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Abstract

In this paper some direct local and global approximation results are
obtained for the modified Gamma operators defined by A. Izgi and
Biiyiikyazic1 (Approzimation and rate of approzimation on unbounded
intervals, Kastamonu Edu. J. Okt. 11 (2), 451-460, 2003 (in Turk-
ish)), and independently by H. Karsli (Rate of convergence of a new
Gamma Type Operator for functions with derivatives of bounded vari-
ation, Math. Comput. Modelling 45 (5-6), 617-624, 2007). Further-
more, a Voronoskaya type theorem is given for these operators.

Keywords: Gamma operators, Positive linear operators, Local and global approxima-
tion, Voronovskaya type theorem.
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1. Introduction

Let Xi0c[0,00) be the class of all complex-valued and locally bounded functions on
[0,00). For f € Xic[0,00), it is well-known that the classical Gamma operators G, (see
Lupas and Miiller [12]) applied to f are defined as

(1) Gulfia) = [anteu)f(2) du

where g, (z,u) = T—e~""u". Several researchers have studied approximation properties

of the operators (1.1) and its modifications (see e.g. [18, 2, 17, 16] etc.) in some function
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spaces. One of the important modifications of the Gamma operators is due to Mazhar
[13], namely

Fu(f: o) = / g, u) du / g, £) () d

B (2n)!xn+1 tnfl
= D] EFEEE f)dt, n>1, >0,
0

where g, (z,u) is the same function that was used by Lupas and Miiller [12]. Recently, by
using the techniques due to Mazhar, Izgi and Buyukyazici [9], Karsli [10] independently
considered the following Gamma type linear and positive operators:

oo oo

Lo(f; @) = / gnta(z,w) du / gn(u, ) (2) dt

0 0
oo

_ (2n+3)la™ " "
= n'(n—|—2)' ($+t)2"+4 f(t) dt, x > 0,

(1.2)

and obtained some approximation results. We also mention a very recent paper devoted to
the approximation properties of these operators, namely [11]. A bi-dimensional extension
of the operators (1.2) can be found in [8].

In addition, if f is right-side continuous at z = 0, we define

L.(f;0):= f(0) (n=1,2,...).
This paper is devoted to a study aimed at
(1) Obtaining local approximation results by using the first-second modulus of con-
tinuity, and obtaining pointwise convergence results,
(2) Giving global approximation results,
(3) Obtaining a Voronovskaya type theorem for the Gamma type operators defined
by (1.2).
Before leaving the introduction section, it is useful to mention that there are some im-
portant studies devoted to local and global approximation results for different operators
by Ditzian [4], Finta [7], Felten [6], Becker [1], Swiderski [15], and Duman and Ozarslan
[5, 14].

2. Lemmas

We now present certain results which will be used in the proofs of our main theorems.
In [10], the author obtained the following results:

2.1. Lemma. For anyp=20,1,2,...,n+ 2, we have
! 2 —p)!
(i) Lu(trs a) = LADIO 2Dy

nl(n + 2)! ’
() Lo(t—2);2) = —Loa,
(i) Ln((t - o) ) = —a?,
() Ll(e—2)% 2) =~
W) La((t— )5 a) = —20 D __ga (5 1),

(n—1)n(n+2)
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120(48 + 23n + n?)
(n=3)(n—-2)(n—1nn+2)

(vi) Ln((t—x)% z) = zt, (n > 3). O

2.2. Lemma. For all z € (0,00) and n sufficiently large, we have

t
1 2,
)\7L(fc7t) = /Kn(:mu)du S mmx s 0 S t< x,
0
and
1 2,
1—)\n(.fC7Z): K7L(:C7u)du§mn—_’_2:c7 r < z<oo,
where
(2 +3)] zn+3un
Ka(oyu) = { o2y e 0 <u <o, 0
0 u=0.

3. Local results

In this section we obtain some pointwise convergence results, and some local approxi-
mation results, by using the first and second modulus of continuity. We start with some
basic definitions and properties, which will be used in the rest of this paper.

Let B[0, +00), Cg[0, +0) denote the space of all real valued bounded and continuous
bounded functions on [0, 00), respectively, endowed with the usual supremum norm. Let
us recall that the first modulus of continuity of f, denoted by w(f,d), is defined to be

w(f,8) = sup S [f(y) = f()],

ly—z|<
x,y€[0,+00)

and satisfies the following property:
|t — |

B 10 - sl < |1+ 58w,

By C%[0,00) we denote the space of all functions f € Cg[0,00) such that f',f’ €
Cg(0,00). Then, the classical Peetre’s K-functional and the second modulus of smooth-
ness of a function f € Cg[0,00) are defined respectively by

K(f, 0):= inf - 5llg”
(f,0) gec%l[o,oo){”f gll+6|g"||}

and

wa(f,6) = sup |f(x+2h) =2f(z+h) + f(z)],
0<h<35, z€[0,00)

where § > 0. Then, by [3, Theorem 2.4], there exists a constant C' > 0 such that
K(f,6) < Cuwn (f,3).

3.1. Theorem. Take f € B[0,00) satisfying the growth condition |f(t)] < M for some
absolute constant M. If f is continuous at xo € (0,00), and right-side continuous at
zo = 0, then we have

lim Lo (f; 2) = f(x0).

(n,z)—(00,20)
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Proof. Assume that
2o #0, and 0 < zop — x < 0.

We take d¢(0, zo) such that |t — xzo| < ¢ implies |f(t) — f(zo)| < €/2. Hence we have
from Lemma 2.1 (i) that
0—06 xzo+d s}

/ / | ma@ 0150 - o) ae

0—9 zo+96

|Ln(f; ) = f(xo)

zo—9 zo+96
/ Ko, t) [£(t) — f(zo)] dt| + / () [£(2) — f(xo)] dt

IN

=: [L(n, )| + [L2(n, )| + [L3(n, 2)],
say. It is easy to see that
[I2(n,x)| < e/2.
Now we consider the term |I;(n,z)|. Since |f(t)| < M one can write
zo—6 0—8

/th[f) (:co)]t<2M/th)dt

From Lemma 2.2 we know that
zg—0

/ Ko(w, t)dt <

0

1 2,
(z—mo+8)2n+2""

since o — d < z. So we have
1 2
x
(r—zo+9)2n+2
which tends to zero as (n,z) — (o0, zo),
As in the proof of |I1(n, x)|, one has for |I3(n,z)|,

[I1(n,z)| < 2M

)

1 2,
(xo+d—x)2n+2

s o) < | [ Kalo,t)[7(0) ~ f(oo)] de] < 20

otd

I

which also tends to zero as (n,x) — (00, x0). Since ¢ > 0 is arbitrary, the proof of the
theorem is complete in this case.

If o = 0, then the proof of the theorem is similar, so we omit it. d
3.2. Corollary. If f € Cg[0,00), then
lim Lo(f: ) = (),
and the convergence is uniform on every compact subsets of [0, 00). O

3.3. Theorem. Let the sequence of operators {Ln(f; x)}, cy be defined by (1.2). For all
f € Cg[0,00) we have

|Ln(f; 2) — f(@)] < 2w(f, ( niﬂ)x)
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Proof. Taking into account the fact that L, (1; z) = 1, using the linearity of the operators
(1.2) and in view of (3.1), we get for all f € C[0, c0) that

2 3 1-nt+3 <
Lt 0) = S < CoE B [ 0 s
0
(2n + 3)1z™ T3 T
< {1+ ] / e |t~ ] dt}w(f,én).

0

Applying the Cauchy-Schwarz inequality to the right-hand side of the last inequality, we
can write

)! n+3 2
Lot o) = sl < 1o { Cot D [l i} o6

0

=

Finally, considering Lemma 2.1 (iii), we conclude that

1/ 2 z
1*5_< 12 2) }w(f’én)'

ILn(f; @) = f2)] <

Hence, choosing

2
6n—< n+2):c

we get the desired result. g

Using the first and the second modulus of continuity we have the following local
approximation result.

3.4. Theorem. For any f € Cg[0,00) and for every x € [0,00), n € N, we have

Lafi 2) = F@) < Con( 14 g0+ (55) ") +o ()

for some constant C > 0.

Proof. Using the operator Ly f given by (1.2), define a new operator T}, : Cg[0, c0) —
Cgl0, c0) as follows:

(32 Tulfia)=Lu(fi2) ~ f(z— =) + f(@).

Then, by Lemma 2.1 (ii) we get
(33) Tu(t—=z;x)=0.

Let g € C%[0,00), the space of all functions having a continuous second derivative on
(0,00), and let € (0, 00). By the Taylor formula we may write:

t

9(6) = 9(2) = (¢ = 2)g'@) + [ (¢~ wg" (W du, ¢ € ©0,).

T
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Taking into account (3.3) and using (3.2), we get
Ta(g; @) — g(x)] = |Tn (9(t) — g(2); @) |

t

x

- j@_u)gf/(u) i )|

t T nie
= Ln</(t —u)g” (u) du; ac) - / <1: - nj—2 — u)g"(u) dul .
Since
Ln( [t-wg'@wdu :c)‘ <UL (- 2y )
and
* ﬁ " 2
(- L~ ) du < H92 [ (nf—2)
we get
oy llg"ll 2 llg"ll (= \?
Tty ) — 9@l < 2L, (0 -0+ 12D (207
Hence, Lemma 2.1 (iii) implies that
" 2
) [uo o) -g < I (2ot (S5,
Then, for any f € Cgl0, ), it follows from (3.4) that
|Ln(f; @) = f(2)] < |Tu(f = g5 2) = (f = 9) ()]
+1Tu(g: ) = 9(@)| + | (= — ) = £(@)
2 2 1"
<4lf =gl +4(=52"+ (55) ) o'l
x
o= a) 1)
Finally, we conclude that
L5 2) = 1@ <415 = gl + (g0 + (=25) ) 1”11}
=)
<4k (fii ( 3) ) relri)
x x
< (g + (5a) ) +elha):
which gives the result. O

— | @ T = 2) 4 16w ) :c)\
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4. Global results

In this section, we obtain various global results by using certain Lipschitz classes. We
start with some basic definitions. Let p € Ny := {0, 1, ...} and define the weight function
1p as follows:

(4.1) po(x) :=1 and pp(x) := T

Then, we consider the following (weighted) subspace Cp[0, 00) of C[0, 00) generated by
Hop:

for x > 0 and p € No\ {0}.

C[0,00) := {f € C[0,00) : pp [ is uniformly continuous and bounded on [0, 00)}

endowed with the norm

£, == Sup )up(iv) |f(@)| for f € Cp[0,00).

z€[0,00
We also consider the following Lipschitz classes:
AR f(z) = f(a+2h) = 2f(z +h) + f (),

wp(f8) = sup [|ARF|,
he(0,6]

wp(f,8) = sup {pp(@) | f(t) — f(2)] : |t — 2| < 6 and ¢,z > 0}
Lipf,oe = {f € Cu[0,00) : wi(f; ) =0(5%) as 6§ — 0"},
where h > 0 and 0 < a < 2. From the above it follows that

. 1 _
(SE%IJFMP (f7 5) - 07

(42) 7,
lim w3(f.6) =0

for every Cp[0, c0).

Now we proceed with some auxiliary lemmas which will help to prove our main results.

4.1. Lemma. For the operators Ly, and for fized p, (p =0,1,2,...,n+2) there exists a
constant M, > 0 such that

43) o)L (i w) <,
Hp
Furthermore, for all f € Cp[0,00) we have

(4.4) LoD, < Mp (1],
which guarantees that L, maps Cp[0,00) into Cp[0, 00).

Proof. For p = 0, (4.3) follows immediately. Now assume that n +2 > p > 1. By
Lemma 2.1 (i), we can find a constant M, such that

o @)L (s @) = pp(a) {Lo(eo: @) + Lu(eys )

n m+2-p) ,
:“”(x){H( +711)!)(7(1++2)! p)x}

< Mppp(z) {2 + 1} = M,,

where

_ (n+p)ln+2-p)!
M, = max {stglp nl(n £ 2)] 1.
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On the other hand, for all f € Cp[0, 00) and every = € (0, c0), it follows that

) (2n + 3)lz™ "3 r t"
uA@Mdﬁxﬂﬁw@)nWHa)(/@+U%Hlﬁﬂﬁ
(2n+3)a™t [ o(t)
= (@) :' n—|—; / x—|—t 7oy (0l Zp(t) di

0
S|vupupu»Ln(j§;x)
< M, |7,

Now taking the supremum over = € (0, 00), and taking into account L, (f; 0) = f(0), we
get (4.4). O

4.2. Lemma. For the operators Ly, and for fired p, (p =0,1,2,...,n+ 2), there exists
a constant Cp, > 0 such that

M@MngiQSQi%ﬁ

Proof. For p = 0 the result follows from Lemma 2.1 (i). Now let p = 1. Then, using
Lemma 2.1 (iii)-(iv), we can write that

um@m(@:il )—um){0+@L¢@—@%@+LM@—@%@}

pa(t)
2173
gum@{“+@nizf+n£+%}

S Cp |:%_|_2$2:| .

Finally, assume that p > 2. Then, we get from Lemma 2.1 that

N2
Ln(i(t z) ; :c) = Ln(tp+2; x) — 2:an(tp+1; z) + :chn(tp; x) + Ln ((t - x)z; x)
Hp

_(ntp+Dn—p)! po 2(n+10+1)(n+1— p)! i

nl(n + 2)! nl(n + 2)!
(n+p!ln+2-p)! p1o 2 >
nl(n + 2)! v +n—|—2x
= 5T 24 p+2)tpt 1) —2n+p+1)(n+1-p)
(n+p)n—p)' ,
2— 1-p)| —FF————
ot 2=p)(n 1 -p) e
2 2 oy (ntp)i(n—p) ,
= 2 2 4 2)——— .
nt2’ { +On+dp7+2) 2nl(n + 1)! ¢
I(n — p)!
Since the term (2n + 4p® + 2)% is bounded, there exists a constant C}, > 0

such that

(t—fl?)? 1 2 P
n jr) < ;
L ( - x P a” 1+ 2"]

whence the result. O
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Now, for p € N, consider the space
C20,00) :={f € Cp[0,00) : f" € Cp(0,00)} .
Then we have the following result.

4.3. Lemma. For the operators Ly, if Tn(f; ) := Ln(f; ) — f <x — ni”) + f(z), then
there exists a positive constant Cp such that, for all z € (0,00) and n € N, we have
1 o

pp(2) [T (g; ) — g(2)| < Cy ngHp n+ 2T

Proof. By the Taylor formula one can write

t

g9(t) = g(x) = (t — 2)g'(z) + /(t —u)g" (u)du, t € (0,00).

x

Then,
|Tn(g; ) — g(2)| = |Tn (9(t) — g(2); )]
_ Tn( [ - wg ) au x)]
i fre- s )
_ x.nh(x - niz —w)g" (u) du
Since )
‘/ (=] < . (5 me)
and
J et Wl (2

T

it follows from Lemma 4.2 that

tp(2) | Tn(g; ) — g(x)] < @ {Ln((t — )% ) + pp(x) Ly, (M 1:) }

1 22
Ppn427°

< Gy llg"]l
The lemma is proved. O

The next theorem is the main result of this section.
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4.4. Theorem. For every p € No, n € N, f € Cp[0,00) and z € (0,00), there exists an
absolute constant Np > 0 such that

tip(z) | Lo (f; ) — ()] < Npwr (M\/ n%g) +wp (f% n i 2)7

where pp s the same as in (4.1).
In particular, if f € Lipi a for some a € (0,2], then

(@ | (5 2) ~ 1 < Ny (get) 4 (1 55)

holds.

Proof. Let p € No, f € Cp[0,00) and z € [0, 00) be fixed. We denote the Steklov means
of f by fn, h > 0. Here we recall that
h/2 h/2

=5 [ [ Crat st - 2+ o) dsa,
0 0

for h > 0 and y > 0. It is obvious that
h/2h/2

f(y) = fuly h2//A+tf )ds dt,

which guarantees
@5)  f = full, S wp(f; ).
Furthermore, we have
1 1
Fil(w) = 55 (8A%2f(v) — ALf(v)

which implies

(16) A, < md(f: ).
Combining (4.5) with (4.6) we conclude that the Steklov means f, corresponding to
f € Cp[0, 00) belongs to C2[0, c0).

Passing to the proof of our main result we see that for any n € N, the following

inequality holds:

|Ln(f; @) = f(@)] S T ([f(8) = fu(®)]; @) + |f(z) = ful2)]
1T (i @) = fu(@)| + |£ (2~ —5) = (@)
Since fr € C2[0,00) by the above, it follows from Lemma 4.1 and Lemma 4.3 that

(@) |Ln(f5 ) = F@)| < My + DI = full, + Co | ], —
+up<x>\f(x—

:1:
n+ 2

) - J@)|
By (4.5) and (4.6), the last inequality yields that

o) | (f5 2) = @) < N (15 {1+ 1 (50%) |+ (1 =5).

1
Thus, choosing h = 2 22, the first part of the proof is completed. The remainder
Vn
of the proof can be easily obtained from the definition of the space Lipf, a. d
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4.5. Theorem. For every p € No, n € N, f € Cp[0,00) and z € (0,00), there exists an
absolute constant T, > 0 such that

212
n+2

(@)L 0) = 1) < 171, (250 V) ).

where pp is the same as in (4.1).

Proof. We have

10~ @)= [ £'w)du,
and hence

IF) = f@) < |1f], 1t — =] (ﬁ(t) * ﬁ(:v)) '

So one has

(@) | 2) = 1@ < 7], (£ = als )+ otorr (L2l 0) ).
It is easy to see that

L (|t = 5 #) < \/Ln (1 @) La (¢ — 2)* 5 7) < ::”52
and

|t — =] . L

i (L5 < \/“?’(x)L” (¢ =2 2) L gy o).

Note that i (t) < pap(t) and puy, % () < poy (8) + 2p, (1)
Therefore

3 En (o ) < o) [ (155 2) + 280 (s )]

< uzp(x)Ln<ﬁ(t); x) + 2up(x) L L ; :1:)

By Lemma 4.1 we get the desired result, namely
po(x)L L(; 1:) <7
YT TO R
where T}, is a positive constant depending on p. Thus one has

(@ | 5 2) — 1)1 < 7], (f 2550+ V) ).

5. A Voronovskaya type theorem

Now, we shall give a Voronovskaya type theorem for the operators L,. From Theo-
rem 4.4, Theorem 4.5 and using (4.2) we obtain

5.1. Corollary. Let g € Cp[0,00). Then
lim Ln(g; ) = g(z),

the convergence being uniform on every compact subset of [0, 00). O
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Theorem. Letp € No, n €N, f, f' € C,[0,00). We assume that f"(x) exists at a

fized point x € (0,00). Then

Jim (Lo (f; @) = f(@)] = =2 f (@) + 22° ().

holds.

Proof. By Taylor’s formula we have

(5.1)  f()=f(2)+(t—2)f(2) +(t—2)*

[ (z)
2

+h(t—z)|,

where h(-) € Cp[0,00) with h(y) converging to zero with y. If we use (5.1) in the
representation (1.2), we can write the following equality:

(L () ~ F@)] = £/ @ Lo (¢~ )1 2) + D000 - 207 )
+Ln((t—x)2h(t—x); ).
It is known from Lemma 2.1 that
- 2. . 22°
L, ((t—z);z) = —t Ln((t—=); @) = —

and

Lo((t—2)*h(t —2); 2) < \/La((t — 2)"; @) Ln (2 (t — 2); ).

One has from Lemma 2.1 (v) that

4
La((t—a)";2) < A4%,(n—> 00, 7 € (0,00)),

where A4 is a constant. Hence we have

0L (f; ) = f(2)] < —af'(z) +2f (2)2° + 2VAd\/ L (h2 (t — 2); @)

The properties of h and Corollary 5.1 imply that

lim 1/Ln(h2 (t—z); J:) =0.

This is the desired result. O
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