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Abstract

This paper presents a two-compartment model for the transfer of opti-
cal contrast agent, namely indocyanine green (ICG), in the presence of
tumors between the plasma and extracellular extravascular space (EES)
compartments. An adaptive extended Kalman filter (EKF) has been
derived to estimate the quantities that are transferred between the com-
partments, Moreover, in order to validate the proposed EKF, real data
have been utilized and the experimentally obtained ICG concentration
data quantitatively analyzed through the estimation of physiological
parameters related to capillary permeability and the optical contrast
agent concentration in the compartments concurrently. The proposed
method produces the estimate of tissue permeability, independent of
the initial permeability values, without resorting to computationally
expensive nonlinear fitting algorithms. Considering the fact that the
change in the tissue permeability occurs usually due to a disease such as
cancer, an estimated value of the permeability could be used to extract
valuable information about tumor cell behavior patterns.
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1. Introduction

In recent years the use of optical contrast agents and advanced medical imaging tech-
niques to analyze and diagnose tissue abnormalities has become almost a standard pro-
cedure [16]. The existence of tumors is one of the main causes of tissue abnormalities,
and in [14] it was shown that tumor vessel permeability to macromolecular blood solutes
correlates with tumor growth as well as vascular growth. Indocyanine green (ICG) is a
blood pool agent that binds to globulin proteins (predominantly albumin) in blood [9],
and because of its ability to bind to plasma proteins, it behaves as a macromolecular
contrast agent with a low or no vascular permeability. Once injected, ICG rapidly and
completely binds to albumin and its macromolecular behavior results in a slow leak-
age that permits application of a pharmacokinetic model that in return allows for the
determination of individual vascular parameters, such as capillary permeability.

Compartmental analysis is a method of bio-mathematical modeling which assumes
that a biological system can be divided into a series of homogeneous compartments,
where the compartments interact by exchanging material. For compartmental models
used in pharmacokinetics, the material concentration varies with time depending on in-
dividual pharmacokinetics parameters [2]. If the appropriate parameters are known, then
by applying suitable pharmacokinetic equations, the concentration level in a particular
compartment may be predicted. Thus, a robust method of identifying and estimating
individual parameters is required. The parameter identification problem is a common
nonlinear estimation problem. It is the problem of estimating a model parameter that
occurs as a coefficient of a dynamic system state variable - either as a dynamic coefficient
or as measurement sensitivity. When this estimation problem is solved simultaneously
with the state estimation problem (via state vector augmentation), the linear model be-
comes nonlinear [6]. The extended Kalman filter (EKF) is one of the most popular and
intensely investigated estimation technique for nonlinear state estimation. It consists of
applying the standard Kalman filter equations to the first-order approximation of the
nonlinear model of the last estimate [1].

In [11], an adaptive EKF was developed for the first time to solve the nonlinear esti-
mation problem at the outputs of the compartment models that represented the ingestion
and subsequent metabolism of a drug in a given individual. The proposed method was
applied to the simulated data and it was shown that, due to its adaptive nature, it
successfully estimates both the time invariant and time varying parameters character-
izing the transfer rate between the compartments. A study is presented in [5] where
the dynamics of optical contrast agents ICG and methylene blue in an adenocarcinoma
rat tumor model were investigated. Furthermore some quantitative analysis were car-
ried out on ICG measurements employing an extremely complex nonlinear least-squares
fitting algorithm on the solution of the nonlinear equation obtained utilizing the ICG
compartmental model. The method employed for the quantitative analysis was not only
computationally expensive but also it was sensitive to the choice of initial values of the
parameters.

In this study we derive the adaptive EKF for the ICG compartmental model and
apply it to some of the experimentally observed data used in [5] in order to demonstrate
that the adaptive EKF also works on real data providing online estimation of ICG con-
centration of the compartments as well as the transcapillary permeability parameters.
This paper is organized as follows; the next section outlines the mathematical model and
problem statement, while the experimental results are presented in section 3. Finally,
some concluding remarks are given.
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2. The mathematical model and problem statement

In this section we first develop the two-compartment pharmacokinetic model for ICG
removal and transfer between the compartments. We then derive the adaptive EKF for
this model and apply it for parameter estimation.

2.1. The ICG Compartment Model. As mentioned previously, albumin-bound ICG
kinetics demonstrate macromolecular behavior, and its low transcapillary permeability
slows diffusion to a system where flow dependant vascular distribution effects are mini-
mal. In [15] it was shown that the existence of tumors increases capillary permeability,
allowing albumin-bound ICG molecules to escape from capillaries into the extravascular
extracellular space (EES). This makes it possible to come up with a simple model of
the concentration dynamics in terms of its distribution between plasma and EES. The
two-compartment model illustrated in Figure 1 has been employed in order to investigate
this behavior.

Figure 1. Two-compartment pharmacokinetic model of metabolic

elimination and transfer of ICG.

The rate of change of ICG concentration in the EES, Ce, is equal to the rate Cp at which
ICG is distributed from the plasma to the EES, minus the rate that Ce drains back to
the plasma compartment, given by

(2.1)
dCe(t)

dt
= kinCp(t) − koutCe(t),

where kin and kout are the rate coefficients related to capillary permeability, representing
the leakage into and extraction out of the EES respectively. Modeling the inward and
outward capillary permeabilities separately accounts for physiologic causes that affect
albumin movement [5].

Similarly, since all compartment models are based on the conservation of mass law, the
rate of change Cp of ICG concentration in the plasma is equal to the drainage rate from
EES to the plasma minus the leakage rate into the EES minus the metabolic clearance
in the kidneys and liver, given by

(2.2)
dCp(t)

dt
= −kinCp(t) + koutCe(t) − (A1e

α1t + A2e
α2t),
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where the last term in brackets on the right hand side of equation (2.2) is an approxima-
tion for the removal of ICG by metabolic process from the plasma compartment [7, 8], α1,
α2 are constants that describe the exponential metabolic clearance of ICG, and A1 + A2

is the initial ICG concentration in the plasma. However, the fact that the long term elim-
ination of ICG from the blood (i.e., plasma) is in the order of hours, [17] suggests that
α1 and α2 are very small, therefore, considering the short observation time, metabolic
clearance of the contrast agent could be ignored. Neglecting the metabolic clearance at
the kidneys and liver yields a two-compartment model, where the rate of change is given
as

(2.3)
dCp(t)

dt
= −kinCp(t) + koutCe(t).

Also, in the pharmacokinetic model presented here, it has been assumed that transcap-
illary leakage occurs only at the tumor site and that a small perturbation of the global
plasma concentration does not affect the bulk removal.

The differential equations given by equations (2.1) and (2.3) will later be used to
obtain the state space model for the two-compartment ICG pharmacokinetic model.

2.2. Mathematical model. Let us consider a general discrete-time stochastic system
represented by the state and measurement models given by

xk+1 = Φkxk + Bkuk + wk,(2.4)

yk = Hkxk + vk,(2.5)

where xk is an n × 1 system vector, yk is an m × 1 observation vector, Φk is an n × n
system matrix, uk is a p × 1 vector of the input forcing function, Bk is an n × p matrix,
Hk is an m × n matrix, wk is an n × 1 vector of zero mean white noise sequence and
vk is an m × 1 measurement error vector assumed to be a zero mean white sequence
uncorrelated with the wk sequence. The matrices Φk, Bk, Hk, Qk, Rk are assumed known
at time k. The covariance matrices wk and vk are defined by

E
(
wkw′

k

)
= Qkδkl,

E
(
vkv′

k

)
= Rkδkl,

E
(
wkv′

k

)
= 0,

where δkl is the Kronecker delta function. The optimum Kalman filter update equations
are

(2.6)

x̂k|k−1 = Φk−1x̂k−1 + Bk−1uk−1,

x̂k = x̂k|k−1 + Kk[yk − Hkx̂k|k−1],

Pk|k−1 = Φk−1Pk−1Φ
′
k−1 + Qk−1,

Pk = (I − KkHk)Pk|k−1,

where Kk, the optimum Kalman gain, is given by

(2.7) Kk = Pk|k−1H
′
k(HkPk|k−1H

′
k + Rk)−1,

In the above equations x̂k|k−1 is the a priori and x̂k is the a posteriori estimate of xk. Also,
Pk|k−1 and Pk are the covariance of the a priori and a posteriori estimates, respectively
[4]. In [10] a scalar, namely a forgetting factor, was proposed for the standard Kalman
filtering that was introduced in the error covariance equation to limit the memory of the
recursive least square,

(2.8) Pk|k−1 = α(Φk−1Pk−1Φ
′
k−1 + Qk−1).

This modification adds an adaptive nature to the standard filter which provides robust-
ness to the filter when time varying parameters are to be estimated. For α = 1 the
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resulting filter is the same as the standard Kalman filter, whereas for α > 1 the filter has
an adaptive nature via exponential data weighting. The idea behind using a forgetting
factor is to artificially emphasize the effect of current data by exponentially weighting
the observations. In the next section this modification will be expanded to the EKF to
yield an adaptive extended Kalman filter.

2.3. EKF as the Permeability Parameter Estimator. The state space model of
the metabolic removal and transfer of ICG between compartments has been obtained

in the following way. Let xk =
[
x1,k x2,k

]T
be the state vector containing the states

to be estimated at time k, where the states are defined as x1,k = Cp and x2,k = Ce.
Then, using the differential equations (2.1) and (2.3) and also applying a simple forward
Euler approximation (integration), the state space model of the two-compartment model
is obtained in the form

xk+1 =

[
x1,k+1

x2,k+1

]
=

[
1 − kin∆t kout∆t

kin∆t 1 − kout∆t

] [
x1,k

x2,k

]
,(2.9)

y(k) =
[
0 1

]
xk,(2.10)

where kin and kout are the rate coefficients related to capillary permeability to be es-
timated, known to satisfy the inequality kin > kout by [8], and ∆t is the integration
time interval subdivider. While this constitutes a good model to estimate the states, it
does not account for the unknown parameters kin and kout. Therefore, this model has
to be extended to include these parameters in the estimation process. For this purpose,

let Φk(θ) be a known vector that is a function of the unknown vector θ =
[
kin kout

]T
.

Here, θ is treated as a random variable and the objective is to identify θ. Also, we assume
that the random variable θ evolves according to,

(2.11) θk+1 = θk + ζk,

where ζk is any zero-mean white noise sequence uncorrelated with vk and with pre-
assigned positive definite variances Var(ζk) = Sk. In applications, Sk may be chosen as
Sk = S > 0 for all k. The system given by equations (2.9) and (2.10), together with the
assumption given in equation (2.11) and the assumption that the input forcing function
satisfies uk = 0, can be re-formulated as the nonlinear model:

[
xk+1

θk+1

]
=

[
Φk(θk)xk

θk

]
+

[
wk

ζk

]
,(2.12)

yk =
[
Hk 0

] [
xk

θk

]
+ vk.(2.13)

The EKF procedure (see the Appendix) can be applied to estimate the state vector,
which contains the parameter vector θk as one of its components. That is, θk, the vector
of rate coefficients related to the permeabilities, is estimated optimally in an adaptive
way. This procedure is called adaptive system identification in [1]. The extended Kalman
filtering process can then be applied to adaptively estimate the states and parameters.

Let us define the initial state and the corresponding covariance as

(2.14)

[
x̂0

θ̂0

]
=

[
E(x0)
E(θ0)

]
,

P0 =

[
Cov(x0) 0

0 S0

]
.
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Then the state prediction and predicted covariance, in the adaptive form, are given as
follows for k = 1, 2, . . .,

[
x̂k|k−1

θ̂k|k−1

]
=

[
Φk−1(θ̂k−1)x̂k−1

θ̂k−1

]
,

Pk|k−1 = α

[
Φk−1(θ̂k−1)

d

dθ
(Φk−1(θ̂k−1))x̂k−1

0 I

]

× Pk−1

[
Φk−1(θ̂k−1)

d

dθ
(Φk−1(θ̂k−1))x̂k−1

0 I

]T

+ α

[
Qk−1 0

0 Sk−1

]
.

The estimated state and the associated covariance are now given by

(2.15)

[
x̂k

θ̂k

]
=

[
x̂k|k−1

θ̂k|k−1

]
+ Kk

{
yk − [Hkx̂k|k−1]

}
,

Pk =
(
I − Kk

[
Hk 0

] )
Pk|k−1,

where Kk is the Kalman gain defined as

Kk = Pk|k−1

[
Hk 0

]′ ( [
Hk 0

]
Pk|k−1

[
Hk 0

]′
+ Rk

)−1

.

This concludes the derivation of the adaptive extended Kalman filter with forgetting
factor α that is used to discount old measurements.

3. Experimental results and discussion

The derived compartment model has been tested using some experimental data that
were kindly provided to us. Details of the experimental setup, and how the data were
collected can be found in [5]. Since this work deals with the collected date, here only a
very brief discussion regarding the experiments is given in order to put more emphasis on
the mathematical representation, along with parameter estimation. In the experiments,
bolus injections of the optical contrast agent ICG were administered to the rat through
the tail vein. The measurements were collected by placing the probe normal to the tumor
surface and probing the whole tissue including plasma. After injection, ICG rapidly
and completely binds to albumin, after which the kinetics of ICG are governed by the
temporal dynamics of albumin in and between the vascular compartment and the EES.
Healthy tissues would not let albumin bound ICG leak from the plasma into the EES [13].
However, under diseased conditions such as the tumors cause, the capillary permeability
of ICG-albumin can increase to a higher level, allowing it to move into the EES [15]. This
fact makes it possible to examine cancerous tissues through the use of a contrast agent,
ICG in this case, and the mathematical model derived in the previous section helps us
quantitatively analyze the changes that occur in and outside the compartments.

In the mathematical model, the initial ICG concentration in the plasma has been taken
as Cp(0) = 1. Also it was assumed that some leakage of ICG into the EES had occurred,
and the ICG concentration in the EES at t = 0 has been taken as Ce(0) = 0.1. Since the
extended Kalman estimator we have derived for this application estimates the states and
parameters concurrently, initial values of kin and kout also have to be defined. However,
the selected initial values for the permeability parameters are not of great importance,
as a well constructed mathematical model will quickly converge. The state vector x, that

is assumed to evolve according to equation (2.4), is defined as xk =
[
x1 x2 p1 p2

]T
,
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where x1 and x2 are the states at the output of the plasma and the EES compartments,
respectively, whereas p1 and p2 are the rate coefficients, i.e., kin and kout, respectively,
related to the capillary permeability to be estimated. Since the experiment through
which the measurements were collected assumed no input, the control input uk given in
equation (2.4) has been taken as zero¶, also since the change in the capillary permeability
could be considered time invariant during the short course of observation, the forgetting
factor α has been chosen to be 1, resulting in the Standard Extended Kalman filter.
However, by simply setting α > 1, the estimator derived here could be used to estimate
parameters that change as a function of time as well [11].

Initial values of the states and parameters have been taken as

x(0) =
[
1 0.1 0.02 0.01

]T
.

The standard deviation of the process noise has been determined by examining the mea-
sured data, and chosen as 0.149, while the measurement noise standard deviation has
been set at 0.075. Standard deviations of the parameters p1 and p2, that are embedded
in the innovation covariance matrix S, are 0.005 and 0.001 respectively.

The mathematical model assumes that there is no information about the rate coef-
ficients related to the capillary permeability, and produces estimations of them at each
scan. As reported in previous studies such as [3] and [12], and confirmed by simulations
in [11], the EKF is rather sensitive to its initialization, and to the selection of appro-
priate values of the arbitrary matrices, measurement covariance R and the process noise
covariance Q. Hence, the careful selection of the matrices R and Q is essential, as these
matrices play a central role in improving the convergence of the EKF. In [3] some criteria
were presented on the appropriate selection of these matrices. The rough values used in
the design of the EKF in this study have been reached by taking the suggestions made
in [3], and optimized through trial and error.

Figure 2. The observed ICG concentration and its pharmacokinetic fit

obtained using EKF
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¶For a non-zero control input i.e., uk 6= 0, the system is a non-closed system and the solution
to such systems with known control inputs is also available [8].
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In the experiment, the ICG concentration in the lump space, i.e. EES and plasma, was
monitored for 500 seconds. Figure 2 depicts the observed ICG concentration and the
pharmacokinetic fit obtained through the use of EKF. It is clearly seen that the derived
mathematical model provides a rather good fit to the observations, which indicates the
correctness of the model. Figure 3 presents the estimated ICG concentrations at outputs
of the compartments. The top figure shows the change of the ICG in the plasma com-
partment, Cp. Please note that the estimation of this compartmental output would not
be possible by utilizing other mathematical models, such as presented in [5], and this is
one of the novel outcomes that our proposed method offers. Monitoring the estimated
change in the plasma compartment could provide additional information regarding the
tumor that might help in deciding the treatment procedure for the tumor. It can be
easily verified that the change in both plasma and EES compartments is consistent with
the solution of the differential equations (2.1) and (2.3). Moreover, the estimated change
is also consistent with the physiological facts, as can be seen from the estimated Cp, the
contrast agent injected in vivo quickly escapes into the EES until the osmotic balance
has been established, after which the transfer rate between the compartments settles.

Figure 3. Estimated compartment outputs
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Estimated rate coefficients related to the capillary permeability in the presence of tumor
cells are given in Figure 4. As expected, kin reflects capillary permeability to ICG-
albumin, exchange surface area, tissue density and driving forces (transmural pressure
difference and concentration difference) from the plasma to the EES. In parallel, kout

has the same meaning, but from the EES to the plasma. As can be seen in Figure 4,
for steady state, the ratio kout/kin suggests that ICG-albumin leaks into the EES much
more quickly than it returns to the plasma, which conforms both to the mathematical
model and to physiological expectations.
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Figure 4. Estimated capillary permeabilities
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When compared to the nonlinear least-squares Levenberg-Marquart fitting algorithm
employed in [5] to estimate the change in ICG concentration in the compartments, and
the rate coefficients related to the capillary permeability, the EKF method proposed in
this paper has following advantages;

• The extended Kalman estimator is a much simpler approach that does not re-
quire extensive evaluation of complex equations.

• Not just the steady state values of the parameters but all changes both in the ICG
concentration and capillary permeability could be investigated very sensitively
throughout the observations.

• Since it has been shown that tumor vessel permeability to macromolecular blood
solutes correlates with tumor growth [14], comparison of estimated permeability
change before and after a particular treatment would yield important informa-
tion regarding the effectiveness of the treatment.

• The model presented here provides the rates of change for both the states and
parameters, independent of the initial values of the states and parameters in
question.

• Estimation of the outputs of both compartments is possible even when the mea-
surement from a particular compartment is not available.

• If the number of cells in the plasma is known, then the number of extracellular
cells could be determined with an appropriately constructed EKF, which means
the number of cells transferred to the other compartment can be estimated
online. This is very important for prognosis of tumor pathologies.
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4. Conclusions

In this study we have introduced a two-compartment pharmacokinetic model rep-
resenting the metabolic elimination and transfer of ICG between compartments in rat
tumors, and presented a method for the quantitative analysis of experimentally obtained
ICG concentration data. The proposed method provides online estimation of both the
concentration changes at the output of the compartments, namely the plasma and EES,
and the capillary permeabilities that govern the transfer. The EKF compares very fa-
vorably with complex nonlinear fitting algorithms, and produces extra information that
cannot be obtained with other methods. This would be useful in the analysis of tumor
cell behavior patterns in cancerous tissues.

Appendix

A state-space description of a system which is not necessarily linear will be called a
nonlinear model of the system. Consider a nonlinear model of the form

(A.1) xk+1 = fk(xk, uk) + wk,

(A.2) yk = gk(xk) + vk.

where fk and gk are vector-valued functions, wk and vk are uncorrelated, zero-mean
white noise sequences, with covariance matrices Qk and Rk, respectively. The adaptive
extended Kalman filter algorithm is as follows:

x̂0 = (x0),

P0 = Var (x0).

For k = 1, 2, . . .,

(A.3) Pk|k−1 = α
([ ∂fk−1

∂xk−1

(x̂k−1)
]
Pk−1

[ ∂fk−1

∂xk−1

(x̂k−1)
]′

+ Qk−1

)
,

(A.4) x̂k|k−1 = fk−1(x̂k−1),

(A.5) Kk = Pk|k−1

[ ∂gk

∂xk

(x̂k|k−1)
]′[[ ∂gk

∂xk

(x̂k|k−1)
]
Pk|k−1

[ ∂gk

∂xk

(x̂k|k−1)
]′

+ Rk

]−1

,

(A.6) Pk =
[
I − Kk

[ ∂gk

∂xk

(x̂k|k−1)
]]

Pk|k−1,

(A.7) x̂k|k = x̂k|k−1 + Kk[yk − gk(x̂k|k−1)].
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