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Abstract

In this paper, a characterization of [0, 1]-matroids is given. It is proved
that a [0, 1]-matroid is equivalent to a hereditary fuzzy pre-matroid,
and that a perfect [0, 1]-matroid is equivalent to a Goetschel-Voxman
fuzzy matroid. It is proved that there is a one-to-one correspondence
between the family of closed perfect [0, 1]-matroids on E and the set of
their fuzzy bases.
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1. Introduction

Matroids were introduced by Whitney [9] in 1935. They generalize both graphs and
matrices and play an important role in mathematics, especially in applied mathemat-
ics. Matroids are precisely the structures for which the very simple and efficient greedy
algorithm works.

In 1988, R. Goetschel and W. Voxman [1] introduced the concept of fuzzy matroids.
Subsequently, many scholars researched Goetschel-Voxman fuzzy matroids (see [2, 3, 4, 5],
etc.).

Recently, Shi [7] introduced a new approach to the fuzzification of matroids, namely
M -fuzzifying matroids. This approach preserves many basic properties of crisp matroids,
and an M -fuzzifying matroid and its M -fuzzifying rank function are in one-to-one cor-
respondence. Further, Shi [8] presented the concept of an (L, M)-fuzzy matroid, which
is a wider generalization of M -fuzzifying matroids. An (L, 2)-fuzzy matroid is called an
L-matroid, and can be applied to fuzzy algebras and fuzzy graphs.
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In this paper, characterizations of [0, 1]-matroids are given. In particular, it is proved
that a [0, 1]-matroid is equivalent to a hereditary fuzzy pre-matroid, and that a perfect
[0, 1]-matroid is equivalent to a Goetschel-Voxman fuzzy matroid; see Theorem 3.2 and
Corollary 3.5.

The family of fuzzy bases of a [0, 1]-matroid is also considered. A [0, 1]-matroid (E, I)
does not generally have a basis; however, when (E, I) is closed and perfect, its base exists;
see [2, Theorem 1.10] or Lemma 4.2. Indeed, it is proved that there exists a one-to-one
correspondence between the family of closed perfect [0, 1]-matroids on E and the set of
their fuzzy bases; see Theorem 4.9.

2. Preliminaries

In the sequel, we shall consider [0, 1]-matroids. Let E be a finite set, denote the
power set of E by 2E , and for any A ⊆ E, denote by |A| and χA the cardinality and the
characteristic function of A, respectively.

A fuzzy set A on E is a mapping A : E → [0, 1]. The family of all fuzzy sets on E is
denoted by [0, 1]E . For any A, B ∈ [0, 1]E , the relation A ≤ B is defined by A(x) ≤ B(x)
for all x ∈ E. Let A ∈ 2E and a ∈ [0, 1]. The fuzzy set a ∧ A on E is defined by

(a ∧ A)(x) =

{

a, x ∈ A,

0, x 6∈ A.

For A,B ∈ [0, 1]E , a ∈ (0, 1] and A ⊆ [0, 1]E , we use the following operations and
notations:

suppA = {x ∈ E : A(x) > 0}; m(A) = inf{A(x) : x ∈ supp A};

(A ∨ B)(x) = max{A(x), B(x)}; (A ∧ B)(x) = min{A(x),B(x)};

A[a] = {x ∈ E : A(x) ≥ a}; A[a] = {A[a] : A ∈ A};

Max (A) = {A ∈ [0, 1]E : A ≤ B ∈ A implies A = B};

Low (A) = {A ∈ [0, 1]E : there exists B ∈ A such that A ≤ B}.

2.1. Definition. [9] Let E be a finite set and I ⊆ 2E . If I satisfies the following
statements:

(I1) ∅ ∈ I;
(I2) If A, B ∈ 2E , A ⊆ B and B ∈ I, then A ∈ I;
(I3) If A, B ∈ I and |B| > |A|, then there exists e ∈ B − A such that A ∪ {e} ∈ I,

then the pair (E, I) is called a (crisp) matroid.

2.2. Definition. [1] Suppose that E is a finite set and I ⊆ [0, 1]E a non-empty family
of fuzzy sets satisfying:

(i) If A, B ∈ [0, 1]E , A ≤ B, and B ∈ I, then A ∈ I;
(ii) If A, B ∈ I and |suppA| < |suppB|, then there exists C ∈ I such that

(a) A < C ≤ A ∨ B;
(b) m(C) ≤ min(m(A),m(B)).

Then the pair (E, I) is called a Goetschel-Voxman fuzzy matroid.

2.3. Definition. [11] Let A be a fuzzy set on E. The mapping |A| : N → [0, 1] defined
by for any n ∈ N by

|A|(n) =
∨

{a ∈ (0, 1] : |A[a]| ≥ n}

is called the cardinality of A, where “
∨

” denotes the supremum.
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2.4. Lemma. [8] For any fuzzy set A ∈ [0, 1]E , it holds that |A|[a] = |A[a]| for any
a ∈ (0, 1]. �

2.5. Definition. [8] Let E be a finite set and I ⊆ [0, 1]E . If I satisfies the following
statements:

(LI1) (Non-empty) χ∅ ∈ I;
(LI2) (Hereditary property) If A, B ∈ [0, 1]E , A ≤ B and B ∈ I, then A ∈ I;
(LI3) (Exchange property) If A,B ∈ I and b = |B|(n) > |A|(n) for some n ∈ N, then

there exists eb ∈ F (A,B) such that (b ∧ A[b]) ∨ eb ∈ I, where

F (A, B) = {eb ∈ E : A(e) < b ≤ B(e)},

then the pair (E, I) is called a [0, 1]-matroid.

2.6. Theorem. [8] Let E be a finite set and I ⊆ [0, 1]E . If (E, I) is a [0, 1]-matroid,
then (E, I[a]) is a matroid for each a ∈ (0, 1]. �

3. Some properties and a characterization of [0, 1]-matroids

If (E, I) is a [0, 1]-matroid, then, by Theorem 2.6, (E, I[a]) is a matroid for any a ∈
(0, 1]. Since E is a finite set, there is at most a finite number of matroids on E. Thus
there is a finite sequence 0 < a0 < a1 < · · · < ar−1 < ar = 1 such that

(i) If b, c ∈ (ai−1, ai) (1 ≤ i ≤ r), then I[b] = I[c];
(ii) If ai−1 < b < ai < c < ai+1(1 ≤ i ≤ r − 1), then I[c] ( I[b].

The sequence 0 < a0 < a1 < · · · < ar−1 < ar = 1 is called the [0, 1]-fundamental sequence
of I.

3.1. Theorem. Let E be a finite set and 0 < a0 < a1 < · · · < ar−1 < ar = 1 a
finite sequence. For any b ∈ (0, 1], suppose that (E, I[b]) is a matroid on E such that the
following statements hold:

(i) For all a, c ∈ (0, 1] with a < c, I[a] ⊇ I[c];
(ii) I[ai] ( I[ai−1], (1 ≤ i ≤ r);
(iii) For all a, c ∈ (ai−1, ai), (1 ≤ i ≤ r), I[a] = I[c].

We define

I
∗ = {A ∈ [0, 1]E : A[a] ∈ I[a] for each a ∈ (0, 1]}.

Then (E, I∗) is a [0, 1]-matroid.

Proof. We show that I
∗ is a [0, 1]-matroid as follows.

(LI1) Since I[a] is a matroid for any a ∈ (0, 1], we have ∅ ∈ I[a]. This implies χ∅ ∈ I
∗.

(LI2) If A, B ∈ [0, 1]E , A ≤ B and B ∈ I
∗, then B[a] ∈ I[a] for each a ∈ (0, 1]. Hence,

A[a] ∈ I[a], so A ∈ I
∗.

(LI3) If A,B ∈ I
∗ and b = |B|(n) > |A|(n) for some n ∈ N, then |B|[b] > |A|[b]. By

Lemma 2.4, |B[b]| > |A[b]|. Since I[b] is a matroid and A[b], B[b] ∈ I[b], there exists an
element e ∈ B[b] − A[b] such that A[b] ∪ {e} ∈ I[b]. Obviously, we have b ∧ (A[b] ∪ {e}) =
(b ∧ A[b]) ∨ eb. For each a ∈ (0, 1], we can obtain

((b ∧ A[b]) ∨ eb)[a] =

{

∅, a > b,

A[b] ∪ {e}, a ≤ b.

Since A[b] ∪ {e} ∈ I[b] ⊆ I[a] for any a ≤ b, we obtain ((b ∧ A[b]) ∨ eb)[a] ∈ I[a] for
any a ∈ (0, 1]. By the definition of I

∗, we have (b ∧ A[b]) ∨ eb ∈ I
∗. Therefore I

∗ is a
[0, 1]-matroid. �
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Next we give a characterization of [0, 1]-matroids. We recall that in [5], Novak in-
troduced the concept of a hereditary fuzzy pre-matroid and obtained several nontrivial
results. Let I ⊆ [0, 1]E be a nonempty family of fuzzy sets. The pair (E, I) is called a
hereditary fuzzy pre-matroid if it satisfies the following statements:

(i) If A, B ∈ [0, 1]E , A ≤ B and B ∈ I, then A ∈ I;
(ii) (E, I[a]) is a matroid for each a ∈ (0, 1].

3.2. Theorem. Let I ⊆ [0, 1]E be a family of fuzzy sets. Then (E, I) is a [0, 1]-matroid
if and only if (E, I) is a hereditary fuzzy pre-matroid.

Proof. Suppose that (E, I) is a [0, 1]-matroid. Then by (LI1), (LI2), and Theorem 2.6,
(E, I) is a hereditary fuzzy pre-matroid.

Conversely, suppose that (E, I) is a hereditary fuzzy pre-matroid. Obviously, (E, I)
satisfies (LI1) and (LI2). Now we show (LI3). Suppose that A, B ∈ I and b = |B|(n) >

|A|(n) for some n ∈ N. Then we obtain |B[b]| > |A[b]| by Lemma 2.4, and A[b], B[b] ∈ I[b].
Since (E, I) is a hereditary fuzzy pre-matroid, (E, I[b]) is a matroid. Thus there exists
e ∈ B[b] − A[b] such that A[b] ∪ {e} ∈ I[b]. We can obtain a fuzzy set G ∈ I such that

G[b] = A[b] ∪ {e} and b ∧ (A[b] ∪ {e}) = b ∧ G[b] ≤ G ∈ I.

By (LI2), (b ∧ A[b]) ∨ eb ∈ I. Hence, (E, I) is a [0, 1]-matroid. �

In [5], Novak presented the concept of a perfect hereditary fuzzy pre-matroid as a heredi-
tary fuzzy pre-matroid (E, I) satisfying the following statement:

(P) If A, B ∈ I, and for all a ∈ (0, 1], A[a] ⊆ B[a] or A[a] ⊇ B[a], then A ∨ B ∈ I.

3.3. Lemma. Let I ⊆ [0, 1]E be a family of fuzzy sets satisfying the hereditary property
(LI2). Then for each A ∈ [0, 1]E and a ∈ (0, 1], a ∧ A[a] ∈ I if and only if A[a] ∈ I[a].

Proof. Let A ∈ [0, 1]E and a ∈ (0, 1]. If a ∧ A[a] ∈ I, then (a ∧ A[a])[a] = A[a] ∈ I[a].
Conversely, if A[a] ∈ I[a], then there is G ∈ I such that A[a] = G[a]. Since a ∧ G[a] ≤ G,
(LI2) implies that a ∧ G[a] ∈ I, so a ∧ A[a] ∈ I. �

By [5, Lemma 1] and Lemma 3.3, we can easily obtain the following result.

3.4. Theorem. Let (E, I) be a hereditary fuzzy pre-matroid. Then (E, I) is perfect if
and only if A ∈ I whenever A ∈ [0, 1]E and A[a] ∈ I[a] for all a ∈ (0, 1]. �

It follows from this result and [10, Theorem 3.3] that the notion of perfect hereditary
fuzzy pre-matroid coincides with that of perfect [0, 1] matroid given in [10, Definition 3.1].

In [5], Novak proved that a perfect hereditary fuzzy pre-matroid is equivalent to a
Goetschel-Voxman fuzzy matroid. Thus, we obtain the following.

3.5. Corollary. Let E be a finite set and I ⊆ [0, 1]E . Then (E, I) is a perfect [0, 1]-
matroid if and only if (E, I) is a Goetschel-Voxman fuzzy matroid. �

3.6. Corollary. Let E be a finite set and I ⊆ [0, 1]E . Then (E, I) is a Goetschel-Voxman
fuzzy matroid if and only if I satisfies the statements (LI1), (LI2), (LI3) and (P). �

The following result from [1] can also be obtained from Theorem 3.1 and Lemma 3.3.

3.7. Theorem. Let (E, I) be a perfect [0, 1]-matroid. Define a family of subsets of [0, 1]E

by

I
∗ = {A ∈ [0, 1]E : A[a] ∈ I[a] for each a ∈ (0, 1]}.

Then I
∗ = I. �
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4. Bases of [0, 1]-matroids

In this section, we discuss bases of [0, 1]-matroids. We define the family of fuzzy bases
of a [0, 1]-matroid (E, I) by BI = Max (I). Each element of BI is called a fuzzy basis of
I.

In Corollary 3.5 it is shown that the Goetschel-Voxman fuzzy matroids are equiva-
lent to perfect [0, 1]-matroids. Hence, results concerning the family of fuzzy bases of a
Goetschel-Voxman fuzzy matroid apply equally to the family of fuzzy bases of a perfect
[0, 1]-matroid. In the following, we do not distinguish a Goetschel-Voxman fuzzy matroid
from a perfect [0, 1]-matroid.

As is seen in [2, Example 1.6], a perfect [0, 1]-matroid (E, I) does not necessarily have
a fuzzy basis. In [2, Theorem 1.10], Goetschel and Voxman prove that when a matroid
(E, I) is closed and perfect, it has a family of fuzzy bases. It is natural to ask if these
families of fuzzy bases can be used to characterize closed perfect [0, 1]-matroids. This
problem is solved in this section by showing that there exists a one-to-one correspondence
between the closed perfect [0, 1]-matroids on E and their families of fuzzy bases.

The notion of a closed Goetschel-Voxman fuzzy matroid can be generalized to that of
a [0, 1]-matroid as follows.

4.1. Definition. [10, Definition 3.7] Let (E, I) be a [0, 1]-matroid with [0, 1]-fundamental
sequence 0 < a0 < a1 < · · · < ar−1 < ar = 1. If I[a] = I[ai] for all a ∈ (ai−1, ai], (1 ≤
i ≤ r), then (E, I) is called a closed [0, 1]-matroid.

The next lemma comes from [2].

4.2. Lemma. [2] Let (E, I) be a perfect [0, 1]-matroid. Then (E, I) is closed if and only
if for each A ∈ I, there exists a fuzzy basis β ∈ I such that A ≤ β. �

4.3. Theorem. Let (E, I) be a [0, 1]-matroid. Then the following statements are equiv-
alent:

(i) (E, I) is closed and perfect;
(ii) If A ∈ [0, 1]E and for all a ∈ (0, 1], b ∧ A[a] ∈ I for all b ∈ (0, a), then A ∈ I.

Proof. (i) =⇒ (ii) For A ∈ [0, 1]E and any a ∈ (0, 1], suppose b∧A[a] ∈ I for all b ∈ (0, a).
Take a ∈ (0, 1]. Since (E, I) is closed, applying condition (∗) of [10, Theorem 3.8] to
A[a] ∈ 2E gives a ∧ A[a] ∈ I. Hence, A ∈ I since (E, I) is perfect. This establishes (ii).

(ii) =⇒ (i) Take A ∈ [0, 1]E and suppose that a ∧ A[a] ∈ I for all a ∈ (0, 1]. Then for
all b ∈ (0, a) we have b ∧ A[a] ∈ I by (LI2), so A ∈ I by (ii). Therefore, (E, I) is perfect.

To prove (E, I) is closed, take A ∈ 2E and arbitrary a0 ∈ (0, 1], and suppose that
b ∧ A ∈ I for all b ∈ (0, a0). By [10, Theorem 3.8], it suffices to show that a0 ∧ A ∈ I.
However a0 ∧ A ∈ [0, 1]E , and for all a ∈ (0, 1], b ∈ (0, a), we have b ∧ (a0 ∧ A)[a] ∈ I.
Indeed if a ≤ a0 we have b∧ (a0 ∧A)[a] = b∧A ∈ I by hypothesis since b ∈ (0, a0), while
for a0 < a we have b ∧ (a0 ∧ A)[a] = χ∅ ∈ I by (LI1). Hence (ii) gives a0 ∧ A ∈ I, as
required. �

4.4. Theorem. Let (E, I) be a closed perfect [0, 1]-matroid and BI the family of fuzzy
bases. Then

(B1) For each a ∈ (0, 1], Max (BI [a]) = BI[a], where BI[a] denotes the family of bases
of (E, I[a]);

(B2) Let A ∈ [0, 1]E . Suppose that there exists βa ∈ BI such that a ∧ A[a] ≤ βa for
each a ∈ (0, 1]. Then there exists a fuzzy set β ∈ BI such that A ≤ β.
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Proof. (B1) By (LI1) and Lemma 4.2, we know that BI is non-empty.

For each a ∈ (0, 1], we first show that Max (BI[a]) ⊆ BI[a]. Let B ∈ Max (BI [a]).
Obviously, B ∈ BI [a]. Then there exists β ∈ BI such that B = β[a]. This implies
B ∈ I[a]. Suppose that B 6∈ BI[a]. Then there is B′ ∈ BI[a] such that B ( B′. Hence,
a ∧ B < a ∧ B′ ∈ I. By Lemma 4.2, there exists a fuzzy basis β′ of (E, I) such that
a ∧ B′ ≤ β′. Thus, B ( B′ = β′

[a] ∈ I[a], which contradicts B ∈ Max (BI [a]). Therefore

Max (BI [a]) ⊆ BI[a].

Conversely, let B ∈ BI[a]. Then there exists β′ ∈ I such that B = β′
[a]. Hence,

a ∧ β′
[a] ∈ I. By Lemma 4.2, there is β ∈ BI such that a ∧ β′

[a] ≤ β. This implies

B = (a ∧ β
′
[a])[a] ⊆ β[a] ∈ I[a].

By B ∈ BI[a], B = β[a], which implies B ∈ BI [a]. By B ∈ BI[a] and BI [a] ⊆ I[a],
B ∈ Max (BI [a]). Hence, BI[a] ⊆ Max (BI[a]).

(B2) Let A ∈ [0, 1]E . Suppose that there exists βa ∈ BI such that a ∧ A[a] ≤ βa for
each a ∈ (0, 1]. By the hereditary property (LI2) of I and βa ∈ I, a ∧ A[a] ∈ I. Since
(E, I) is perfect, we have A ∈ I. By Lemma 4.2, there exists a basis β ∈ BI such that
A ≤ β. �

4.5. Remark. In the equality in Theorem 4.4 (B1), Max (BI [a]) cannot be replaced by
BI [a]. This can be seen from the following example.

4.6. Example. Let E = {a, b, c} and

I[0.5] = {∅, {a}, {b}, {c}, {a, b}, {a, c}}, I[1] = {∅, {a}, {c}, {a, c}}.

Then (E, I[0.5]) and (E, I[1]) are matroids and I[1] ( I[0.5]. Let

I[r] =

{

I[0.5], r ∈ (0, 0.5],

I[1], r ∈ (0.5, 1],
.

and

I = {A ∈ [0, 1]E : A[r] ∈ I[r] for each r ∈ (0, 1]}.

By Theorem 3.1, we know that (E, I) is a [0, 1]-matroid. Obviously, (E, I) is perfect and
closed. By the definition of fuzzy base of a [0, 1]-matroid, we can deduce that the family
of fuzzy bases of (E, I) is composed of the following two fuzzy sets on E.

A(x) =











1, x = a,

0.5, x = b,

0, x = c,

, B(x) =











1, x = a,

0, x = b,

1, x = c.

However, BI [1] = {{a}, {a, c}} ) {{a, c}} = BI[1], so BI [1] 6= BI[1].

4.7. Theorem. Let E be a finite set and B be a non-empty family of fuzzy sets on E.
If B satisfies the following statements:

(B1) For each a ∈ (0, 1], Max (B[a]) is the family of bases for some matroid on E;
(B2) Let A ∈ [0, 1]E . For each a ∈ (0, 1], if a ∧ A[a] ≤ βa, where βa ∈ B, then there

exists a fuzzy set β ∈ B such that A ≤ β.

Then IB = Low B is a closed perfect [0, 1]-matroid and BIB
= B.

Proof. (LI1) Since B is non-empty, obviously, we have χ∅ ∈ IB.

(LI2) Let A, B ∈ [0, 1]E and A ≤ B. If B ∈ IB , then there exists β ∈ B such that
B ≤ β. Hence, A ≤ β, so A ∈ IB.
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(LI3) Suppose that A, B ∈ IB and b = |B|(n) > |A|(n) for some n ∈ N. Now we
show that there exists an element eb ∈ F (A, B) such that (b ∧ A[b]) ∨ eb ∈ IB, where
F (A,B) = {eb ∈ E : A(e) < b ≤ B(e)}.

If b = |B|(n) > |A|(n) for some n ∈ N, then |B|[b] > |A|[b]. By Lemma 2.4, we have
|B[b]| > |A[b]|. By A, B ∈ IB , there exist βA, βB ∈ B such that A ≤ βA and B ≤ βB .
It follows that A[b] ⊆ (βA)[b] and B[b] ⊆ (βB)[b]. Let I[a] = Low (Max (B[a])). By (B1),
I[a] is a matroid for all a ∈ (0, 1]. By A[b], B[b] ∈ I[b] and |B[b]| > |A[b]|, there exists an
element e ∈ B[b] − A[b] such that A[b] ∪ {e} ∈ I[b]. Hence, we obtain B′ ∈ Max (B[b])
satisfying A[b] ∪ {e} ⊆ B′. By B′ ∈ Max (B[b]), there is β ∈ B such that B′ = β[b]. Thus

(b ∧ A[b]) ∨ eb = b ∧ (A[b] ∪ {e}) ≤ b ∧ B
′ = b ∧ β[b] ≤ β ∈ IB.

By the hereditary property of IB, (b∧A[b])∨eb ∈ IB. Therefore, (E, IB) is a [0, 1]-matroid.

Let A ∈ [0, 1]E . Suppose that a ∧ A[a] ∈ IB for each a ∈ (0, 1]. Then we can obtain a
fuzzy set βa satisfying a ∧ A[a] ≤ βa. By (B2), there exists a fuzzy set β ∈ B such that
A ≤ β. Hence, A ∈ IB, so (E, IB) is perfect. By IB = Low (B) and Lemma 4.2, (E, IB)
is closed. Thus (E, IB) is a closed perfect [0, 1]-matroid and

BIB
= Max (IB) = Max (Low B) = B. �

4.8. Theorem. Let I be a closed perfect [0, 1]-matroid. We have IBI
= I.

Proof. The proof is trivial and it is omitted. �

4.9. Theorem. Let I be the set of all closed perfect [0, 1]-matroids on E and B ⊆

2([0,1]E) the set of all members satisfying the statements (B1) and (B2). Then there is a
one-to-one correspondence between I and B.

Proof. By Theorem 4.4, we can define a mapping f : I → B by

f(I) = Max I.

for any I ∈ I . On the one hand, suppose that I1, I2 ∈ I with I1 6= I2, B1 = Max I1

and B2 = Max I2. By Theorem 4.4 and Theorem 4.8, we have

I1 = IBI1
= IB1

6= IB2
= IBI2

= I2.

Hence, B1 6= B2, so f is injective. On the other hand, for any B ∈ B, by Theorem 4.7,
there is a closed perfect [0, 1]-matroid IB ∈ I such that B = BIB

= f(IB). Thus f is
surjective. Therefore f is a bijection. �

4.10. Remark. In crisp matroid theory, all bases of a matroid have the same cardinality.
However, this is not true for a closed and perfect [0, 1]-matroid, as can be seen from the
following example.

4.11. Example. Let (E, I) be the closed and perfect [0, 1]-matroid of Example 4.6 and
A, B its two fuzzy bases. We can obtain the cardinalities of A and B as follows:

|A|(n) =











1, n = 0, 1,

0.5, n = 2,

0, n ≥ 3,

, |B|(n) =

{

1, n = 0, 1, 2,

0, n ≥ 3.

Obviously |A| 6= |B|.

4.12. Remark. One can discuss the cardinalities of fuzzy bases of closed perfect [0, 1]-
matroid in the same way as for those of Goetschel-Voxman fuzzy matroid [2]. The only
difference is that the cardinality of a fuzzy set is a fuzzy subset of N.
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