b) m(C) < min(m(A),m(B)).
Then the pair (E,7J) is called a Goetschel-Voxman fuzzy matroid.

2.3. Definition. [11] Let A be a fuzzy set on E. The mapping |A| : N — [0, 1] defined
by for any n € N by

|A|(n) = \/{a € (0,1] : |Ay| > n}

is called the cardinality of A, where “\/” denotes the supremum.
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2.4. Lemma. [8] For any fuzzy set A € [0,1]%, it holds that |A|,) = |Aja| for any
a € (0,1]. O
2.5. Definition. [8] Let E be a finite set and J C [0,1]. If J satisfies the following
statements:
(LI1) (Non-empty) xgy € J;
(L12) (Hereditary property) If A, B € [0,1]®, A< B and B € J, then A € J;
(LI3) (Exchange property) If A,B € J and b = |B|(n) > |A|(n) for some n € N, then
there exists e, € F'(A, B) such that (b A Ap)) Ve, € J, where
F(A,B)={ey € E: A(e) <b< Ble)},
then the pair (E,J) is called a [0, 1]-matroid.

2.6. Theorem. [8] Let E be a finite set and J C [0,1]%. If (E,J) is a [0, 1]-matroid,
then (E,J[al]) is a matroid for each a € (0,1]. O

3. Some properties and a characterization of [0, 1]-matroids

If (E,9) is a [0, 1]-matroid, then, by Theorem 2.6, (E,J[a]) is a matroid for any a €
(0,1]. Since F is a finite set, there is at most a finite number of matroids on E. Thus
there is a finite sequence 0 < ap < a1 < -+ < ar-1 < ar = 1 such that

(i) If b, c € (ai—1,a:) (1 <i<r), then J[b] = I[c];
(i) fai—1 <b<a;i <c<air1(l <i<r—1), then I[c] C I[b].
The sequence 0 < ap < a1 < -+ < ar—1 < ar = 1is called the [O7 1]-fundamental sequence
of J.
3.1. Theorem. Let E be a finite set and 0 < ap < a1 < -+ < @r—1 < ar = 1 a
finite sequence. For any b € (0, 1], suppose that (E,J[b]) is a matroid on E such that the
following statements hold:
(i) For all a,c € (0,1] with a < ¢, J[a] 2 I[c];
(11) f][az] g 3[04;1]7 (1 S 7 S T),‘
(iif) For all a,c € (ai—1,a:), (1 <i<r), Ia] =T[].
We define
J* ={A €[0,1]" : Ay € I[a] for each a € (0,1]}.
Then (E,J%) is a [0, 1]-matroid.
Proof. We show that J* is a [0, 1]-matroid as follows.
(LI1) Since J[a] is a matroid for any a € (0, 1], we have () € J[a]. This implies xy € I*.

(LI2) If A, B €[0,1]", A< B and B € J*, then By, € J[a] for each a € (0,1]. Hence,
A[a] € J[a], so A € J*.

(LI3) If A,B € J* and b = |B|(n) > |A|(n) for some n € N, then |B|p > |A|p. By
Lemma 2.4, |Bp| > |Apy|- Since J[b] is a matroid and Ay, By € J[b], there exists an
element e € B — Ay such that Ay U {e} € J[b]. Obviously, we have b A (A U {e}) =
(bA App) Vep. For each a € (0, 1], we can obtain

0, a>b,

bAAp)V o] =
(« )V €b)la {A[b]u{e}, a <b.

Since Ap) U {e} € I[b] C Ja] for any a < b, we obtain ((b A Ap)) V ep)a € Jla] for
any a € (0,1]. By the definition of J*, we have (b A Ap)) V e, € J*. Therefore J* is a
[0, 1]-matroid. O
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Next we give a characterization of [0, 1]-matroids. We recall that in [5], Novak in-
troduced the concept of a hereditary fuzzy pre-matroid and obtained several nontrivial
results. Let J C [0,1]” be a nonempty family of fuzzy sets. The pair (E,J) is called a
hereditary fuzzy pre-matroid if it satisfies the following statements:

(i) f A,B€[0,1]¥, A< Band B €7, then A € J;
(ii) (E,J[a]) is a matroid for each a € (0,1].

3.2. Theorem. Let J C [0,1]7 be a family of fuzzy sets. Then (E,J) is a [0, 1]-matroid
if and only if (E,J) is a hereditary fuzzy pre-matroid.

Proof. Suppose that (E,J) is a [0, 1]-matroid. Then by (LI1), (LI2), and Theorem 2.6,
(E,7J) is a hereditary fuzzy pre-matroid.

Conversely, suppose that (E,J) is a hereditary fuzzy pre-matroid. Obviously, (E,J)
satisfies (LI1) and (LI2). Now we show (LI3). Suppose that A,B € J and b = |B|(n) >
|A|(n) for some n € N. Then we obtain |Bp| > |Ap;| by Lemma, 2.4, and Ay, By € J[b].
Since (E,J) is a hereditary fuzzy pre-matroid, (E,J[b]) is a matroid. Thus there exists
e € By — Ay such that Ay U {e} € J[b]. We can obtain a fuzzy set G € J such that

G = Ap U {e} and bA (A Ud{e}) =bA Gy <G €7

By (LI2), (bA Apy)) V ey € 1. Hence, (£,7) is a [0, 1]-matroid. O

In [5], Novak presented the concept of a perfect hereditary fuzzy pre-matroid as a heredi-
tary fuzzy pre-matroid (E,J) satisfying the following statement:

(P) If A,B €7, and for all a € (0,1], Ajq) € Biqj or Ajq) 2 Bla), then AV B €.

3.3. Lemma. LetJ C [0,1]F be a family of fuzzy sets satisfying the hereditary property
(LI2). Then for each A € [0,1]" and a € (0,1], a A Afy) € I if and only if Ay, € I[a).

Proof. Let A € [0,1]” and a € (0,1]. If a A Ap € J, then (a A Ap))ja) = A € I[al.
Conversely, if A}, € J[a], then there is G € J such that A}, = G|q). Since a A Gq) < G,
(LI2) implies that a A Gq) € 7,50 a A Ajg) € J. d

By [5, Lemma 1] and Lemma 3.3, we can easily obtain the following result.

3.4. Theorem. Let (E,J) be a hereditary fuzzy pre-matroid. Then (E,J) is perfect if
and only if A € J whenever A € [0,1]" and A, € I[a] for all a € (0, 1]. O

It follows from this result and [10, Theorem 3.3] that the notion of perfect hereditary
fuzzy pre-matroid coincides with that of perfect [0, 1] matroid given in [10, Definition 3.1].

In [5], Novak proved that a perfect hereditary fuzzy pre-matroid is equivalent to a
Goetschel-Voxman fuzzy matroid. Thus, we obtain the following.

3.5. Corollary. Let E be a finite set and I C [0,1]%. Then (E,J) is a perfect [0,1]-
matroid if and only if (F,J) is a Goetschel-Voxman fuzzy matroid. O

3.6. Corollary. Let E be a finite set and J C [0,1)%. Then (E,J) is a Goetschel-Vozman
fuzzy matroid if and only if J satisfies the statements (LI1), (LI2), (LI3) and (P). O

The following result from [1] can also be obtained from Theorem 3.1 and Lemma 3.3.

3.7. Theorem. Let (E,J) be a perfect [0, 1]-matroid. Define a family of subsets of [0, 1]
by

J* ={A€[0,1]" : Ay, €I[a] for each a € (0,1]}.
Then J* =17J. O
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4. Bases of [0, 1]-matroids

In this section, we discuss bases of [0, 1]-matroids. We define the family of fuzzy bases
of a [0, 1]-matroid (E,J) by By = Max (J). Each element of By is called a fuzzy basis of
J.

In Corollary 3.5 it is shown that the Goetschel-Voxman fuzzy matroids are equiva-
lent to perfect [0, 1]-matroids. Hence, results concerning the family of fuzzy bases of a
Goetschel-Voxman fuzzy matroid apply equally to the family of fuzzy bases of a perfect
[0, 1]-matroid. In the following, we do not distinguish a Goetschel-Voxman fuzzy matroid
from a perfect [0, 1]-matroid.

As is seen in [2, Example 1.6], a perfect [0, 1]-matroid (E,J) does not necessarily have
a fuzzy basis. In [2, Theorem 1.10], Goetschel and Voxman prove that when a matroid
(E,7J) is closed and perfect, it has a family of fuzzy bases. It is natural to ask if these
families of fuzzy bases can be used to characterize closed perfect [0, 1]-matroids. This
problem is solved in this section by showing that there exists a one-to-one correspondence
between the closed perfect [0, 1]-matroids on E and their families of fuzzy bases.

The notion of a closed Goetschel-Voxman fuzzy matroid can be generalized to that of
a [0, 1]-matroid as follows.

4.1. Definition. [10, Definition 3.7] Let (E,J) be a [0, 1]-matroid with [0, 1]-fundamental
sequence 0 < ap < a1 < -+ < ar—1 < ar = 1. If J[a] = J[a,] for all a € (ai—1,ai], (1 <
1 <), then (E,J) is called a closed [0, 1]-matroid.

The next lemma comes from [2].

4.2. Lemma. [2] Let (E,J) be a perfect [0, 1]-matroid. Then (E,J) is closed if and only
if for each A € J, there exists a fuzzy basis B € J such that A < (3. g

4.3. Theorem. Let (E,J) be a [0, 1]-matroid. Then the following statements are equiv-
alent:

(1) (E,7) is closed and perfect;
(i) If A €[0,1]" and for all a € (0,1], bA Ay €7 for allb € (0,a), then A €.

Proof. (i) = (ii) For A € [0,1]" and any a € (0, 1], suppose bA A[,) € J for all b € (0, a).
Take a € (0,1]. Since (E,J) is closed, applying condition (%) of [10, Theorem 3.8] to
Alq) € 27 gives a A Ay, € 1. Hence, A € J since (E,J) is perfect. This establishes (ii).

(ii) => (i) Take A € [0,1]” and suppose that a A Ay, € J for all a € (0,1]. Then for
all b € (0,a) we have b A Af,) € J by (L12), so A € J by (ii). Therefore, (£,7) is perfect.

To prove (E,7J) is closed, take A € 2F and arbitrary ao € (0, 1], and suppose that
bAA €T forall be (0,a0). By [10, Theorem 3.8], it suffices to show that ap A A € J.
However ap A A € [0,1]”, and for all a € (0,1], b € (0,a), we have b A (ao A A)[4) € J.
Indeed if a < ap we have bA (a0 A A)q) = bA A € J by hypothesis since b € (0, ao), while
for ap < a we have b A (a0 A A)q] = xp € J by (LI1). Hence (ii) gives ao A A € J, as
required. O

4.4. Theorem. Let (E,J) be a closed perfect [0, 1]-matroid and By the family of fuzzy
bases. Then
(B1) For each a € (0,1], Max (Bs[a]) = By}, where Byja) denotes the family of bases
of (E,9[a]);
(B2) Let A € [0,1]". Suppose that there exists 3o € By such that a A Apg) < Ba for
each a € (0,1]. Then there exists a fuzzy set 3 € By such that A < 3.
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Proof. (B1) By (LI1) and Lemma 4.2, we know that B is non-empty.

For each a € (0,1], we first show that Max (By[a]) C Bgja). Let B € Max (By[a]).
Obviously, B € Bjla]. Then there exists 3 € By such that B = (|,. This implies
B € Jla]. Suppose that B & By,). Then there is B’ € By, such that B C B’. Hence,
aANB < aAB' €7 By Lemma 4.2, there exists a fuzzy basis 8’ of (F,J) such that
aAB' < p'. Thus, BC B’ = [, € J[a], which contradicts B € Max (Bs[a]). Therefore
Max (Bg[a]) g Bj[a].

Conversely, let B € Byf,. Then there exists ' € J such that B = 6fa]. Hence,
aA B, €J. By Lemma 4.2, there is 8 € By such that a A B[,; < 3. This implies

B=(aAN ﬁ[’a])[a] C Blq € I[a).
By B € Bypa), B = o), which implies B € Bjla]. By B € By, and Byla] C I[a],
B € Max (Bg[a]). Hence, By, € Max (Bg[a]).

(B2) Let A € [0,1]”. Suppose that there exists 3, € By such that a A Ap, < B, for
each a € (0,1]. By the hereditary property (LI2) of J and . € J, a A A, € J. Since
(E,7) is perfect, we have A € J. By Lemma 4.2, there exists a basis 8 € By such that
A<pB. O

4.5. Remark. In the equality in Theorem 4.4 (B1), Max (Bg[a]) cannot be replaced by
Bg[a]. This can be seen from the following example.
4.6. Example. Let F = {a,b,c} and
9[0.5] = {0, {a}, {b},{c},{a, b}, {a,c}}, I[1] ={0,{a},{c},{a,c}}.
Then (£,7[0.5]) and (E,J[1]) are matroids and J[1] C J[0.5]. Let
J[0.5 0,0.5
gy - {031 re 003,
I}, re(0.5,1],
and
J={A€0,1]" : Ay € I[r] for each r € (0,1]}.

By Theorem 3.1, we know that (F,J) is a [0, 1]-matroid. Obviously, (F,J) is perfect and
closed. By the definition of fuzzy base of a [0, 1]-matroid, we can deduce that the family
of fuzzy bases of (E,J) is composed of the following two fuzzy sets on E.

1, T =a, 1, z=a,
A(x) =405, z=b,, B(x)=<0, ==,
0, T =c, 1, z=c

However, By[1] = {{a},{a,c}} 2 {{a,c}} = Byp, so By[1] # Byp.
4.7. Theorem. Let E be a finite set and B be a non-empty family of fuzzy sets on E.
If B satisfies the following statements:

(B1) For each a € (0,1], Max (B[a]) is the family of bases for some matroid on E;
(B2) Let A €[0,1]”. For each a € (0,1], if a A Aj) < Ba, where 8o € B, then there
exists a fuzzy set B € B such that A < 3.

Then I = Low B is a closed perfect [0, 1]-matroid and By, = B.

Proof. (LI1) Since B is non-empty, obviously, we have xy € Iz.

(L12) Let A,B € [0,1]¥ and A < B. If B € J3, then there exists 8 € B such that
B <. Hence, A< 3,s0 A€ Jsg.
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(LI3) Suppose that A,B € Iz and b = |B|(n) > |A|(n) for some n € N. Now we
show that there exists an element e, € F(A, B) such that (b A Ap)) Ve, € Iz, where
F(A,B)y={es € E: A(e) < b< B(e)}.

If b= |B|(n) > |A|(n) for some n € N, then |B| > |A|p. By Lemma 2.4, we have
|Bpy|l > |Ap|- By A, B € Jg, there exist $a,3p € B such that A < 84 and B < 3.
It follows that Ay C (8a)p) and Bpy) € (8B)p)- Let J[a] = Low (Max (Bla])). By (B1),
J[a] is a matroid for all a € (0,1]. By Ay, By € J[b] and |Bjy)| > |Apl, there exists an
element e € By — Apy such that Ap) U {e} € J[b]. Hence, we obtain B’ € Max (B[b])
satisfying Apy U{e} C B'. By B’ € Max (B[b]), there is 3 € B such that B’ = ). Thus

(b/\A[b])\/eb :b/\(A[b] U{e}) < bAB = bA By <B€s.
By the hereditary property of Jg, (bAAp)) Ve, € Iz. Therefore, (E,Jg) is a [0, 1]-matroid.

Let A € [0,1]". Suppose that a A Aj,) € I3 for each a € (0,1]. Then we can obtain a
fuzzy set f3, satisfying a A Afg) < fa. By (B2), there exists a fuzzy set § € B such that
A < . Hence, A € g, so (E,Jp) is perfect. By Jg = Low (B) and Lemma 4.2, (E,Jg)
is closed. Thus (F,Jg) is a closed perfect [0, 1]-matroid and

Bg, = Max (Jp) = Max (Low B) = B. O
4.8. Theorem. Let J be a closed perfect [0,1]-matroid. We have Iz, = 7.
Proof. The proof is trivial and it is omitted. g

4.9. Theorem. Let .9 be the set of all closed perfect [0,1]-matroids on E and B C

20010 4he set of all members satisfying the statements (B1) and (B2). Then there is a
one-to-one correspondence between & and 2.

Proof. By Theorem 4.4, we can define a mapping f: .4 — % by

f(3) = MaxJ.
for any J € .#. On the one hand, suppose that J1,J2 € .# with J; # J2, B1 = MaxJ;
and Bz = MaxJ2. By Theorem 4.4 and Theorem 4.8, we have

=98, =J8, #I8, =J8,, =Ja.

Hence, B1 # Bz, so f is injective. On the other hand, for any B € %, by Theorem 4.7,
there is a closed perfect [0, 1]-matroid Iz € .# such that B = By, = f(Js). Thus f is
surjective. Therefore f is a bijection. d

4.10. Remark. In crisp matroid theory, all bases of a matroid have the same cardinality.
However, this is not true for a closed and perfect [0, 1]-matroid, as can be seen from the
following example.

4.11. Example. Let (E,J) be the closed and perfect [0, 1]-matroid of Example 4.6 and
A, B its two fuzzy bases. We can obtain the cardinalities of A and B as follows:

1, n=0,1, 1 0.1.2
n =
A =405 =2, ,|B = Y
[Alm) = {05, n=2, . |Bl(n) {07 s
0, n2=3

Obviously |A| # |B|.

4.12. Remark. One can discuss the cardinalities of fuzzy bases of closed perfect [0, 1]-
matroid in the same way as for those of Goetschel-Voxman fuzzy matroid [2]. The only
difference is that the cardinality of a fuzzy set is a fuzzy subset of N.
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