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Abstract

In this paper some direct local and global approximation results are
obtained for the modified Gamma operators defined by A. Izgi and
Büyükyazıcı (Approximation and rate of approximation on unbounded
intervals, Kastamonu Edu. J. Okt. 11 (2), 451–460, 2003 (in Turk-
ish)), and independently by H. Karsli (Rate of convergence of a new
Gamma Type Operator for functions with derivatives of bounded vari-
ation, Math. Comput. Modelling 45 (5-6), 617–624, 2007). Further-
more, a Voronoskaya type theorem is given for these operators.
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1. Introduction

Let Xloc[0,∞) be the class of all complex-valued and locally bounded functions on
[0,∞). For f ∈ Xloc[0,∞), it is well-known that the classical Gamma operators Gn (see
Lupas and Müller [12]) applied to f are defined as

(1.1) Gn(f ; x) =

∞
∫

0

gn(x, u)f
(n

u

)

du,

where gn(x, u) = xn+1

n!
e−xuun. Several researchers have studied approximation properties

of the operators (1.1) and its modifications (see e.g. [18, 2, 17, 16] etc.) in some function
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spaces. One of the important modifications of the Gamma operators is due to Mazhar
[13], namely

Fn(f ; x) :=

∞
∫

0

gn(x, u) du

∞
∫

0

gn−1(u, t)f(t) dt

=
(2n)!xn+1

n!(n − 1)!

∞
∫

0

tn−1

(x + t)2n+1
f(t) dt, n > 1, x > 0,

where gn(x, u) is the same function that was used by Lupas and Müller [12]. Recently, by
using the techniques due to Mazhar, Izgi and Buyukyazici [9], Karsli [10] independently
considered the following Gamma type linear and positive operators:

(1.2)

Ln(f ; x) :=

∞
∫

0

gn+2(x, u) du

∞
∫

0

gn(u, t)f(t) dt

=
(2n + 3)!xn+3

n!(n + 2)!

∞
∫

0

tn

(x + t)2n+4
f(t) dt, x > 0,

and obtained some approximation results. We also mention a very recent paper devoted to
the approximation properties of these operators, namely [11]. A bi-dimensional extension
of the operators (1.2) can be found in [8].

In addition, if f is right-side continuous at x = 0, we define

Ln(f ; 0) := f(0) (n = 1, 2, . . .).

This paper is devoted to a study aimed at

(1) Obtaining local approximation results by using the first-second modulus of con-
tinuity, and obtaining pointwise convergence results,

(2) Giving global approximation results,
(3) Obtaining a Voronovskaya type theorem for the Gamma type operators defined

by (1.2).

Before leaving the introduction section, it is useful to mention that there are some im-
portant studies devoted to local and global approximation results for different operators
by Ditzian [4], Finta [7], Felten [6], Becker [1], Swiderski [15], and Duman and Özarslan
[5, 14].

2. Lemmas

We now present certain results which will be used in the proofs of our main theorems.
In [10], the author obtained the following results:

2.1. Lemma. For any p = 0, 1, 2, . . . , n + 2, we have

(i) Ln(tp; x) =
(n + p)!(n + 2 − p)!

n!(n + 2)!
xp,

(ii) Ln((t − x); x) =
−1

n + 2
x,

(iii) Ln((t − x)2; x) =
2

n + 2
x2,

(iv) Ln((t − x)3; x) =
6x3

n(n + 2)
,

(v) Ln((t − x)4; x) =
12(n + 4)

(n − 1)n(n + 2)
x4, (n > 1),
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(vi) Ln((t − x)6; x) =
120(48 + 23n + n2)

(n − 3)(n − 2)(n − 1)n(n + 2)
x4, (n > 3). �

2.2. Lemma. For all x ∈ (0,∞) and n sufficiently large, we have

λn(x, t) =

t
∫

0

Kn(x, u)du ≤ 1

(x − t)2
2

n + 2
x2, 0 ≤ t < x,

and

1 − λn(x, z) =

∞
∫

z

Kn(x, u) du ≤ 1

(z − x)2
2

n + 2
x2, x < z < ∞,

where

Kn(x, u) =

{

(2n+3)!
n!(n+2)!

xn+3un

(x+u)2n+4 0 < u < ∞,

0 u = 0.
�

3. Local results

In this section we obtain some pointwise convergence results, and some local approxi-
mation results, by using the first and second modulus of continuity. We start with some
basic definitions and properties, which will be used in the rest of this paper.

Let B[0, +∞), CB [0, +∞) denote the space of all real valued bounded and continuous
bounded functions on [0,∞), respectively, endowed with the usual supremum norm. Let
us recall that the first modulus of continuity of f , denoted by ω(f, δ), is defined to be

ω(f, δ) = sup
|y−x|≤δ

x,y∈[0,+∞)

|f(y) − f(x)| ,

and satisfies the following property:

(3.1) |f(t) − f(x)| ≤
[

1 +
|t − x|

δ

]

ω(f, δ).

By C2
B [0,∞) we denote the space of all functions f ∈ CB [0,∞) such that f ′, f ′′ ∈

CB(0,∞). Then, the classical Peetre’s K-functional and the second modulus of smooth-
ness of a function f ∈ CB [0,∞) are defined respectively by

K(f, δ) := inf
g∈C2

B
[0,∞)

{

‖f − g‖ + δ
∥

∥g′′
∥

∥

}

and

ω2(f, δ) := sup
0<h≤δ, x∈[0,∞)

|f(x + 2h) − 2f(x + h) + f(x)| ,

where δ > 0. Then, by [3, Theorem 2.4], there exists a constant C > 0 such that

K(f, δ) ≤ Cω2

(

f,
√

δ
)

.

3.1. Theorem. Take f ∈ B[0,∞) satisfying the growth condition |f(t)| ≤ M for some
absolute constant M . If f is continuous at x0 ∈ (0,∞), and right-side continuous at
x0 = 0, then we have

lim
(n,x)→(∞,x0)

Ln(f ; x) = f(x0).
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Proof. Assume that

x0 6= 0, and 0 < x0 − x < δ.

We take δǫ(0, x0) such that |t − x0| < δ implies |f(t) − f(x0)| < ε/2. Hence we have
from Lemma 2.1 (i) that

|Ln(f ; x) − f(x0)| =

∣

∣

∣

∣

∣

∣









x0−δ
∫

0

+

x0+δ
∫

x0−δ

+

∞
∫

x0+δ



 Kn(x, t) [f(t) − f(x0)] dt





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

x0−δ
∫

0

Kn(x, t) [f(t) − f(x0)] dt

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

x0+δ
∫

x0−δ

Kn(x, t) [f(t) − f(x0)] dt

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∞
∫

x0+δ

Kn(x, t) [f(t) − f(x0)] dt

∣

∣

∣

∣

∣

∣

=: |I1(n, x)| + |I2(n, x)| + |I3(n, x)| ,
say. It is easy to see that

|I2(n, x)| ≤ ε/2.

Now we consider the term |I1(n, x)|. Since |f(t)| ≤ M one can write
∣

∣

∣

∣

∣

∣

x0−δ
∫

0

Kn(x, t) [f(t) − f(x0)] dt

∣

∣

∣

∣

∣

∣

≤ 2M

x0−δ
∫

0

Kn(x, t) dt.

From Lemma 2.2 we know that
x0−δ
∫

0

Kn(x, t)dt ≤ 1

(x − x0 + δ)2
2

n + 2
x2,

since x0 − δ < x. So we have

|I1(n, x)| ≤ 2M
1

(x − x0 + δ)2
2

n + 2
x2,

which tends to zero as (n, x) → (∞, x0),

As in the proof of |I1(n, x)|, one has for |I3(n, x)|,

|I3(n, x)| ≤

∣

∣

∣

∣

∣

∣

∞
∫

x0+δ

Kn(x, t) [f(t) − f(x0)] dt

∣

∣

∣

∣

∣

∣

≤ 2M
1

(x0 + δ − x)2
2

n + 2
x2,

which also tends to zero as (n, x) → (∞, x0). Since ε > 0 is arbitrary, the proof of the
theorem is complete in this case.

If x0 = 0, then the proof of the theorem is similar, so we omit it. �

3.2. Corollary. If f ∈ CB [0,∞), then

lim
n→∞

Ln(f ; x) = f(x),

and the convergence is uniform on every compact subsets of [0,∞). �

3.3. Theorem. Let the sequence of operators {Ln(f ; x)}n∈N
be defined by (1.2). For all

f ∈ CB[0,∞) we have

|Ln(f ; x) − f(x)| ≤ 2ω

(

f,

(
√

2

n + 2

)

x

)

.
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Proof. Taking into account the fact that Ln(1; x) = 1, using the linearity of the operators
(1.2) and in view of (3.1), we get for all f ∈ CB[0,∞) that

|Ln(f ; x) − f(x)| ≤ (2n + 3)!xn+3

n!(n + 2)!

∞
∫

0

tn

(x + t)2n+4
|f(t) − f(x)| dt

≤
[

1 +
(2n + 3)!xn+3

δnn!(n + 2)!

∞
∫

0

tn

(x + t)2n+4
|t − x| dt

]

ω(f, δn).

Applying the Cauchy-Schwarz inequality to the right-hand side of the last inequality, we
can write

|Ln(f ; x) − f(x)| ≤
[

1+
1

δn

{

(2n + 3)!xn+3

n!(n + 2)!

∞
∫

0

tn

(x + t)2n+4
(t − x)2 dt

} 1
2
]

ω(f, δn).

Finally, considering Lemma 2.1 (iii), we conclude that

|Ln(f ; x) − f(x)| ≤
[

1 +
1

δn

(

2

n + 2
x2

) 1
2

]

ω(f, δn).

Hence, choosing

δn =

(
√

2

n + 2

)

x

we get the desired result. �

Using the first and the second modulus of continuity we have the following local
approximation result.

3.4. Theorem. For any f ∈ CB [0,∞) and for every x ∈ [0,∞), n ∈ N, we have

|Ln(f ; x) − f(x)| ≤ Cω2

(

f,

√

2

n + 2
x2 +

( x

n + 2

)2
)

+ ω

(

f,
x

n + 2

)

for some constant C > 0.

Proof. Using the operator Lnf given by (1.2), define a new operator Tn : CB[0,∞) →
CB[0,∞) as follows:

(3.2) Tn(f ; x) = Ln(f ; x) − f
(

x − x

n + 2

)

+ f(x).

Then, by Lemma 2.1 (ii) we get

(3.3) Tn(t − x; x) = 0.

Let g ∈ C2
B[0,∞), the space of all functions having a continuous second derivative on

(0,∞), and let x ∈ (0,∞). By the Taylor formula we may write:

g(t) − g(x) = (t − x)g′(x) +

t
∫

x

(t − u)g′′(u) du, t ∈ (0,∞).
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Taking into account (3.3) and using (3.2), we get

|Tn(g; x) − g(x)| =
∣

∣Tn (g(t) − g(x); x)
∣

∣

=

∣

∣

∣

∣

g′(x)Tn((t − x); x) + Tn

(

t
∫

x

(t − u)g′′(u) du; x

)∣

∣

∣

∣

=

∣

∣

∣

∣

Tn

(

t
∫

x

(t − u)g′′(u) du; x

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

Ln

(

t
∫

x

(t − u)g′′(u) du; x

)

−
x− x

n+2
∫

x

(

x − x

n + 2
− u

)

g′′(u) du

∣

∣

∣

∣

∣

∣

∣

.

Since

∣

∣

∣

∣

Ln

(

t
∫

x

(t − u)g′′(u) du; x

)∣

∣

∣

∣

≤ ‖g′′‖
2

Ln

(

(t − x)2; x
)

and
∣

∣

∣

∣

∣

∣

∣

x− x
n+2

∫

x

(x − x

n + 2
− u)g′′(u) du

∣

∣

∣

∣

∣

∣

∣

≤ ‖g′′‖
2

(

x

n + 2

)2

we get

|Tn(g; x) − g(x)| ≤ ‖g′′‖
2

Ln

(

(t − x)2; x
)

+
‖g′′‖

2

(

x

n + 2

)2

.

Hence, Lemma 2.1 (iii) implies that

(3.4) |Tn(g; x) − g(x)| ≤ ‖g′′‖
2

(

2

n + 2
x2 +

(

x

n + 2

)2 )

.

Then, for any f ∈ CB [0,∞), it follows from (3.4) that

|Ln(f ; x) − f(x)| ≤ |Tn(f − g; x) − (f − g)(x)|

+ |Tn(g; x) − g(x)|+
∣

∣

∣
f
(

x − x

n + 2

)

− f(x)
∣

∣

∣

≤ 4 ‖f − g‖ + 4
( 2

n + 2
x2 +

( x

n + 2

)2) ∥

∥g′′
∥

∥

+
∣

∣

∣
f
(

x − x

n + 2

)

− f(x)
∣

∣

∣
.

Finally, we conclude that

|Ln(f ; x) − f(x)| ≤ 4
{

‖f − g‖+
( 2

n + 2
x2 +

( x

n + 2

)2)

‖g′′‖
}

+ ω
(

f,
x

n + 2

)

≤ 4K
(

f,
2

n + 2
x2 +

( x

n + 2

)2)

+ ω
(

f,
x

n + 2

)

≤ Cω2

(

f,

√

2

n + 2
x2 +

( x

n + 2

)2)

+ ω
(

f,
x

n + 2

)

,

which gives the result. �
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4. Global results

In this section, we obtain various global results by using certain Lipschitz classes. We
start with some basic definitions. Let p ∈ N0 := {0, 1, . . .} and define the weight function
µp as follows:

(4.1) µ0(x) := 1 and µp(x) :=
1

1 + xp
for x ≥ 0 and p ∈ N0\ {0} .

Then, we consider the following (weighted) subspace Cp[0,∞) of C[0,∞) generated by
µp:

Cp[0,∞) := {f ∈ C[0,∞) : µpf is uniformly continuous and bounded on [0,∞)}
endowed with the norm

‖f‖p := sup
x∈[0,∞)

µp(x) |f(x)| for f ∈ Cp[0,∞).

We also consider the following Lipschitz classes:

∆2
hf(x) := f(x + 2h) − 2f(x + h) + f(x),

ω2
p(f, δ) := sup

h∈(0,δ]

∥

∥∆2
hf

∥

∥

p
,

ω1
p(f, δ) := sup {µp(x) |f(t) − f(x)| : |t − x| ≤ δ and t, x ≥ 0}
Lip2

p α :=
{

f ∈ Cp[0,∞) : ω2
p(f ; δ) = O(δα) as δ → 0+}

,

where h > 0 and 0 < α ≤ 2. From the above it follows that

(4.2)

lim
δ→0+

ω1
p(f, δ) = 0,

lim
δ→0+

ω2
p(f, δ) = 0

for every Cp[0,∞).

Now we proceed with some auxiliary lemmas which will help to prove our main results.

4.1. Lemma. For the operators Ln and for fixed p, (p = 0, 1, 2, . . . , n + 2) there exists a
constant Mp ≥ 0 such that

(4.3) µp(x)Ln

(

1

µp
; x

)

≤ Mp.

Furthermore, for all f ∈ Cp[0,∞) we have

(4.4) ‖Ln(f)‖p ≤ Mp ‖f‖p ,

which guarantees that Ln maps Cp[0,∞) into Cp[0,∞).

Proof. For p = 0, (4.3) follows immediately. Now assume that n + 2 ≥ p ≥ 1. By
Lemma 2.1 (i), we can find a constant Mp such that

µp(x)Ln

( 1

µp
; x

)

= µp(x) {Ln(e0; x) + Ln(ep; x)}

= µp(x)

{

1 +
(n + p)!(n + 2 − p)!

n!(n + 2)!
xp

}

≤ Mpµp(x) {xp + 1} = Mp,

where

Mp = max

{

sup
n

(n + p)!(n + 2 − p)!

n!(n + 2)!
, 1

}

.
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On the other hand, for all f ∈ Cp[0,∞) and every x ∈ (0,∞), it follows that

µp(x) |Ln(f ; x)| ≤ µp(x)
(2n + 3)!xn+3

n!(n + 2)!

∞
∫

0

tn

(x + t)2n+4
|f(t)| dt

= µp(x)
(2n + 3)!xn+3

n!(n + 2)!

∞
∫

0

tn

(x + t)2n+4
|f(t)| µp(t)

µp(t)
dt

≤ ‖f‖p µp(x)Ln

(

1

µp
; x

)

≤ Mp ‖f‖p .

Now taking the supremum over x ∈ (0,∞), and taking into account Ln(f ; 0) = f(0), we
get (4.4). �

4.2. Lemma. For the operators Ln, and for fixed p, (p = 0, 1, 2, . . . , n + 2), there exists
a constant Cp ≥ 0 such that

µp(x)Ln

(

(t − x)2

µp(t)
; x

)

≤ Cp
1

n + 2
x2.

Proof. For p = 0 the result follows from Lemma 2.1 (i). Now let p = 1. Then, using
Lemma 2.1 (iii)-(iv), we can write that

µ1(x)Ln

(

(t − x)2

µ1(t)
; x

)

= µ1(x)
{

(1 + x)Ln

(

(t − x)2; x
)

+ Ln((t − x)3; x)
}

≤ µ1(x)

{

(1 + x)
2

n + 2
x2 +

6x3

n(n + 2)

}

≤ Cp

[

1

n + 2
x2

]

.

Finally, assume that p ≥ 2. Then, we get from Lemma 2.1 that

Ln

(

(t − x)2

µp
; x

)

= Ln(tp+2; x) − 2xLn(tp+1; x) + x2Ln(tp; x) + Ln

(

(t − x)2; x
)

=
(n + p + 2)!(n − p)!

n!(n + 2)!
xp+2 − 2

(n + p + 1)!(n + 1 − p)!

n!(n + 2)!
xp+2

+
(n + p)!(n + 2 − p)!

n!(n + 2)!
xp+2 +

2

n + 2
x2

=
1

n + 2
x2{2 + [(n + p + 2)(n + p + 1) − 2(n + p + 1)(n + 1 − p)

+(n + 2 − p)(n + 1 − p) ]
(n + p)!(n − p)!

n!(n + 1)!
xp

}

=
1

n + 2
x2

{

2 + (2n + 4p2 + 2)
(n + p)!(n − p)!

2n!(n + 1)!
xp

}

.

Since the term (2n + 4p2 + 2)
(n + p)!(n − p)!

2n!(n + 1)!
is bounded, there exists a constant Cp ≥ 0

such that

Ln

(

(t − x)2

µp
; x

)

≤ Cp
1

n + 2
x2 [1 + xp] ,

whence the result. �
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Now, for p ∈ N, consider the space

C2
p [0,∞) :=

{

f ∈ Cp[0,∞) : f ′′ ∈ Cp(0,∞)
}

.

Then we have the following result.

4.3. Lemma. For the operators Ln, if Tn(f ; x) := Ln(f ; x)− f
(

x − x
n+2

)

+ f(x), then

there exists a positive constant Cp such that, for all x ∈ (0,∞) and n ∈ N, we have

µp(x) |Tn (g; x) − g(x)| ≤ Cp

∥

∥g′′
∥

∥

p

1

n + 2
x2.

Proof. By the Taylor formula one can write

g(t) − g(x) = (t − x)g′(x) +

t
∫

x

(t − u)g′′(u)du, t ∈ (0,∞).

Then,

|Tn(g; x) − g(x)| = |Tn (g(t) − g(x); x)|

=

∣

∣

∣

∣

Tn

(

t
∫

x

(t − u)g′′(u) du; x

)∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Ln

(

t
∫

x

(t − u)g′′(u) du; x

)

−
x− x

n+2
∫

x

(x − x

n + 2
− u)g′′(u) du

∣

∣

∣

∣

∣

.

Since

∣

∣

∣

∣

t
∫

x

(t − u)g′′(u)du

∣

∣

∣

∣

≤
‖g′′‖p (t − x)2

2

(

1

µp(x)
+

1

µp(t)

)

and
∣

∣

∣

∣

∣

∣

∣

x− x
n+2

∫

x

(x − x

n + 2
− u)g′′(u) du

∣

∣

∣

∣

∣

∣

∣

≤
‖g′′‖p

2µp(x)

(

x

n + 2

)2

,

it follows from Lemma 4.2 that

µp(x) |Tn(g; x) − g(x)| ≤
‖g′′‖p

2

{

Ln((t − x)2; x) + µp(x)Ln

(

(t − x)2

µp(t)
; x

)}

+
‖g′′‖p

2

(

x

n + 2

)2

≤ Cp

∥

∥g′′
∥

∥

p

1

n + 2
x2.

The lemma is proved. �

The next theorem is the main result of this section.
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4.4. Theorem. For every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and x ∈ (0,∞), there exists an
absolute constant Np > 0 such that

µp(x) |Ln (f ; x) − f(x)| ≤ Npω2
p

(

f, x

√

1

n + 2

)

+ ω1
p

(

f ;
x

n + 2

)

,

where µp is the same as in (4.1).

In particular, if f ∈ Lip2
p α for some α ∈ (0, 2], then

µp(x) |Ln (f ; x) − f(x)| ≤ Np

(

1

n + 2
x2

) α
2

+ ω1
p

(

f ;
x

n + 2

)

holds.

Proof. Let p ∈ N0, f ∈ Cp[0,∞) and x ∈ [0,∞) be fixed. We denote the Steklov means
of f by fh, h > 0. Here we recall that

fh(y) :=
4

h2

h/2
∫

0

h/2
∫

0

{2f(y + s + t) − f(y + 2(s + t))} ds dt,

for h > 0 and y ≥ 0. It is obvious that

f(y) − fh(y) =
4

h2

h/2
∫

0

h/2
∫

0

∆2
s+tf(y) ds dt,

which guarantees

(4.5) ‖f − fh‖p ≤ ω2
p(f ; h).

Furthermore, we have

f ′′
h (y) =

1

h2

(

8∆2
h/2f(y) − ∆2

hf(y)
)

,

which implies

(4.6)
∥

∥f ′′
h

∥

∥

p
≤ 9

h2
ω2

p(f ; h).

Combining (4.5) with (4.6) we conclude that the Steklov means fh corresponding to
f ∈ Cp[0,∞) belongs to C2

p [0,∞).

Passing to the proof of our main result we see that for any n ∈ N, the following
inequality holds:

|Ln(f ; x) − f(x)| ≤ Tn (|f(t) − fh(t)| ; x) + |f(x) − fh(x)|

+ |Tn (fh; x) − fh(x)|+
∣

∣

∣
f
(

x − x

n + 2

)

− f(x)
∣

∣

∣
.

Since fh ∈ C2
p [0,∞) by the above, it follows from Lemma 4.1 and Lemma 4.3 that

µp(x) |Ln(f ; x) − f(x)| ≤ (Mp + 1) ‖f − fh‖p + Cp

∥

∥f ′′
h

∥

∥

p

1

n + 2
x2

+ µp(x)
∣

∣

∣
f
(

x − x

n + 2

)

− f(x)
∣

∣

∣
.

By (4.5) and (4.6), the last inequality yields that

µp(x) |Ln(f ; x) − f(x)| ≤ Npω2
p(f ; h)

{

1 +
1

h2

( 1

n + 2
x2

)}

+ ω1
p

(

f ;
x

n + 2

)

.

Thus, choosing h =

√

1

n + 2
x2, the first part of the proof is completed. The remainder

of the proof can be easily obtained from the definition of the space Lip2
p α. �
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4.5. Theorem. For every p ∈ N0, n ∈ N, f ∈ Cp[0,∞) and x ∈ (0,∞), there exists an
absolute constant Tp > 0 such that

µp(x) |Ln (f ; x) − f(x)| ≤
∥

∥f ′
∥

∥

p

(

√

2x2

n + 2

(

1 +
√

Tp

)

)

,

where µp is the same as in (4.1).

Proof. We have

f(t) − f(x) =

t
∫

x

f ′(u) du,

and hence

|f(t) − f(x)| ≤
∥

∥f ′
∥

∥

p
|t − x|

(

1

µp(t)
+

1

µp(x)

)

.

So one has

µp(x) |Ln (f ; x) − f(x)| ≤
∥

∥f ′
∥

∥

p

(

Ln (|t − x| ; x) + µp(x)Ln

(

|t − x|
µp(t)

; x

))

.

It is easy to see that

Ln (|t − x| ; x) ≤
√

Ln (1; x)Ln

(

(t − x)2 ; x
)

≤
√

2x2

n + 2

and

µp(x)Ln

(

|t − x|
µp(t)

; x

)

≤
√

µ2
p(x)Ln

(

(t − x)2 ; x
)

Ln

( 1

µ2
p(t)

; x
)

.

Note that µ2
p(t) ≤ µ2p(t) and µ−2

p (t) ≤ µ−1
2p (t) + 2µ−1

p (t).

Therefore

µ2
p(x)Ln

( 1

µ2
p(t)

; x
)

≤ µ2p(x)
[

Ln

( 1

µ2p(t)
; x

)

+ 2Ln

( 1

µp(t)
; x

)]

≤ µ2p(x)Ln

( 1

µ2p(t)
; x

)

+ 2µp(x)Ln

( 1

µp(t)
; x

)

.

By Lemma 4.1 we get the desired result, namely

µ2
p(x)Ln

( 1

µ2
p(t)

; x
)

≤ Tp,

where Tp is a positive constant depending on p. Thus one has

µp(x) |Ln (f ; x) − f(x)| ≤
∥

∥f ′
∥

∥

p

(

√

2x2

n + 2

(

1 +
√

Tp

)

)

.

�

5. A Voronovskaya type theorem

Now, we shall give a Voronovskaya type theorem for the operators Ln. From Theo-
rem 4.4, Theorem 4.5 and using (4.2) we obtain

5.1. Corollary. Let g ∈ Cp[0,∞). Then

lim
n→∞

Ln(g; x) = g(x),

the convergence being uniform on every compact subset of [0,∞). �
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5.2. Theorem. Let p ∈ N0, n ∈ N, f, f ′ ∈ Cp[0,∞). We assume that f ′′(x) exists at a
fixed point x ∈ (0,∞). Then

lim
n→∞

n [Ln (f ; x) − f(x)] = −xf ′(x) + 2x2f
′′

(x).

holds.

Proof. By Taylor’s formula we have

(5.1) f (t) = f(x) + (t − x) f ′(x) + (t − x)2
[

f
′′

(x)

2
+ h (t − x)

]

,

where h( · ) ∈ Cp[0,∞) with h(y) converging to zero with y. If we use (5.1) in the
representation (1.2), we can write the following equality:

[Ln (f ; x) − f(x)] = f ′(x)Ln ((t − x) ; x) +
f

′′

(x)

2
Ln

(

(t − x)2 ; x
)

+ Ln

(

(t − x)2 h (t − x) ; x
)

.

It is known from Lemma 2.1 that

Ln ((t − x) ; x) =
−x

n + 2
, Ln

(

(t − x)2 ; x
)

=
2x2

n + 2

and

Ln

(

(t − x)2 h (t − x) ; x
)

≤
√

Ln

(

(t − x)4 ; x
)

Ln

(

h2 (t − x) ; x
)

.

One has from Lemma 2.1 (v) that

Ln

(

(t − x)4 ; x
)

≤ A4
x4

n2
, (n → ∞, x ∈ (0,∞)),

where A4 is a constant. Hence we have

n [Ln (f ; x) − f(x)] ≤ −xf ′(x) + 2f
′′

(x)x2 + x2
√

A4

√

Ln

(

h2 (t − x) ; x
)

.

The properties of h and Corollary 5.1 imply that

lim
n→∞

√

Ln

(

h2 (t − x) ; x
)

= 0.

This is the desired result. �
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