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Abstract

As zero-inflated observations occur very often in studies on plant pro-
tection, models taking into account zero-inflated observations are fre-
quently required. Especially, zero-inflated observations occur in large
numbers for insects whose post-oviposition period lasts long, or that
generally lay their eggs during the first days of the oviposition period.
For the data used in this study, 1114 (43.84%) of the 2541 observations
were zero. In the selection of an appropriate regression model, zero-
inflated negative binomial regression was chosen as the best model. In
all regression models, the day of laying and the three different hosts
were seen to have a significant effect on daily egg numbers (p < 0.01).

Keywords: Zero-inflated count data, Overdispersion, Zero-inflated models, Hurdle
models.
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1. Introduction

As is well known, the mean and variance are equal to one another in a Poisson dis-
tribution. However, in applications, it is not always possible to realize this equality
[1,2,3,5,9,23]. If the variance is higher than the mean, it is described as overdisper-
sion, while if the variance is lower than the mean, it is described as underdispersion
[2,7,14,21,24]. In data sets, generally overdispersion, but rarely underdispersion is seen.
In such cases, applying Poisson regression (PR) causes biased parameter estimations [7].
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When there is overdispersion in a data set, it is better to use a negative binomial (NB)
regression model [11,14,16,18,19]. In an NB regression model, parameter estimations are
obtained by considering the effect that stems from overdispersion.

In studies of insect eggs for plant protection it is seen that 70–80 % of total egg laying
is realized during the first week, and beginning from the 12th day of oviposition, egg
numbers decrease rapidly. Since the number of zero inflated observations is quite high
after the 12th day, the use of zero-inflated methods is required. In such a case, using
a zero-inflated Poisson (ZIP) regression model is a suitable approach for analyzing a
dependent variable having many zero observations [2,4,6,15,17,19].

ZIP assumes that the population consists of two different types of observation. The
first is based on zero counts, while the second has a Poisson distribution [4,19,25]. In
addition, overdispersion is also likely in data sets having excess zero observations. In
such cases, a zero-inflated negative binominal (ZINB) regression model is an alternative
method that can be used [2,10, 11,14,18,19]. As in ZIP regression, in ZINB regression
the observations with zero data and those without zero data are modeled in different
ways. Moreover, the hurdle model is used to analyze data sets having an excess of zero
observations. The Hurdle model is composed of two stages. In the first stage we have
binary responses indicating positive counts (2.1) against zero counts (0); the second one
is the period when only positive counts take place. Binary responses are modeled using
a binary model [8,20]. On the other hand, positive counts are modeled by using zero-
truncated models. The binary part uses logit, probit or complimentary loglog, whereas
the count part uses Poisson, geometric, and negative binomial [10]. Generally, for the
positive counts section, Poisson hurdle (PH) or negative binomial hurdle (NBH) is used.

In models of PR, NB, ZINB, PH and NBH, parameter estimations are obtained with
the maximum likelihood (ML) method by using the expectation and maximization (EM)
algorithm [18]. In the selection of a suitable model, the Akaiki information criteria (AIC)
and Bayesian information criteria (BIC) can be used. The model with the lowest selection
criteria is accepted as the best model [8,24].

The aim of this study is to apply different regression methods in the analysis of daily
egg numbers left on three different hosts by Phenacoccus aceris (Signoret) in 2002 and
2003.

Motivating Example Mapple scale Phenacoccus aceris (Signoret) (Hemiptera: Pseu-
dococcidae), reared on different host plants (Acer negundo, Acer pseudoplatanus and
Fraxinus excelsior) was used as the main material in this study. Daily egg laying num-
bers of P. aceris on the three different host plant were determined in 2002 and 2003. The
studies to determine the number of eggs laid daily by P. aceris on different host plants
were conducted on Acer negundo L., Acer pseudoplatanus L. and Fraxinus excelsior L.,
which were grown in the Ankara University Plant Protection area. For this aim, the host
plants were infested by mealybug. When the mealybug reached adulthood, they were
put onto separate cells on the leaves and observed daily until all the specimens had died
and all the eggs had been counted each day. In this way, the total and daily number of
eggs laid by one female, and the duration of the oviposition period, were determined.

The Experiments were replicated at least 15 times for each host plant.

Data used in this study were obtained from Kaydan and Kılınçer [12].

2. Methods

Poisson Regression

Suppose that the dependent variable yi is distributed according to the Poisson distri-
bution. The logarithm of µ, which is the mean of the Poisson distribution, is assumed to
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be a linear function of the independent variables (xi). The PR model is,

(2.1) Pr(yi/µi, xi) = exp
(

− µi

)

µyi
i µyi

i yi!, yi = 0, 1, . . . .

When the independent variables are given, the likelihood function for the PR model is,

(2.2) L(β, yi, xi) =

n
∑

i=1

[

yix
′

iβ − exp
(

x′

iβ
)

− ln yi!
]

In equation (2.2), β is an unknown parameter. The first derivatives of the log-likelihood
with respect to β are [10,13],

∂(L(β, yi, xi))

∂β
=

∑

(

yi − exp
(

xiβ
))

xi.

The ML estimation for β is obtained by setting these equal to zero.

Negative Binomial Regression

The negative binomial regression model uses a log link function between the dependent
variable and independent variables. The NB regression model is [14],

(2.3) P (y; µ, α) =
Γ(y + α−1)

y!Γ(α−1)

( αµ

1 + αµ

)y( 1

1 + αµ

)α−1

α > 0.

In equation (2.3), α is an arbitrary parameter showing the overdispersion level. The
Log-likelihood function for the NB regression model is [10,16],

ln L(β, α, y) =
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∑

i=1

[ y
−1

i
∑

t=0

ln(1 + αt) + yi lnµi − (yi + α−1) ln(1 + αµi)
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.

By equating the first derivatives of the log-likelihood with respect to β and α to zero,
the ML estimations can be written, respectively, as
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Zero inflated Poisson Regression

In order to explain the extra zeros in the variable yi, the ZIP regression is [15],

(2.4) Pr(yi/xi) =

{

πi + (1 − πi) exp(−µi), yi = 0,

(1 − πi) exp(−µi)µ
yi
i /yi!, yi > 0.

In equation (2.4), πi represents the probability of the existence of extra zeros. The log
likelihood function for the independent variable yi can be written as [25],

(2.5)
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The expression I · occurring in equation (2.5) is the indicator function for the specified
event. After this, the parameters µi and πi can be obtained by using the link functions,

(2.6) log(µ) = Bβ,
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and

(2.7) log
( π

1 − π

)

= Gγ.

In equations (2.6) and (2.7), B and G are covariate matrices, β and γ unknown parameter
vectors. The ML estimations for β and γ can be obtained by using the EM algorithm
[26].

Zero inflated Negative Binomial Regression

In the modeling of a dependent variable yi with many zero values, an alternative
regression method is ZINB. The ZINB regression model [19] is:

(2.8) Pr(yi/xi) =
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In equation (2.8), the parameters πi and µi depend on the covariates, and (α ≥ 0) is an
overdispersion parameter. The ZINB log likelihood function [26] for yi is,
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The expression I · occurring in equation (2.9) is the indicator function for the specified
event. The model description suggested by Lambert [15] can be given as,

log(µ) = Xβ and log
( π

1 − π

)

= Gγ.

Here, X and G are covariate matrices, β and γ are unknown parameter vectors of dimen-
sion (p + 1)× 1 and (q + 1) × 1, respectively. The ML estimations for β, α and γ can be
obtained by using the EM algorithm [26].

Poisson Hurdle Model

Positive observations based on truncated count data (yi > 0) are called the Poisson

hurdle model when they are modeled using the Poisson distribution. We suppose the
yi are independent observations based on count data, and consider that the probability
of yi = 0 is 1 − p(x), and of yi ∼ truncated Poisson(λ(z)) is p(x). Here, x and z are
covariate matrices. The PH model [8] is:

(2.10)

P (yi = 0/x) = 1 − p(x),

P (yi = q/x, z) =
p(x) exp(−λ(z))λ(z)q

q!(1 − exp(−λ(z)))
, q = 1, 2, . . . .

In equation (2.10), p(x) and λ(z) are modeled using the logit and log-linear functions,
respectively. That is, λ(z) and pi are,

log(λ(z)) = x′

iβ,(2.11)

logit(pi) = z′

iα.(2.12)
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The β and α given in equation (2.11) and equation (2.12), respectively, are unknown
parameter vectors. The Log likelihood for PH can be written as follows:

(2.13)

L =
∑

yi>0

xiβ −

n
∑

i=1

log(1 + exp(xiβ))

+
∑

yi>0

[yiziα − exp(ziα) − log(1 − exp(− exp(ziα))) − log(yi!)]

= L(β) + L(α)

Estimations of the unknown parameters β and α are obtained by ML using equation
(13).

Negative Binomial Hurdle Model

In the negative binomial hurdle, the binomial probability model determining the zero
or non-zero results of the basic count dependent variable and the truncated count model,
based on the positive count truncated count model, are conjoined in [10] using the fol-
lowing log-likelihood:

(2.14) L = ln(f(0)) + {ln[1 − f(0)] + ln P (t)}.

In equation (2.14), f(0) represents the probability of the binary part and p(j) the prob-
ability of a positive count. In the case where the logit model is used, the probability of
zero is,

f(0) = P (y = 0; x) = 1/(1 + exp(xb1)).

and 1 − f(0) is exp(xb1)/(1 + exp(xb1)).

The log likelihood function for both parts of the NBH model can be written as:

L = cond {y == 0, ln(1/1 − exp(xb1), ln(exp(xb1)/1 + exp(xb1))

+ y ∗ ln(exp(xb)/1 + exp(xb)) − ln(1 + exp(xb)/α)

+ ln Γ(y + 1/α) − ln Γ(1/α) − ln(1 − (1 + exp(xb))(−1/α))}

3. Model selection

The Akaiki Information Criteria (AIC) and Bayesian Information Criteria (BIC) are
goodness of criteria used for model selection. Many Monte-Carlo simulations indicate
that the BIC and AIC selection criteria need to be used together [8,24]. Generally, they
are described as follows:

(3.1) AIC = −2L + 2p

and

(3.2) BIC = −2L + p ln(n).

In equations (3.1) and (3.2), L indicates the log likelihood value, p indicates the parameter
number and n indicates sample size.

4. Results

In this study, the necessary analyses were done by using the Stata 10 and R statistical
software programs. Daily egg numbers laid on the three hosts by Phenacoccus aceris

(Signoret) were included in the model as dependent variable, while years, days, and
hosts were integrated as independent variables in the model. The distribution of the
numbers of eggs laid on various hosts in 2002 is given in Figure 1. When the numbers of
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daily eggs is examined, it is seen that maximum egg laying takes place on different days
for each of the three hosts.

Figure 1. The numbers of eggs laid daily on various hosts by Phenacoccus
aceris (Signoret) in 2002

Figure 2. The numbers of eggs laid daily on various hosts by Phenacoccus
aceris (Signoret) in 2003

In Figure 2, the daily egg numbers of P. aceris nourished on different hosts are shown
for 2003. As in 2002, for the three different hosts most of the eggs were laid during the
first seven days (605 eggs in F. excelsior, 494 eggs in A. pseudoplatanus, 383 eggs in A.
negundo), while almost all of them were left within 15 days.
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Of the 2541 observed values used in this study, 1114 (43.84%) had value zero. Daily
egg numbers for P. aceris are given in Figure 3. The distribution of the data is skewed
to the right because of excess zeros.

Figure 3. Daily frequency distribution of eggs

Goodness of statistics determining whether regression methods such as Poisson and logis-
tic are applicable are very essential [21]. In PR analyses, deviance and Pearson Chi-square
goodness of statistics indicating overdispersion were obtained as 50.233 and 58.579, re-
spectively. The fact that the goodness of statistics were higher than (1) shows that there
was overdispersion in the data set. The AIC BIC model selection criteria for the models
PR, NB, ZIP, ZINB, PH, and NBH are given in Table 1. The model selection criteria
given in Table 1 produce widely differing results. The model with the smallest AIC and
BIC was ZINB regression. Therefore, the ZINB model shown in Table 1 with bold letters
was chosen as the best model.

Table 1. Model selection criteria for PR, NB, ZIP, ZINB, PH and NBH

Model Log-likelihood AIC BIC

PR -30713.550 61433.10 61450.620

ZIP -17970.360 35946.72 35964.240

NB -7624.960 15255.92 15273.440

ZINB -6278.950 12563.90 12581.420

PH -18890.830 37787.660 37805.181

NBH -7181.140 14368.280 14385.801

The ML parameter estimations and standard errors obtained for the PR, NB, ZIP, ZINB
and NBH regression models are given in Table 2. According to Table 2, while the day
laid and the host plant had a significant effect on the number of eggs in PR and NBH
(p < 0.01), the year was not significant (p > 0.05). In the NB, ZIP and ZINB regression
models, the year, day laid, and host plant had a significant effect on the number of eggs
(p < 0.01).
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Table 2. Parameter estimations and standard errors for the PR, NB, ZIP,
ZINB, PH and NBH models1 (p < 0.01)

Estimation (standard error)

Method Intercept Year Day Host plant

PR 5.1391 (0.158) 0.012 (0.008) -0.1881 (0.001) -0.0221 (0.005)

NB 7.0671 (0.128) -0.2671 (0.056) -0.3531 (0.006) -0.3111 (0.036)

ZIP 4.9431 (0.016) 0.2411 (0.008) -0.1521 (0.001) -0.2581 (0.005)

ZINB 5.6511 (0.085) -0.0801 (0.037) 0.2161 (0.005) -0.2871 (0.024)

PH 4.9431 (0.016) 0.2401 (0.008) -0.1521 (0.001) -0.2581 (0.005)

NBH 5.7111 (0.088) 0.073 (0.039) -0.2221 (0.005) -0.2921 (0.025)

The Voung statistic has been computed to compare the PR model with the ZIP, and the
NB model with the ZINB. The Voung statistics of ZIP against PR was obtained as 11.51
and determined as being significant (p < 0.01). The Voung statistics of ZINB against
NB was obtained as 21.27 and also determined as being significant (p < 0.01)). For a
large sample size and under the null hypothesis, the Voung statistic has an assymptotic
normal distribution. The likelihood ratio test calculated in order to compare the models
of ZIP and ZINB turned out to be very important (p < 0.01). That is to say, the ZINB
model is better than ZIP. In terms of the results obtained, the goodness of criteria, the
Voung statistics, and ratio tests were in parallel with each other.

5. Discussion

In this study, as overdispersion had a great effect, the PR goodness of criteria given
in Table 1 was seen to be higher than the other regression models. Some reasons for
overdispersion can be explained as the use of a wrong link function, differences between
observations, the lack of important terms that need to be in the model, and small sample
size [24,27].

The fact that the highest egg numbers for the three hosts were in the third and fourth
days of oviposition, with the decrease in egg numbers accelerating during the following
days, indicates that the day the eggs are laid is very significant. Similarly, it has been
found that the effect of the host is significant, together with the fact that total egg
numbers left on the hosts are different from each other. In 2002, most of the eggs left
on A. Pseudoplatanus were confirmed to have been laid on the third day of oviposition.
Moreover, most of the eggs on F. excelsior and A. negundo appeared on the fourth day
of oviposition. In 2003, on the other hand, most of the eggs on A. negundo were seen
on the third day of oviposition. Most of the eggs on F. excelsior and A. pseudoplatanus

were seen on the fourth day of oviposition. Most of the eggs were seen in the first half
(first 15 days) of the egg laying period. In this period, the egg numbers laid decreases,
one or two eggs are seen for a few days till the end of the mature life of the insect, and
are generally seen as zero eggs [12].

Senapati and Ghose [22] report that Planococcoides bengalensis, Ghose and Ghose
(Hemiptera: Pseudococcidae), laid most of their eggs on the second day of the egg laying
period, 70-80 % of total egg laying taking place during the first week, and that egg
numbers decrease considerably beginning from the 12th day of oviposition. Especially,
for insects having quite a long post oviposition period, or for insects laying their eggs
during the first days of the oviposition period, the abundance of zero inflated observations
makes it necessary to apply zero-inflated methods.
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