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Abstract

Making use of a convolution operator involving the Hurwitz-Lerch Zeta
function, we introduce a new class of analytic functions PT(λ, α, β)
defined in the open unit disc, and investigate its various characteristics.
Further we obtained distortion bounds, extreme points and radii of
close-to-convexity, starlikeness and convexity for functions belonging
to the class PT(λ, α, β).
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1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +
∞

∑

k=2

akzk

which are analytic and univalent in the open disc U = {z : z ∈ C; |z| < 1}. For functions

f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∞
∑

k=2

bkzk, we define the Hadamard

product (or convolution) of f and g by

(1.2) (f ∗ g)(z) = z +

∞
∑

k=2

akbkzk, z ∈ U.

We now recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) (cf., e.g., [16]) defined by

(1.3) Φ(z, s, a) :=
∞

∑

k=0

zk

(k + a)s
(a ∈ C \ {Z

−
0 }; s ∈ C, R(s) > 1 and |z| = 1)
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where, as usual, Z
−
0

:= Z \ {N}, (Z := {±1,±2,±3, . . .}); N := {1, 2, 3, . . .}.

Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava [4], Ferreira
and López [5], Garg et al. [7], Lin and Srivastava [10], Lin et al. [11], and others.

In 2007, Srivastava and Attiya [15] (see also Riaducanu and Srivastava [13], Prajapat
and Goyal [12]) introduced and investigated the linear operator:

Jµ,b : A → A

defined, in terms of the Hadamard product (or convolution), by

(1.4) Jµ,bf(z) = Gµ,b ∗ f(z),

(z ∈ U ; b ∈ C \ {Z
−
0
}; µ ∈ C; f ∈ A), where, for convenience,

(1.5) Gµ,b(z) := (1 + b)µ[Φ(z, µ, b) − b−µ] (z ∈ U).

We recall here the following relationships (given earlier in [12, 13]) which follow easily by
using (1.1), (1.4) and (1.5)

(1.6) Jµ,bf(z) = z +
∞

∑

k=2

Ck(b, µ)akzk,

where

(1.7) Ck(b, µ) =

(

1 + b

k + b

)µ

,

and (throughout this paper unless otherwise mentioned) the parameters µ, b are con-
strained as b ∈ C \ {Z

−
0
}; µ ∈ C.

(1) For µ = 0,

(1.8) J0,bf(z) := f(z).

(2) For µ = 1, b = 0,

(1.9) J1,0f(z) :=

∫ z

0

f(t)

t
dt := Lbf(z).

(3) For µ = 1 and b = ν (ν > −1),

(1.10)

J1,νf(z) :=
1 + ν

zν

∫ z

0

tν−1f(t) dt

= z +
∞

∑

k=2

(

1 + ν

k + ν

)

akzk := Fνf(z).

(4) For µ = σ(σ > 0) and b = 1,

(1.11) Jσ,1f(z) := z +
∞

∑

k=2

(

2

k + 1

)σ

akzk := I
σf(z),

where Lb(f) and Fν are the integral operators introduced by Alexander [1] and Bernardi
[3], respectively, and I

σ(f) is the Jung-Kim-Srivastava integral operator [8] closely related
to some multiplier transformations studied by Flett [6].

Making use of the operator Jµ,b, we introduce a new subclass of analytic functions
with negative coefficients, and discuss some standard properties of geometric function
theory in relation to this generalized function class.
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For λ ≥ 0, 0 ≤ α < 1 and 0 < β ≤ 1, we let P(λ, α, β) be the subclass of A consisting
of functions of the form (1.1) and satisfying the inequality

∣

∣

∣

∣

∣

J
b,λ
µ f(z) − 1

2γ(Jb,λ
µ f(z) − α) − (Jb,λ

µ f(z) − 1)

∣

∣

∣

∣

∣

< β,(1.12)

where

(1.13) J
b,λ
µ f(z) = (1 − λ)

Jµ,bf(z)

z
+ λ(Jµ,bf(z))′,

0 < γ ≤ 1, and Jb
µf(z) is given by (1.6). We further let

PT(λ,α, β) = P(λ, α, β) ∩ T,

where

(1.14) T :=

{

f ∈ A : f(z) = z −
∞

∑

k=2

|ak|z
k, z ∈ U

}

is a subclass of A introduced and studied by Silverman [14].

Furthermore, we note that by suitably specializing the values of α, β, γ and λ, the
class PT(λ,α, β) and the above subclasses reduce to the various subclasses introduced
and studied in the literature, for example see [2, 9].

In the following section we obtain coefficient estimates and extreme points for the
class PT(λ, α, β).

2. Coefficient bounds

2.1. Theorem. Let the function f be defined by (1.14). Then f ∈ PT(λ, α, β) if and
only if

(2.1)

∞
∑

k=2

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|ak ≤ 2βγ(1 − α).

The result is sharp for the function

(2.2) f(z) = z −
2βγ(1 − α)

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
zk, k ≥ 2.

Proof. Suppose f satisfies (2.1). Then for |z|,
∣

∣J
b,λ
µ f(z) − 1

∣

∣ − β
∣

∣2γ(Jb,λ
µ f(z) − α) − (Jb,λ

µ f(z) − 1)
∣

∣

=

∣

∣

∣

∣

−
∞

∑

k=2

(1 + λ(k − 1))Ck(b, µ)akzk−1

∣

∣

∣

∣

− β

∣

∣

∣

∣

2γ(1 − α) −
∞

∑

k=2

(1 + λ(k − 1))(2γ − 1)Ck(b, µ)akzk−1

∣

∣

∣

∣

≤

∞
∑

k=2

(1 + λ(k − 1)) |Ck(b, µ)|ak − 2βγ(1 − α)

+

∞
∑

k=2

(1 + λ(k − 1))β(2γ − 1) |Ck(b, µ)|ak

=
∞

∑

k=2

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|ak − 2βγ(1 − α)

≤ 0, by (2.1).
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Hence, by the maximum modulus theorem and (1.12), f ∈ PT(λ, α, β).

To prove the converse, assume that
∣

∣

∣

∣

Jb,λ
µ f(z) − 1

2γ(Jb,λ
µ f(z) − α) − (Jb,λ

µ f(z)) − 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−
∞
∑

k=2

(1 + λ(k − 1))Ck(b, µ)akzk−1

2γ(1 − α) −
∞
∑

k=2

(1 + λ(k − 1))(2γ − 1)Ck(b, µ)akzk−1

∣

∣

∣

∣

∣

∣

∣

∣

≤ β, z ∈ U.

Or, equivalently,

(2.3) Re















∞
∑

k=2

(1 + λ(k − 1))|Ck(b, µ)|akzk−1

2γ(1 − α) −
∞
∑

k=2

(1 + λ(k − 1))(2γ − 1)|Ck(b, µ)|akzk−1















< β.

Since Re(z) ≤ |z| for all z, choose values of z on the real axis so that J
b,λ
µ f(z) is real.

Upon clearing the denominator in (2.3) and letting z → 1 through real values, we obtain
the desired inequality (2.1). �

2.2. Corollary. If f(z) of the form (1.14) is in PT(λ,α, β), then

(2.4) ak ≤
2βγ(1 − α)

(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|
, k ≥ 2,

with equality only for functions of the form (2.2).

2.3. Theorem. (Extreme Points) Let

(2.5)

f1(z) = z and,

fk(z) = z −
2βγ(1 − α)

(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|
zk, k ≥ 2,

for 0 ≤ α < 1, 0 < β ≤ 1, λ ≥ 0 and 0 < γ ≤ 1. Then f(z) is in the class PT(λ, α, β) if
and only if it can be expressed in the form

(2.6) f(z) =
∞

∑

k=1

ωkfk(z),

where ωk ≥ 0 and
∞
∑

k=1

ωk = 1.

Proof. Suppose f(z) can be written as in (2.6). Then

f(z) = z −

∞
∑

k=2

ωk

2βγ(1 − α)

(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|
zk.

Now,
∞

∑

k=2

(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2βγ(1 − α)
ωk

2βγ(1 − α)

(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

=
∞

∑

k=2

ωk = 1 − ω1 ≤ 1.

Thus f ∈ PT(λ,α, β).
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Conversely, let us have f ∈ PT(λ, α, β). Then by using (2.4), we set

ωk =
(1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|

2βγ(1 − α)
ak, k ≥ 2

and ω1 = 1 −
∑∞

k=2
ωk. Then we have f(z) =

∑∞

k=1
ωkfk(z), and hence this completes

the proof of Theorem 2.3. �

3. Distortion bounds

In this section we obtain distortion bounds for the class PT(λ, α, β).

3.1. Theorem. If f ∈ PT(λ, α, β), then

(3.1)

r −
2βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
r2 ≤ |f(z)|

≤ r +
2βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)]|C2(b, µ)|
r2

holds if the sequence {σk(λ, β, γ)}∞k=2
is non-decreasing, and

(3.2)

1 −
4βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
r ≤ |f ′(z)|

≤ 1 +
4βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)]|C2(b, µ)|
r

holds if the sequence {σk(λ, β, γ)/k}∞k=2
is non-decreasing, where

σk(λ, β, γ) = (1 + λ(k − 1))[1 + β(2γ − 1)] |Ck(b, µ)|.

The bounds in (3.1) and (3.2) are sharp, since the equalities are attained by the function

(3.3) f(z) = z −
2βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
z2, z = ±r.

Proof. In the view of Theorem 2.1, we have

(3.4)

∞
∑

k=2

ak ≤
2βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
.

Using (1.14) and (3.4), we obtain

(3.5)

|z| − |z|2
∞

∑

k=2

ak ≤ |f(z)|

≤ |z| + |z|2
∞

∑

k=2

ak,

r − r2 2βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
≤ |f(z)|

≤ r + r2 2βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
.

Hence (3.1) follows from (3.5). Further,
∞

∑

k=2

kak ≤
4βγ(1 − α)

(1 + λ)[1 + β(2γ − 1)] |C2(b, µ)|
.

Hence (3.2) follows from

1 − r
∞

∑

k=2

kak ≤ |f ′(z)| ≤ 1 + r
∞

∑

k=2

kak. �
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4. Radius of starlikeness and convexity

The radii of close-to-convexity, starlikeness and convexity for the class PT(λ, α, β) are
given in this section.

4.1. Theorem. Let the function f(z) defined by (1.14) belong to the class PT(λ,α, β),
Then f(z) is close-to-convex of order δ, (0 ≤ δ < 1) in the disc |z| < r, where

(4.1) r := inf
k≥2

[

(1 − δ)(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2kβγ(1 − α)

] 1

k−1

.

The result is sharp, with extremal function f(z) given by (2.5).

Proof. Given f ∈ T and f is close-to-convex of order δ, we have

(4.2) |f ′(z) − 1| < 1 − δ.

For the left hand side of (4.2) we have

|f ′(z) − 1| ≤
∞

∑

k=2

kak|z|
k−1.

The last expression is less than 1 − δ if
∞

∑

k=2

k

1 − δ
ak|z|

k−1 < 1.

Using the fact that f ∈ PT(λ, α, β) if and only if
∞

∑

k=2

(1 + λ(k − 1))[1 + β(2γ − 1)]ak|Ck(b, µ)|

2βγ(1 − α)
≤ 1.

We can say (4.2) is true if

k

1 − δ
|z|k−1 ≤

(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2βγ(1 − α)
.

Or, equivalently,

|z|k−1 ≤

[

(1 − δ)(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2kβγ(1 − α)

]

,

which completes the proof. �

4.2. Theorem. Let f ∈ PT(λ, α, β). Then

(1) f is starlike of order δ, (0 ≤ δ < 1), in the disc |z| < r, that is,

Re

{

zf ′(z)

f(z)

}

> δ, (|z| < r; 0 ≤ δ < 1),

where

r = inf
k≥2

{

(1 − δ)(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2βγ(1 − α)(k − δ)

}
1

k−1

.

(2) f is convex of order δ, (0 ≤ δ < 1), in the disc |z| < r, that is

Re

{

1 +
zf ′′(z)

f ′(z)

}

> δ, (|z| < r; 0 ≤ δ < 1),

where

r = inf
k≥2

{

(1 − δ)(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2βγ(1 − α)k(k − δ)

} 1

k−1

.

Each of these results is sharp for the extremal function f(z) given by (2.5).
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Proof. (1) Given f ∈ T and f starlike of order δ, we have

(4.3)

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

< 1 − δ.

For the left hand side of (4.3) we have

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

≤

∞
∑

k=2

(k − 1)ak |z|k−1

1 −
∞
∑

k=2

ak |z|k−1

.

The last expression is less than 1 − δ if

∞
∑

k=2

k − δ

1 − δ
ak |z|k−1 < 1.

Using the fact that f ∈ PT(λ, α, β) if and only if

∞
∑

k=2

(1 + λ(k − 1))[1 + β(2γ − 1)]ak|Ck(b, µ)|

2βγ(1 − α)
< 1,

we can say (4.3) is true if

k − δ

1 − δ
|z|k−1 <

(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2βγ(1 − α)
.

Or, equivalently,

|z|k−1 <
(1 − δ)(1 + λ(k − 1))[1 + β(2γ − 1)]|Ck(b, µ)|

2βγ(1 − α)(k − δ)

which yields the starlikeness of the family.

(2) Using the fact that f is convex if and only if zf ′ is starlike, we can prove (2) on
lines similar to the proof of (1). �

4.3. Remark. For specific choices of the parameters α, β, γ, µ, various results presented
in this paper would provide interesting extensions and generalizations of those considered
earlier for simpler analytic function classes. The details involved in the derivations of
such specializations of the results presented in this paper are fairly straightforward.
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