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Abstract
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free setting of textures and investigate the relationship with dimetrics
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1. Introduction

In a topological space X, the topology can be determined by the Kuratowski closure
axioms. When x is a closure point of A, we may say that “x is near A” and then a
continuous function f : X → Y may be described as one exhibiting the property “if x is
near A, then f(x) is near f(A)”.

For the case in which X is a pseudometric space with pseudometric d, this nearness can
be defined in a natural way. Let D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B} and define A to be
near B if and only if D(A,B) = 0. Then the closure of A is cl(A) = {x | D(A, {x}) = 0}.
Let (Y, e) be another pseudometric space, E be defined in a similar manner to D, and
f a function from X to Y . Then f is uniformly continuous if and only if D(A,B) = 0
implies E(f(A), f(B)) = 0. Thus we see that this nearness relation between the subsets
is closely connected with topology, continuity and uniformity. In 1951, by investigating
the properties of this nearness relation, Efremovic generalized this notion to an arbitrary
set X and introduced the proximity spaces. Later, several authors continued to study
proximity spaces, quasi-proximity spaces and other generalized proximity spaces.

Let us recall the definition of quasi-proximity [11]. Let X be a set. A binary relation
η on P(X) satisfying the following conditions

(1) AηB implies A 6= ∅, B 6= ∅,
(2) (A ∪B)ηC iff AηC or BηC,
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(3) Aη(B ∪ C) iff AηB or AηC,
(4) if A 6ηB, there exists E ⊆ X such that A 6ηE and (X \E) 6ηB,
(5) A ∩B 6= ∅ implies AηB.

is called a quasi-proximity on X. If η satisfies the symmetry condition AηB iff BηA, then
it is called a proximity on X. The (P4) axiom is called the strong axiom, and it plays an
important role in the theory of proximity spaces.

A quasi-proximity induces a topology on X via the closure operator

A 7→ cl(A) = {x | Aη{x}}.

This topology will be denoted by τ (η). If η is a proximity, then the induced topology
τ (η) is completely regular and thus the space (X, τ (η)) is uniformizable.

Ditopological spaces [1, 2] were introduced by L. M. Brown as a natural extension
of the work of the second author on the representation of lattice valued topologies by
bitopologies [9]. However, in place of the full lattice of subsets of some base set S, atten-
tion is focused on a suitable subfamily of subsets, called a texturing of S. In this setting
bitopologies are replaced by dichotomous topologies, or ditopologies for short. Fuzzy sets
can be represented as textures [4], and the concept of textures provides a complement-free
framework for generalizing topology related structures such as uniformities and metrics
[12]. Some results on ditopological texture spaces may be found in [3, 5, 6, 7].

Proximities and quasi-proximities constitute an important and intensely investigated
area in the field of classical and fuzzy topological spaces, because they possess rich topo-
logical properties as well as characterizing totally bounded uniformity spaces. For this
reason, the authors believe that adapting the notion of proximity to a textural setting
and investigating its relation with dimetrics and uniformities will give important results
in the theory of textures. However, textures are generally not closed under the opera-
tion of taking the complement of a set, so the usual proximity definition is not suitable
for textures since the definition requires the complement. Although this problem can be
avoided by considering generalized proximities having a weaker form of the strong axiom,
such as in [10, 14]), in this paper we prefer to base our work on the classical definition
of quasi-proximity. Hence we begin by giving an alternative description of a classical
quasi-proximity by considering not the nearness of two sets A and B, but the nearness
of A and X \B. The axioms of the resulting structure, called here an extremity because
if A is near to X \ B it is on the “extremity” of B, do not involve the set complement
explicitly and so can be generalized to the textural setting.

2. Preliminaries

Let S be a set. We recall [3] that a texturing on S is a point separating, complete,
completely distributive lattice S of subsets of S with respect to inclusion, which contains
S, ∅, and for which meet ∧ coincides with intersection ∩ and finite joins ∨ with unions
∪. The pair (S, S) is then known as a texture.

In a texture, arbitrary joins need not coincide with unions, and clearly this will be so
if and only if S is closed under arbitrary unions. In this case (S, S) is said to be plain.
In general, a texturing of S need not be closed under taking the set complement, but
it may be that there exists a mapping σ : S → S satisfying σ(σ(A)) = A, ∀A ∈ S and
A ⊆ B =⇒ σ(B) ⊆ σ(A), ∀A,B ∈ S. In this case σ is called a complementation on (S, S)
and (S, S, σ) is said to be a complemented texture.

For s ∈ S the set Ps is defined by Ps =
⋂

{A ∈ S | s ∈ A}, and is therefore the
smallest element of S containing s. The sets Ps play an important role in the study of
textures, along with the sets Qs =

∨

{A ∈ S | s 6∈ A} =
∨

{Pu | u ∈ S, s 6∈ Pu}. The sets
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Ps, Qs are known as the p-sets and q-sets of (S, S), respectively. Together they enable
the formulation of a powerful concept of duality.

2.1. Examples.

(1) For any set X, (X,P(X), πX), πX(Y ) = X \ Y for Y ⊆ X, is the comple-
mented discrete texture representing the usual set structure of X. Clearly,
Px = {x}, Qx = X \ {x} for all x ∈ X. Hence, (X,P(X), πX) is plain.

(2) S = {a, b, c} and S = {∅, {b}, {a, b}, {b, c}, S}. Clearly Pa = {a, b}, Pb = {b},
Pc = {b, c}, Qa = {b, c}, Qb = ∅, and Qc = {a, b}. Thus (S, S) is a plain texture.
No complementation can be defined on this texture.

Let us recall that the core of a set A in S is the set

A♭ =
⋂

{

⋃

{Aj | j ∈ J} | {Aj | j ∈ J} ⊆ S, A =
∨

{Aj | j ∈ J}}.

2.2. Theorem. [5] If (S, S) is a texture, then the following statements hold:

(1) s /∈ A =⇒ A ⊆ Qs =⇒ s /∈ A♭ for all s ∈ S,A ∈ S.

(2) A♭ = {s ∈ S | A 6⊆ Qs} for all A ∈ S.

(3) (
∨

i∈I

Ai)
♭ =

⋃

i∈I

A♭
i for all s ∈ S,A ∈ S.

(4) A is the smallest element of S containing A♭.
(5) For A,B ∈ S, if A 6⊆ B then there exists s ∈ S with A 6⊆ Qs and Ps 6⊆ B.
(6) A =

⋂

{Qs | Ps 6⊆ A} for all A ∈ S.
(7) A =

∨

{Ps | A 6⊆ Qs} for all A ∈ S.

We see from (6) and (7) that the duality mentioned above is between ∩ and ∨, Qs

and Ps, and Ps 6⊆ A and A 6⊆ Qs. To emphasize this duality we normally write Ps 6⊆ A
in place of s /∈ A.

If (S, S), (T,T) are textures the product texturing S⊗T on S×T consists of arbitrary
intersections of sets of the form (A× T )∪ (S ×B) for A ∈ S, B ∈ T [4]. For s ∈ S, t ∈ T
we have P(s,t) = Ps × Pt, Q(s,t) = (S ×Qt) ∪ (Qs × T ).

In the following definition we consider (S × T,P(S) ⊗ T) rather than (S × T, S ⊗ T),

and to avoid confusion, we use the notation P (s,t), Q(s,t) for the p-sets and q-sets in this

texture. Hence, P (s,t) = {s} × Pt and Q(s,t) = (S × Qt) ∪ ((S \ {s}) × T ). (Similarly,

P (t,s) and Q(t,s) denote the p-sets and q-sets of (T × S,P(T ) ⊗ S)).

2.3. Definition. [5] Let (S, S) and (T,T) be textures. Then

(1) r ∈ P(S) ⊗ T is called a relation from (S, S) to (T,T) if it satisfies

(R1) r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t),

(R2) r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

(2) R ∈ P(S) ⊗ T is called a corelation from (S, S) to (T,T) if it satisfies

(CR1) P (s,t) 6⊆ R, Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R,

(CR2) P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.
(3) A pair (r,R) where r is a relation and R a corelation from (S, S) to (T,T) is

called a direlation from (S, S) to (T,T).

Normally relations will be denoted by lower case and corelations by upper case letters,
as in the above definition. If (r1, R1), (r2, R2) are both direlations from (S, S) to (T, T)
we write (r1, R1) ⊑ (r2, R2) if r1 ⊆ r2 and R2 ⊆ R1.

For a general texture (S,S) we define i(S,S) =
∨

{P (s,s) | s ∈ S} and I(S,S) =
⋂

{Q(s,s) |

s ∈ S}. It is trivial to verify that i(S,S) 6⊆ Q(s,t) ⇐⇒ Ps 6⊆ Qt, P (s,t) 6⊆ I(S,S) ⇐⇒ Pt 6⊆
Qs, whence i(S,S) is a relation and I(S,S) a corelation on (S, S), that is from (S,S) to
(S,S).
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2.4. Definition. [5]

(1) The direlation (i(S,S), I(S,S)) is called the identity direlation on (S, S). Where
there can be no confusion it can be denoted by (iS , IS), or even (i, I).

(2) A direlation (r,R) on (S, S) is called reflexive if (i, I) ⊑ (r,R). In particular the
identity direlation is reflexive.

2.5. Definition. [5]

(1) Let (S, S), (T, T) be textures and (r,R) a direlation from (S, S) to (T,T). Then
the direlation (r,R)← = (R←, r←) from (T,T) to (S, S) defined by

r← =
∨

{Q(t,s) | r 6⊆ Q(s,t)}, R
← =

⋂

{P (t,s) | P (s,t) 6⊆ R}

is called the inverse of (r,R). Likewise, r← is called the inverse of r and R← the
inverse of R.

(2) A direlation (r,R) on (S,S) is called symmetric if (r,R)← = (r,R). For any
texture (S, S), the identity direlation is clearly symmetric.

In the case of discrete textures we call an element ϕ of P(S×T ) = P(S)⊗P(T ), that is
a binary relation from S to T in the ordinary sense, a point relation from S to T . Clearly,
ϕ is both a relation and a corelation from the texture (S,P(S)) to the texture (T,P(T )).
Under both interpretations the inverse is given by ϕ← = (ϕ−1)c = (ϕc)−1; where ϕ−1 =
{(t, s) | (s, t) ∈ ϕ} is the usual point inverse, and c denotes set complementation.

2.6. Definition. [5] Let (S, S), (T,T) be textures, (r,R) a direlation from (S, S) to (T, T)
and A ∈ S, B ∈ T.

(1) The A-section of r is the element r→A of T defined by

r→A =
∨

{Qt | ∀ s, r 6⊆ Q(s,t) =⇒ A ⊆ Qs}.

(2) The A-section of R is the element R→A of T defined by

R→A =
⋂

{Pt | ∀ s, P (s,t) 6⊆ R =⇒ Ps ⊆ A}.

(3) The B-presection of r is the element r←B of S defined by

r←B = (r←)→B =
∨

{Ps | ∀t, r 6⊆ Q(s,t) =⇒ Pt ⊆ B}.

(4) The B-presection of R is the element R←B of S defined by

R←B = (R←)→B =
⋂

{Qs | ∀t, P (s,t) 6⊆ R =⇒ B ⊆ Qt}.

Clearly, the sections and the presections preserve inclusion.

2.7. Definition. [5] Let (S, S), (T,T), (M,M) be textures.

(1) If r is a relation from (S, S) to (T,T) and u a relation from (T, T) to (M,M)
then their composition is the relation u ◦ r from (S, S) to (M,M) defined by

u ◦ r =
⋂

{P (s,m) | ∃ t ∈ T with r 6⊆ Q(s,t) and u 6⊆ Q(t,m)}.

(2) If R is a corelation from (S, S) to (T, T) and U a corelation from (T,T) to (M,M)
then their composition is the corelation U ◦R from (S, S) to (M,M) defined by

U ◦R =
∨

{Q(s,m) | ∃t ∈ T with P (s,t) 6⊆ R and P (t,m) 6⊆ U}.

(3) With u, r, U,R as above, the composition of the direlations (r,R), (u,U) is the
direlation (u,U) ◦ (r,R) = (u ◦ r, U ◦R).

(4) A direlation (r,R) on (S, S) is called transitive if (r,R) ⊑ (r,R) ◦ (r,R). In this
case r and R are also said to be transitive.
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No confusion will be caused by the use of the single symbol ◦ to denote these various
compositions. Composition combines with sections and presections as one would expect.

2.8. Definition. [12] Let (r,R), (u,U) be direlations from (S,S) to (T,T). Then we set

r ⊓ u =
∨

{P (s,t) | ∃s
′ ∈ S with Ps 6⊆ Qs′ and r, u 6⊆ Q(s′,t)},

R ⊔ U =
⋂

{Q(s,t) | ∃s
′ ∈ S with Ps′ 6⊆ Qs and P (s′,t) 6⊆ R,U}, and

(r,R) ⊓ (u,U) = (r ⊓ u, R ⊔ U).

Note that r ⊓ u is the greatest lower bound of r and u in the set of all relations on
(S,S) to (T,T), and R ⊔ U the least upper lower bound of R and U in the set of all
corelations on (S, S) to (T,T), ordered by inclusion.

2.9. Definition. [13] Let (r,R) be a direlation between the complemented textures
(S,S, σ) and (T,T, θ).

(1) The complement r′ of the relation r is the co-relation r′ =
⋂

{Q(s,t) | ∃s1, t1 with

r 6⊆ Q(s1,t1), σ(Qs) 6⊆ Qs1
and Pt1 6⊆ θ(Pt)}.

(2) The complement R′ of the corelation R is the relation R′ =
∨

{P (s,t) | ∃s1, t1
with P (s1,t1) 6⊆ R, Ps1

6⊆ σ(Ps) and θ(Qt) 6⊆ Qt1}.
(3) The complement (r,R)′ of the direlation (r,R) is the direlation (r,R)′ = (R′, r′).

The direlation (r,R) is said to be complemented if (r,R)′ = (r,R).

2.10. Definition. [5] Let (f, F ) be a direlation from (S,S) to (T,T). Then (f, F ) is
called a difunction from (S, S) to (T,T) if it satisfies the following two conditions:

(DF1) For s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃t ∈ T with f 6⊆ Q(s,t) and P (s′,t) 6⊆ F .

(DF2) For t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.

It is clear that (iS , IS) is a difunction on (S, S), in which case it is called the identity
difunction. In the particular case of discrete textures (X,P(X)), (Y,P(Y )), the pair
(ϕ,ψ) of point relations from X to Y is a difunction if and only if ϕ is a point function
ϕ : X → Y and ψ = ϕc.

2.11. Theorem. [5] For a direlation (f, F ) from (S, S) to (T,T) the following are equiv-
alent:

(1) (f, F ) is a difunction.
(2) The following inclusions hold:

(i) f←(F→A) ⊆ A ⊆ F←(f→A), ∀A ∈ S, and
(ii) f→(F←B) ⊆ B ⊆ F→(f←B), ∀B ∈ T .

(3) f←B = F←B, ∀B ∈ T .

2.12. Definition. [1, 3] A dichotomous topology, or ditopology for short, on a texture
(S,S) is a pair (τ, κ) of subsets of S, where the set τ of open sets satisfies

(1) S, ∅ ∈ τ , (2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and (3) Gi ∈ τ, i ∈ I =⇒
∨

i

Gi ∈ τ ,

and the set κ of closed sets satisfies

(1) S, ∅ ∈ κ, (2) K1,K2 ∈ κ =⇒ K1 ∪K2 ∈ κ and (3) Ki ∈ κ, i ∈ I =⇒
⋂

i

Ki ∈ κ.

Hence a ditopology is essentially a ”topology” for which there is no priori relation
between the open and closed sets. When a complementation σ is given, the ditopology
(τ, κ) is said to be complemented if κ = σ(τ ).

For A ∈ S the closure of A is the set [A] =
⋂

{K ∈ κ | A ⊆ K}, and the interior of
A the set ]A[ =

∨

{G ∈ τ | G ⊆ A}. As in the classical case, the operator int : S → S,
A 7→]A[ and the operator cl : S → S, A 7→ [A] have the following properties
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(I1) int(S) = S.
(I2) int(A) ⊆ A.
(I3) int(A ∩B) = int(A) ∩ int(B).
(I4) int(int(A)) = A.

and

(C1) cl(∅) = ∅.
(C2) A ⊆ cl(A).
(C3) cl(A ∪ B) = cl(A) ∪ cl(B).
(C4) cl(cl(A)) = A.

Conversely, given a texture (S, S) and operators int : S → S satisfying (I1) through (I4)
and cl : S → S satisfying (C1) through (C4), if we define τ = {G ∈ S | G = int(G)} and
κ = {K ∈ S | K = cl(K)} then we obtain a ditopology (τ, κ) on (S, S) whose closure
and interior operators are just the operators int and cl. More details about products of
textures, direlations, difunctions and ditopologies can be found in [2, 3, 4, 5, 6, 7, 12].

3. Di-extremities

In this section we will adapt classical quasi-proximities to a textural setting. To do
that, we will first give an alternative description of a classical quasi-proximity as outlined
in the introduction.

Let η be a quasi-proximity on X and define a binary relation δη on P(X) by

AδηB ⇐⇒ Aη(X \B).

Then it is straightforward to check that δ = δη satisfies the following properties:

(1) AδB implies A 6= ∅ and B 6= S.

(2) (A ∪B)δC iff AδC or BδC.

(3) Aδ(B ∩ C) iff AδB or AδC.

(4) If A 6 δB, there exists E ⊆ X such that A 6 δE and E 6 δB.

(5) A 6 δB implies A ⊆ B.

We will call δη the extremity on X corresponding to η. Conversely if the binary relation

δ on P(X) satisfies (1) through (5) then by setting AηB ⇐⇒ Aδ(X \ B), one obtains a

quasi-proximity η on X whose corresponding extremity δη is just δ. Thus we see that
extremities on X correspond precisely to quasi-proximities on X.

We note that we can also get a dual structure δη by setting AδηB ⇐⇒ Bη(X \ A).

This is related to δη by the “symmetry relation” AδηB ⇐⇒ BδηA.

We observe that the set complement is not directly involved in the axioms for δη (or
those for δη). This suggests the following definition for the textural case.

3.1. Definition. Let (S,S) be a texture, δ, δ two binary relations on S. Then δ = (δ, δ)
is called a di-extremity on (S, S) if

(E1) AδB implies A 6= ∅, B 6= S.

(E2) (A ∪B)δC iff AδC or BδC.

(E3) Aδ(B ∩ C) iff AδB or AδC.

(E4) If A 6 δB, there exists E ∈ S such that A 6 δE and E 6 δB.

(E5) A 6 δB implies A ⊆ B.

(DE) AδB ⇐⇒ BδA.

(CE1) AδB implies A 6= S,B 6= ∅.
(CE2) Aδ(B ∪ C) iff AδB or AδC.
(CE3) (A ∩B)δC iff AδC or BδC.
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(CE4) If A 6 δB, there exists E ∈ S such that A 6 δE and E 6 δB.

(CE5) A 6 δB implies B ⊆ A.

In this case it is said that δ is the extremity and δ the co-extremity of δ. Also, (S, S, δ) is
known as a di-extremial texture space.

Note that when giving examples it will clearly suffice to give only δ satisfying the
extremity conditions, since DE may then be used to define δ, which will automatically
satisfy the co-extremity conditions.

Let η be a quasi-proximity on X. Then δη = (δη, δη) is the di-extremity on the discrete

texture (X,P(X)) corresponding to η. In fact, every di-extremity on (X,P(X)) arises in
this way from some quasi-proximity, so there is a bijection between the quasi-proximities
on X and di-extremities on (X,P(X)). Moreover we should note that the proximities
on X will be characterized in terms of the corresponding di-extremities later on when
complemented textures are considered.

3.2. Lemma. Let δ = (δ, δ) be a di-extremity on (S, S). Then,

(1) AδB,A ⊆ C,D ⊆ B =⇒ CδD.

(2) If there exists s ∈ S such that AδQs and PsδB, then AδB.
(3) AδB,C ⊆ A,B ⊆ D =⇒ CδD.
(4) If there exists s ∈ S such that AδPs and QsδB, then AδB.

(5) (E5) is equivalent to (A 6⊆ Qs implies AδQs).
(6) (CE5) is equivalent to (Ps 6⊆ A implies AδPs).

Proof. It is straightforward to verify (1), (3), (5) and (6), and (4) is similar to (2).

(2) Let AδQs and PsδB for some s ∈ S, and suppose A 6 δB. Then by (E4), there

exists E ∈ S such that A 6 δE and E 6 δB. We have either Ps ⊆ E or Ps 6⊆ E. If Ps ⊆ E,
then EδB by (1) and this is a contradiction. If Ps 6⊆ E then E ⊆ Qs so AδE by (1) and

again we have a contradiction. That is, if AδQs and PsδB then AδB. �

Our aim now is to define and investigate the ditopology induced by a di-extremity.
Let (S, S) be a texture, δ a di-extremity on (S, S) and for any A ∈ S, put

int(A) =
⋂

{

Qs | PsδA
}

and cl(A) =
∨

{

Ps | QsδA
}

.

3.3. Lemma. The functions int : (S,S) → (S, S) and cl : (S, S) → (S, S) have the
following properties:

(1) A 6⊆ int(B) implies ∃s ∈ S such that PsδB and A 6⊆ Qs.

(2) PsδB implies int(B) ⊆ Qs.

(3) A 6 δB implies A ⊆ int(B).
(4) cl(A) 6⊆ B implies ∃s ∈ S such that QsδA and Ps 6⊆ B.
(5) QsδB implies Ps ⊆ cl(B).
(6) A 6 δB implies cl(B) ⊆ A.

(7) int(A) =
∨

{Ps | Ps 6 δA}.
(8) cl(A) =

⋂

{Qs | Qs 6 δA}.

(9) Ps 6 δB implies Ps ⊆ int(B).
(10) Qs 6 δB implies cl(B) ⊆ Qs.

Proof. We will prove (3) and leave the other results to the interested reader.

(3) Suppose A 6 δB and A 6⊆ int(B). Then by (1), there exists s ∈ S such that PsδB

and A 6⊆ Qs. By (E5), AδQs and by lemma 3.2(2), AδB which is a contradiction. �
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3.4. Theorem. Let δ = (δ, δ) be a di-extremity on (S, S). The function int : S → S,

int(A) =
⋂

{Qs | PsδA, s ∈ S} satisfies the interior axioms and the function cl : S → S,
cl(A) =

∨

{Ps | QsδA, s ∈ S} satisfies the closure axioms.

Proof. We will show the interior axioms, leaving the closure axioms to the interested
reader.

(I1) Clear by the definition.

(I2) Take Ps 6⊆ A. Then there exists y ∈ S such that Ps 6⊆ Qy and Py 6⊆ A. PyδA
by (E5) and int(A) ⊆ Qy by the definition of int. Therefore Ps 6⊆ int(A). Hence we get
int(A) ⊆ A.

(I3) It is easy to observe that for any A,B ∈ S, A ⊆ B =⇒ int(A) ⊆ int(B). From
this observation we get int(A ∩ B) ⊆ int(A) ∩ int(B). To show the reverse inclusion,

take Ps 6⊆ int(A ∩ B). Then there exists y ∈ S such that Pyδ(A ∩ B) and Ps 6⊆ Qy.

By (E3), PyδA or PyδB and we get int(A) ⊆ Qy or int(B) ⊆ Qy. Therefore we get
int(A) ∩ int(B) ⊆ Qy. Thus Ps 6⊆ int(A) ∩ int(B). Hence int(A) ∩ int(B) = int(A ∩B).

(I4) It is clear that int(int(A)) ⊆ int(A) by (I2). Now take int(A) 6⊆ Qx for any

x ∈ X. Then there exists y ∈ S such that int(A) 6⊆ Qy and Py 6⊆ Qx. Now Py 6 δA
since int(A) 6⊆ Qy, and by (E4) there exists E ∈ S such that Py 6 δE and E 6 δA. We have

E ⊆ int(A) by Lemma 3.3(3) and we obtain Py 6 δint(A) by Lemma 3.2(1). If we use
Lemma 3.3(3) again, we get Py ⊆ int(int(A)). Therefore int(int(A)) 6⊆ Qx. Hence we get
int(int(A)) = int(A). �

3.5. Definition. Let (S, S) be a texture and δ = (δ, δ) a di-extremity on (S, S). Then
the topology induced by δ is denoted by τ (δ) and consists of all the sets A ∈ S such that
A = int(A). Similarly the cotopology induced by δ is denoted by κ(δ) and consists of all

the sets A ∈ S such that A = cl(A). The ditopology induced by δ = (δ, δ) is denoted by
(τ (δ), κ(δ)).

The following proposition and definition are needed to characterize proximities on X
in terms of the corresponding di-extremities on (X,P(X), πX).

3.6. Proposition. Let δ = (δ, δ) be a di-extremity on a complemented texture (S, S, σ).

Define δ′ = σ(δ) = (δ′, δ′) where for all A,B ∈ S,

Aδ′B ⇐⇒ σ(A)δσ(B) and Aδ′B ⇐⇒ σ(A)δσ(B).

Then δ′ is a di-extremity on (S, S, σ).

Proof. We will prove that the (E4) axiom holds. The other axioms can be shown in a sim-
ilar manner and the details are omitted. Let A 6δ′B. Then by the definition, σ(A) 6 δσ(B).

Since δ satisfies (CE4), there exists F ∈ S such that σ(A) 6 δF and F 6 δσ(B). Now by

setting E = σ(F ) we get σ(A) 6 δσ(E) and σ(E) 6 δσ(B). Again by the definition, A 6 δ′E

and E 6 δ′B. �

3.7. Definition. The di-extremity δ′ defined in proposition 3.6 is said to be complement
of δ. The di-extremity δ is said to be complemented if δ = δ′.

3.8. Theorem. Let δ be a complemented di-extremity on (S,S, σ). Then ditopology
induced by δ is a complemented ditopology.

Proof. Let δ = δ′ and take G ∈ τ (δ). Suppose cl(σ(G)) 6⊆ σ(G). Then there exists
s ∈ S such that cl(σ(G)) 6⊆ σ(Ps) and σ(Qs) 6⊆ σ(G) by [5, Lemma 2.19(2)]. From
cl(σ(G)) 6⊆ σ(Ps) we get σ(Ps)δσ(G) by Lemma 3.3(6). On the other hand, σ(Qs) 6⊆
σ(G) =⇒ int(G) = G 6⊆ Qs =⇒ Ps 6 δG by Lemma 3.3(2), and by the assumption
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δ = δ′, we get Ps 6 δ′G, or equivalently σ(Ps) 6 δσ(G), which is a contradiction. Thus

cl(σ(G)) = σ(G) or equivalently σ(G) ∈ κ.

Similarly it can be shown that if K ∈ κ then σ(K) ∈ τ . �

3.9. Examples. (1) Let X be a set and η a proximity on X in the usual sense. Define

AδB ⇐⇒ Aη(X −B) and AδB ⇐⇒ Bη(X − A). Then δ = (δ, δ) is a complemented di-
extremity on (X,P(X), πX). At the beginning of this section, we have already mentioned
that δ satisfies the di-extremity axioms. Now let us see that δ is complemented. Indeed,
Aδ′B ⇐⇒ (X \ A)δ(X \ B) ⇐⇒ (X \ B)ηA ⇐⇒ Aη(X \ B) ⇐⇒ AδB, and similarly
Aδ′B ⇐⇒ AδB. Moreover κ(η) = {x | Aη{x}} = {x | (X \ {x})δA} =

∨

{Px | QxδA} =
κ(δ) and τ (η) = πX(κ(η)) = πX(κ(δ)) = τ (δ) since δ is complemented.

Conversely let δ be any complemented di-extremity on (X,P(X), πX). DefineAηB ⇐⇒
Aδ(X \ B) ⇐⇒ Bδ(X \ A). We already know that η is a quasi-proximity on X in
the usual sense. Now let us see that η satisfies the symmetry axiom. AηB ⇐⇒
Aδ(X \ B) ⇐⇒ Aδ′(X \ B) ⇐⇒ (X \ A)δB ⇐⇒ Bδ(X \ A) ⇐⇒ BηA. Moreover

κ(δ) =
∨

{Px | AδQx} = {x | Aη{x}} = κ(η). Thus we see that complemented di-
extremities on (X,P(X), πX) correspond exactly to the classical proximities on X.

(2) Let (S, S) be a texture. The extremity δ defined by AδB ⇐⇒ A 6⊆ B is called the
discrete extremity on (S, S), and the co-extremity δ defined by AδB ⇐⇒ B 6⊆ A is called
the discrete co-extremity on (S, S). Clearly, τ (δ) and κ(δ) are the discrete topology and
discrete cotopology on (S, S), respectively.

(3) Let (S, S) be a texture. The extremity δ defined byAδB ⇐⇒ A 6= ∅, B 6= S is called
the trivial extremity on (S, S), and the co-extremity δ defined by AδB ⇐⇒ B 6= ∅, A 6= S
is called the trivial co-extremity on (S, S). Clearly, τ (δ) and κ(δ) are the trivial topology
and trivial cotopology on (S, S), respectively.

(4) Let (S, S) be the texture of Example 2.1(2). Define for each A,B ∈ S, ∅6 δB, A 6 δS,

{b}6 δ{b, c} and {b, c}6 δ{b, c}, all other pairs being related under δ. Then δ is an extremity
on (S, S). It is easy to verify that τ (δ) = {∅, {b, c}, S} and κ(δ) = {∅, {b, c}, S}.

3.10. Proposition. Let δ = (δ, δ) be a di-extremity and (τ (δ), κ(δ)) the ditopology in-
duced by δ. Then the following statements hold:

(1) AδB if and only if Aδint(B).
(2) AδB if and only if Aδcl(B).

Proof. We will prove (1) and leave (2) to the interested reader.

(1) The “only if” part is clear by Lemma 3.2(1) since int(B) ⊆ B. For the “if” part,

let A 6 δB. Then there exists E ∈ S such that A 6 δE and E 6 δB. Then E ⊆ int(B) by

Lemma 3.3(3), and A 6 δint(B) by Lemma 3.2(1). �

The following definition is a natural extension of proximal continuity.

3.11. Definition. Let (S, S, δ1) and (T,T, δ2) be di-extremial texture spaces, and (f, F ) :
(S,S) → (T,T) a difunction. Then (f, F ) is called extremial bicontinuous if it satisfies
one, and hence both, of the following equivalent conditions:

(1) Aδ1B implies f→Aδ2F
→B for all A,B ∈ S.

(2) Aδ1B implies F→Aδ2f
→B for all A,B ∈ S.

Note that the equivalence of these conditions comes from the (DE) axiom. Moreover,
the following lemma holds as in the classical case and will be used in later proofs.
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3.12. Lemma. Let (S, S, δ1) and (T,T, δ2) be di-extremial texture spaces, and (f, F ) :
(S,S) → (T,T) a difunction. Then (f, F ) is extremial bicontinuous if and only if it
satisfies one, and hence both, of the following equivalent conditions:

(1) C 6 δ2D implies f←C 6 δ1f
←D for all C,D ∈ T.

(2) C 6 δ
2
D implies f←C 6 δ

1
f←D for all C,D ∈ T.

Proof. We will show that (1) is equivalent to Definition 3.11 (1). The equivalence of (2)
and Definition 3.11 (2) can be shown in a similar way.

Let (f, F ) be extremial bicontinuous and suppose there exists C,D ∈ T such that

C 6 δ2D and f←Cδ1f
←D. Then f→(f←C)δ2F

→(f←D) by extremial bicontinuity. But
f→(f←C) ⊆ C and D ⊆ F→(f←D) by Theorem 2.11(2), so by Lemma 3.2(1) we get

Cδ2D, which is a contradiction.

Now let C 6 δ2D =⇒ f←C 6 δ1f
←D for all C,D ∈ T and suppose there exists A,B ∈ S

such that Aδ1B and f→A 6 δ2F
→B. Then we have f←(f→A) 6 δ2f

←(F→B) by hypothesis,

and since A ⊆ f←(f→A) and f←(F→B) ⊆ B by Theorem 2.11(2), we get A 6 δ1B by

Lemma 3.2(1). This result contradicts Aδ1B. �

3.13. Theorem. Let δ1 be a di-extremity on (S, S), δ2 a di-extremity on (T, T) and
(f, F ) : (S, S) → (T,T) an extremial bicontinuous difunction. Then (f, F ) is also bicon-
tinuous with respect to the induced ditopologies.

Proof. Take G ∈ τ (δ2), equivalently G = intδ2(G). To show f←G ∈ τ (δ1), we will show
intδ1(f←G) = f←G. Suppose f←G 6⊆ intδ1(f←G). Then there exists s ∈ S such that
f←G 6⊆ Qs and Ps 6⊆ intδ1(f←G). By the definition of presection, there exists t ∈ T
such that P (s,t) 6⊆ F and G 6⊆ Qt. From P (s,t) 6⊆ F , and using [5, Lemma 2.6], we get

F←Pt 6⊆ Qs and so f←Ptδ1Qs by (E5). From Ps 6⊆ intδ1f
←G and using Lemma 3.3(3),

we get Psδ1f
←G. Thus by Lemma 3.2(2), f←Ptδ1f

←G. On the other hand, Pt 6 δ2G
since G = intδ2(G) 6⊆ Qt. Therefore f←Pt 6 δ1f

←G since (f, F ) is extremial bicontinuous.
This is a contradiction.

The cotopology part is similar and is omitted. �

3.14. Proposition. Let (S, S, δ) be a di-extremial texture space. Then the following hold:

(1) The identity difunction (S, S, δ) is extremial bicontinuous.
(2) The composition of extremial bicontinuous difunctions is extremial bicontinuous.

Proof. (1) Clear by the definition of the identity difunction.

(2) Let (S, S, δ1), (T,T, δ2), (M,M, δ3) be di-extremial texture spaces and (f, F ) :
(S,S, δ1) → (T, T, δ2), (q,Q) : (T,T, δ2) → (M,M, δ3) extremial bicontinuous difunc-

tions. Suppose Aδ1B. Then by the extremial bicontinuity of (f, F ), f→Aδ2F
→B. Since

f→A,F→B ∈ T, by the extremial bicontinuity of (q,Q), we get q→(f→A)δ3Q
→(F→B),

or equivalently (qof)→Aδ3(QoF )→B. Hence (q ◦ f,Q ◦F ) is extremial bicontinuous. �

The following proposition verifies that extremial bicontinuity really does generalize
proximal continuity.

3.15. Proposition. Let (X, η1) and (Y, η2) be quasi-proximity spaces. Then f : (X, η1) →
(Y, η2) is proximal continuous if and only if (f, fc) : (X,P(X), δη1

) → (Y,P(X), δη2
) is

extremial bicontinuous.

Proof. First recall that f−1(A) = f←A in a discrete texture (X,P(X)), and that f :
X → Y is proximal continuous if and only if Aη1B implies f(A)η2f(B) for all A,B ⊆ X
if and only if C 6η2D implies f−1(C) 6η1f

−1(D) for all C,D ⊆ Y .
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Let f be proximal continuous. To show that (f, fc) is extremial bicontinuous, take

C,D ∈ P(Y ) with C 6 δ2D. Then by using the definitions and the proximal continuity of
f ,

C 6 δ2D =⇒ C 6η2(Y \D) =⇒ f−1(C) 6η1f
−1(Y \D)

=⇒ f−1(C) 6η1(X \ f−1(D)) =⇒ f←C 6η1(X \ f←D) =⇒ f←C 6 δf←D.

Hence, (f, fc) is extremial bicontinuous.

Now Let (f, fc) be extremial bicontinuous. To show that f is proximal continuous,
take C,D ⊆ Y with C 6η2D. Then using the definitions and the extremial bicontinuity of
(f, fc),

C 6η2D =⇒ C 6 δ(Y \D) =⇒ f←C 6 δf←(Y \D)

=⇒ f←C 6 δ(X \ f←D) =⇒ f−1(C) 6 δ(X \ f−1(D)) =⇒ f−1(C) 6η2f
−1(D).

Hence f is proximal continuous. �

4. Di-extremities and di-uniformities

Two characterizations of di-uniformities on textures, namely direlational uniformities
and dicovering uniformities, are given in [12]. The former is defined using direlations
and the latter using dicoverings. In [12], it is also shown that these two notions are
equivalent. We will use direlational uniformities since it is easier to work with them in
the di-extremity context.

4.1. Definition. [12] Let (S, S) be a texture and U a family of direlations on (S, S). If
U satisfies the conditions

(U1) (i, I) ⊑ (u,U) for all (u, U) ∈ U.
(U2) If (u,U) ∈ U and (r,R) is a direlation on (S, S) such that (u,U) ⊑ (r,R), then

(r,R) ∈ U.
(U3) (u1, U1), (u2, U2) ∈ U implies (u1, U1) ⊓ (u2, U2) ∈ U.
(U4) Given (u,U) ∈ U there exists (r,R) ∈ U satisfying (r,R) ◦ (r,R) ⊑ (u,U).
(U5) Given (u,U) ∈ U there exists (r,R) ∈ U satisfying (r,R)← ⊑ (u, U).

then U is called a direlational uniformity on (S, S), and (S, S,U) is known as a direlational
uniform texture space.

4.2. Definition. [13] For a given direlational uniformity U on the complemented tex-
ture (S, S, σ), the direlational uniformity U

′ = {(u, U)′ | (u,U) ∈ U} is called the the
complement of U. The di-uniformity U is said to be complemented if U = U

′.

The uniform ditopology (τU , κU) induced by a di-uniformity is characterized by the
following lemma. In this lemma u[s] denotes u→Ps and U [s] denotes U→Ps.(See [12, 13]
for further details about the uniform ditopology).

4.3. Lemma. [12] Let (S,S,U) be a direlational uniform texture space with uniform
ditopology (τU , κU). Then

(1) G ∈ τU ⇐⇒ (G 6⊆ Qs =⇒ ∃(u,U) ∈ U with u[s] ⊆ G).
(2) K ∈ κU ⇐⇒ (Ps 6⊆ κ =⇒ ∃(u,U) ∈ U with K ⊆ U [s]).

As in stated [13],

1) U is complemented if and only if it has a base of complemented direlations,
2) The uniform ditopology of a complemented direlational uniformity is a comple-

mented ditopology.
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4.4. Definition. [12] Let (S, S), (T,T) be textures, (r,R) : (S, S) → (T,T) a direlation.
Then

(f, F )−1(r) =
∨

{P (s1,s2) | ∃Ps1
6⊆ Qs′

1
so that P (s′

1
,t1) 6⊆ F, f 6⊆ Q(s2,t2)

=⇒ r 6⊆ Q(t1,t2)}

(f, F )−1(R) =
⋂

{Q(s1,s2) | Ps′
1
6⊆ Qs1

so that f 6⊆ Q(s′
1
,t1), P (s2,t2) 6⊆ F

=⇒ P (t1,t2) 6⊆ R}

(f, F )−1((r,R)) = ((f, F )−1(r), (f, F )−1(R))

4.5. Definition. [12] Let U be a direlational uniformity on (S, S), V a direlational
uniformity on (T,T) and (f, F ) : (S,S) → (T,T) a difunction. If

(v, V ) ∈ V =⇒ (f, F )−1(v, V ) ∈ U,

the difunction (f, F ) is said to be uniformly bicontinuous.

We now show that, as in the classical case, a di-uniformity induces a di-extremity in a
natural way.

4.6. Proposition. Let U be a direlational uniformity on the texture (S, S). Define

AδB ⇐⇒ u→A 6⊆ B ∀ (u,U) ∈ U and AδB ⇐⇒ B 6⊆ U→A ∀ (u,U) ∈ U.

Then δ = (δ, δ) is a di-extremity on (S, S).

Proof. We will prove (E4) and the (DE) condition. The proof of (CE4) is similar to that
of (E4), and the other axioms are straightforward.

To show (E4), suppose A 6 δB. Then there exists (r,R), (u,U) ∈ U such that u→A ⊆ B
and (r,R) ◦ (r,R) ⊑ (u, U). By applying r← to both sides of u→A ⊆ B we obtain
r←(u→A) ⊆ r←B. Let E = r←B. Then we have r←(u→A) ⊆ E, and u→A ⊆ E since r

is reflexive. Thus A 6 δE. On the other hand, E 6 δB since r→E = r→(r←B) ⊆ B by [5,
Lemma 2.9(1)].

Now let us see that the (DE) axiom holds. Let AδB, or equivalently u→A 6⊆ B for
all (u,U) ∈ U. Suppose B 6 δA. Then there exists (r,R) ∈ U such that A ⊆ R→B.

By applying R← to both sides, we get R←A ⊆ R←(R→B) and so R←A ⊆ B since
R←R→B ⊆ B by [5, Lemma 2.9(2)]. Now setting (u,U) = (r,R)←, we get u→A ⊆ B.

This contradicts AδB. Hence AδB implies BδA.

The other direction can be shown in a similar way. �

4.7. Definition. The di-extremity (δ, δ) defined in Proposition 4.6 is called the di-
extremity induced on (S,S) by U, or the induced di-extremity for short, and is denoted

by δU = (δU , δU
).

4.8. Theorem. Let U be direlational uniformity on (S, S) and δ = δU. Then τ (U) = τ (δ)
and κ(U) = κ(δ).

Proof. To show τ (U) = τ (δ), first take G ∈ τ (δ) and G 6⊆ Qs. Then Ps 6 δG by
Lemma 3.3 (2), so there exists (u,U) ∈ U such that u→Ps ⊆ G. Therefore G ∈ τ (U) by
Lemma 4.3 (1). Now take G ∈ τ (U) and suppose G 6⊆ int(G). Then there exists s ∈ S
such that G 6⊆ Qs and Ps 6⊆ int(G). From G 6⊆ Qs, G ∈ τ (U) and by Lemma 4.3 (1),

there exists (u,U) ∈ U such that u→Ps ⊆ G. Therefore Ps 6 δG by Definition 4.7, and so
Ps ⊆ int(G) by Lemma 3.3 (3). But this contradicts Ps 6⊆ int(G). Hence G = int(G),
that is G ∈ τ (δ).

The cotopology part can be shown similarly. �
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4.9. Theorem. Let U be a direlational uniformity on (S, S), V a direlational uniformity
on (T, T) and (f, F ) : (S, S) → (T,T) a uniformly bicontinuous difunction. Then (f, F )
is also extremial bicontinuous with respect to the induced di-extremities

Proof. Let (f, F ) be uniformly bicontinuous. We will show that (f, F ) is extremial con-

tinuous. To do this, take C 6 δVD. Then there exists (r,R) ∈ V such that r→C ⊆ D. Let
(u,U) = (f, F )−1((r,R)). Since (f, F ) is uniformly bicontinuous, (u, U) ∈ U. We claim
that u→(f←C) ⊆ f←D.

Suppose u→(f←C) 6⊆ f←D. Then there exists s ∈ S such that u→(f←C) 6⊆ Qs and
Ps 6⊆ f←D. Since u→(f←C) 6⊆ Qs there exists s′ ∈ S such that u 6⊆ Q(s′,s), f

←C 6⊆ Qs′ .

By the definition of (f, F )−1(r), we have s′1, s2 ∈ S with Ps2
6⊆ Qs, Ps′ 6⊆ Qs′

1
such that

(∗) P (s′
1
,t1) 6⊆ F, f 6⊆ Q(s2,t2) =⇒ r 6⊆ Q(t1,t2) for all t1, t2 ∈ T.

Firstly, since f←C 6⊆ Qs′ and Ps′ 6⊆ Qs′
1
, we have f←C 6⊆ Qs′

1
, and by using the fact

that f←C = F←C, we get t′1 ∈ T with P (s′
1
,t′

1
) 6⊆ F and C 6⊆ Qt′

1
. Thus we have

Pt′
1
⊆ C =⇒ r→Pt′

1
⊆ r→C.

Secondly, Ps 6⊆ f←D =⇒ Ps2
6⊆ f←D =⇒ ∃t′2 ∈ T, f 6⊆ Q(s2,t′

2
) and Pt′

2
6⊆ D. Now, if

we take t1 = t′1 and t2 = t′2 in (∗), we get r 6⊆ Q(t′
1
,t′

2
). But

r 6⊆ Q(t′
1
,t′

2
) =⇒ r→Pt′

1
6⊆ Qt′

2
=⇒ Pt′

2
⊆ r→Pt′

1
,

and since r→Pt′
1
⊆ r→C, we get r→C 6⊆ D which contradicts r→C ⊆ D. Therefore

u→(f←C) ⊆ f←D. Hence f←C 6 δUf
←D.

Cocontinuity can be shown similarly. �

4.10. Theorem. The induced di-extremity δ of a complemented diuniformity U is com-
plemented.

Proof. Let U = U
′ and suppose AδB, that is u→A 6⊆ B for every (u,U) ∈ U. We will

show that Aδ′B. Let (r,R) ∈ U and set (u,U) = (r,R)′. Then by [13, Proposition 2.2 (i)],

AδB =⇒ u→A 6⊆ B =⇒ σ(B) 6⊆ σ(u→A) =⇒ σ(B) 6⊆ (u′)→σ(A)

=⇒ σ(B) 6⊆ R→σ(A) =⇒ σ(A)δσ(B) =⇒ Aδ′B.

The same can be done to show Aδ′B =⇒ AδB. �

5. Di-extremities and dimetrics

5.1. Definition. [12] Let (S, S) be a texture, ρ, ρ : S × S → [0,∞) two point functions.

Then ρ = (ρ, ρ)) is called a pseudo dimetric on (S, S) if

(M1) ρ(s, t) ≤ ρ(s, u) + ρ(u, t) ∀s, u, t ∈ S,

(M2) Ps 6⊆ Qt implies ρ(s, t) = 0 ∀s, t ∈ S,
(DM) ρ(s, t) = ρ(t, s) ∀s, t ∈ S,

(CM1) ρ(s, t) ≤ ρ(s, u) + ρ(u, t) ∀s, u, t ∈ S,

(CM2) Pt 6⊆ Qs implies ρ(s, t) = 0 ∀s, t ∈ S,

in this case ρ is called the pseudo metric, ρ the pseudo cometric of ρ.

If ρ is a pseudo dimetric which satisfies the conditions

(M3) Ps 6⊆ Qu, ρ(u, v) = 0, Pv 6⊆ Qt implies Ps 6⊆ Qt∀s, t, u, v ∈ S
(CM3) Pu 6⊆ Qs, ρ(u, v) = 0, Pt 6⊆ Qv implies Pt 6⊆ Qs∀s, t, u, v ∈ S

it is called a dimetric.
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When giving examples it will clearly suffice to give ρ satisfying the metric conditions,
since DM may then be used to define ρ.

5.2. Proposition. [12] Let ρ be a pseudo dimetric on (S, S) and for s ∈ S♭, ǫ > 0 define

Nρ
ǫ (s) =

∨

{Pt | ∃u ∈ S with Ps 6⊆ Qu, ρ(u, t) < ǫ},

Mρ
ǫ (s) =

⋂

{Qt | ∃u ∈ S with Pu 6⊆ Qs, ρ(u, t) < ǫ},

Then βρ = {Nρ
ǫ (s) | s ∈ S♭, ǫ > 0} is a base and γρ = {Mρ

ǫ (s) | s ∈ S♭, ǫ > 0} a cobase
for a ditopology (τ (ρ), κ(ρ)) on (S, S).

5.3. Theorem. Let (S, S) be a texture and ρ = (ρ, ρ) a pseudo dimetric on (S, S). For
all A,B ∈ S define

D(A,B) = inf{ρ(s, t) | A 6⊆ Qs, Pt 6⊆ B},

D(A,B) = inf{ρ(s, t) | A 6⊆ Qs, Pt 6⊆ B},

and set

AδB ⇐⇒ D(A,B) = 0 and AδB ⇐⇒ D(A,B) = 0.

Then δ = (δ, δ) is a di-extremity on (S, S). Furthermore, the ditopology induced by δ and
that induced by ρ are the same.

Proof. Since D(A,B) = D(B,A) by the [DM] condition, AδB ⇐⇒ BδA. Therefore the

DE condition holds and it is enough to show that δ is a extremity.

E1, E2 and E3 are clear.

For (E4), Let A 6 δB. Then D(A,B) = ǫ > 0. Set E =
∨

{Ps | D(Ps, B) > ǫ
2
}.

Firstly, to show E 6 δB, take E 6⊆ Qs and Pt 6⊆ B. By the definition of E and D, there
exists x ∈ S such that Px 6⊆ Qs and ρ(y, z) > ǫ

2
for all y, z ∈ S, Px 6⊆ Qy and Pz 6⊆ B.

Now, since Pt 6⊆ B and Px 6⊆ Qs, we get ρ(s, t) > ǫ
2
. Thus

D(E,B) = inf{ρ(s, t) | E 6⊆ Qs, Pz 6⊆ B} ≥
ǫ

2
> 0.

Hence E 6 δB.

Secondly, to show A 6 δE, observe that by the triangle inequality for ρ, ρ(s, z) ≤ ρ(s, t)+
ρ(t, y) + ρ(y, z) for all s, t, y, z ∈ S. Set s, t as constants for now and take the infimum of
both side for all y, z such that Pt 6⊆ Qy, Pz 6⊆ B to give

(∗∗) inf
y,z

(ρ(s, z) ≤ inf
y,z
ρ(s, t) + ρ(t, y) + ρ(y, z)).

By (M2), ρ(t, y) = 0. Therefore inf
y,z
ρ(s, z) ≤ ρ(s, t) + inf

y,z
ρ(y, z). On the other hand, by

the definition of E, if Pt 6⊆ E then D(Pt, B) = λt ≤ ǫ
2
. Thus inf

y,z
ρ(s, z) ≤ ρ(s, t)+ ǫ

2
. Now

if we take the infimum of both side of (∗∗) for all s, t such that A 6⊆ Qs, Pt 6⊆ E, then
we get

inf
s,t y,z

inf ρ(s, z) ≤ inf
s,t
ρ(s, t) +

ǫ

2
.

From this we obtain ǫ ≤ D(A,E) + ǫ
2
. Hence D(A,E) 6= 0, that is A 6 δE.

For (E5), Let A 6 δB, which means D(A,B) 6= 0. Suppose A 6⊆ B. Then there exists
s, t ∈ S such that A 6⊆ Qs, Ps 6⊆ Qt, Pt 6⊆ B. But Ps 6⊆ Qt implies ρ(s, t) = 0 implies

D(A,B) = 0, which is a contradiction.

To show the induced topologies are the same, it is enough to show that βρ is also a

base of τ (δ). Let U ∈ τ (δ) and U 6⊆ Qs. By the definition of interior, Ps 6 δU , that is
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D(Ps, U) = ǫ > 0. Now take x ∈ S such that Nρ
ǫ (s) 6⊆ Qx. By the definition of Nρ

ǫ (s),
there exists u, t ∈ S such that Ps 6⊆ Qu, ρ(u, t) < ǫ and Pt 6⊆ Qx. But ρ(u, t) < ǫ and
Ps 6⊆ Qu implies Pt ⊆ U . Therefore, U 6⊆ Qx. Thus Nρ

ǫ (s) ⊆ U .

The equality of the cotopologies can be shown similarly. �
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