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Abstract

In this paper we define new sequence spaces V,(6) and V;°(0) which
are related to the concept of o-mean and lacunary sequence 6 = (k),
and characterize the matrix classes (I1, Vy°(0)) and (I, V5 (6)).
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1. Introduction and preliminaries

We shall write w for the set of all complex sequences z = (z)52. Let ¢, loo, ¢ and
co denote the sets of all finite, bounded, convergent and null sequences respectively. We
write I, := {x € w: Y 50 |zk|’ < 0o} for 1 < p < co. By e and ™ (n € N), we denote
the sequences such that e, =1 for £k =0,1,..., e£J“ =1 and e,(c") =0 (k #n). For any

sequence x = ()52, let 2" = 37

0 zre™ be its n-section.

Note that co, ¢, and ls are Banach spaces with the sup-norm ||z ||cc= sup,, ||, and
IP (1 < p < c0) are Banach spaces with the norm ||z ||,= (3 |zx|?)*/? while ¢ is not a
Banach space with respect to any norm.

A sequence (b("))fzo in a linear metric space X is called a Schauder basis if for
every ¢ € X there is a unique sequence ()0 of scalars such that © = "> | Bnb™. A
sequence space X with a linear topology is called a K-space if each of the maps p; : X — C
defined by pi(x) = z; is continuous for all ¢ € N. A K-space is called an FK-space if X
is a complete linear metric space, and a BK-space is a normed FK-space. An FK-space
X D g issaid to have AK if every sequence z = (zx)5— € X has a unique representation
T=rep zre® | that is, z = lim,— /™. We use here standard notations as in [7].

*Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.
E-mail: mursaleenm@gmail.com



260 Mursaleen

Let o be a one-to-one mapping from the set N of natural numbers into itself. A
continuous linear functional ¢ on the space [ is said to be an invariant mean or a
o-mean if and only if

(i) ¢(x) > 0, when the sequence z = (x1) has z, > 0 for all k,

(ii) ¢(e) =1, where e = (1,1,1,...), and

(iii) ¢(x) = ¢((wo(k)) for all x € leo.
Throughout this paper we assume the mapping o has no finite orbits, that is, o?(k) # k
for all integers k > 0 and p > 1, where o?(k) denotes the p™ iterate of o at k. Note that,
a o-mean extends the limit functional on the space c in the sense that ¢(x) = lim z for all
x € ¢, (cf. [6]). Consequently ¢ C V,, the set of bounded sequences all of whose o-means
are equal. We say that a sequence z = (xy) is o-convergent if and only if z € V,,, where

Vo :i={z €l : lim tpn(x) = L uniformly in n; L = o-limz}, where
p— 00

1 p
ton(z) = —— Tom(n)-
pn(T) p+1mZ:O (n)

Using this concept, Schaefer [8] defined and characterized the o-conservative, o-regular
and o-coercive matrices. If o is translation then the o-mean is often called a Banach
limit [2] and the set V. reduces to the set f of almost convergent sequences studied by
Lorentz [5].

By a lacunary sequence we mean an increasing sequence 6 = (k,) of integers such
that ko = 0 and h, := k» — kr—1 — 00 as r — oco. Throughout this paper the intervals
determined by 6 will be denoted by I, := (kr—1,kr], and the ratio k/kr—1 will be
abbreviated by ¢, (see Fredman et al [4]). Recently, Aydin [1] defined the concept of
almost lacunary convergence as follows: A bounded sequence x = (zy) is said to be
almost lacunary convergent to the number [ if and only if

lim i

. Z Zj4+n = I, uniformly in n.

Jjelr
Quite recently, this idea has been studied for double sequences by Cakan et al [3]. In
this paper, we define new sequence spaces Vi (0) and V;°(0), which are related to the

concept of o-mean and the lacunary sequence 0 = (k,), and characterize the matrix
classes (I1, V5°(0)) and (I, V57 (0)).

2. o-lacunary convergent sequences
We define the following:

2.1. Definition. A bounded sequence x = (zx) is said to be o-lacunary convergent to
the number [ if and only if lim 7~ > ,j(,) = [, uniformly in n, and we let V(6) denote
T el

the set of all such sequences, i.e.

1 . .
Vo) :={x €l : h;n W ; Ty (ny = I, uniformly in n}.
J€ly

Note that for o(n) = n + 1, o-lacunary convergence is reduced to almost lacunary
convergence. Results similar to that of Aydin [1] can easily be proved for the space
Vo (0).

2.2. Definition. A bounded sequence z = (x) is said to be o-lacunary bounded if and

only if sup, ,, [7= Y. Z,j(m)| < 0o, and we let V() denote the set of all such sequences,
" el
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ie.
V2 (0) := {x € lwc : sup |Trn(x)| < 00},
where
1
Tm(m) = h_ Z xaj(n).
" el
Note that ¢ C V5(0) C V5°(0) C loo.-
2.3. Theorem. The spaces V5(0) and V;°(0) are both BK spaces with the norm

2.1)  |lz|[=sup|ra(z)].
n

Proof. We consider the space V,(0). The case V;°(6) can be proved similarly. Let
(™) = ((acl(;))?:o) be a Cauchy sequence in V;(0), i.e. for ¢ > 0, there is an N > 0 such
that || z® — 2™ | = sup,. ,, |Trn (2D — 2(™)| < & for all i,m > N. Since |x§;)| <[z
for each 4, and Vy(0) C loo, we have [ — 2™ | < ¢ for all i;m > N. So (z) is
a Cauchy seq(lil)ence in R, and hence convergent in R (since R is complete). That is,
k

for each k, z;” — x, say, as i — oco. Let x = (zx)j=o.- Then by the definition of

V,(0), we have ||z — z| = Sup,, ,, [Tmn (2 — 2)| — 0, (i — 00), since z') — z, and
T,nn(ac(i) —x) = % Zjelr Tj(mgf) — zn) — 0, where T x,, means T (n)-

Now, we have to show that = € V,(6). Since (z(V) is a Cauchy sequence in V, (6), we
have that for a given € > 0 there is a positive integer N depending upon ¢ such that, for
all i,m > N,

[z — 2™ ||<e.
Hence by (2.1) we have
sup |rrn (2 — 2™)| < e

This implies that
(22)  |ren(a® —2™)| <&, for each r,n;

or
(23) LY - L™ <e,
where L = o-limz™®. Let L = limm—ooo L. Then the o-mean of x is o(x) =
lim; ¢(z?) (since z = lim; 2 and ¢ is continuous and linear). Further lim; ¢(z?) =
lim; LY = L (since ¢(z") means o-limz?). Now letting m — oo in (2.2) and (2.3),
we get
(24)  |ren(z? — )| < e, for each r,n; (since z = lim z(™)

m
and

(25) |LY — L| <&, (since lim L™ = L)
for i > N. Now fix i in the above inequalities. Since =) € V,,(8) for fixed i, we obtain
lim Tm(x(i)) = L(i), uniformly in n

(since L = o-lim 2 = lim, 7, () uniformly in n). Hence, for a given ¢, there exists
a positive integer ro (depending upon ¢ and € but not on n) such that

(26)  |ren(@™) — LW <&, (since z = limz™)
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for r > ro and for all n. Now by (2.4), (2.5) and (2.6), we get
[T (2) = L] < |7en(@) = Ton (D) + 7o (2P) = LO 4+ LW —
< [ron (@) = 7o @) + Iron (@) = L9+ 2O = 1
<e4e+4e=3¢
for r > rg and for all n. Then x € V;(#), which proves the completeness of V().

Now, let || 2™ —x||— 0 as m — co. Then, for given ¢ > 0, there is mo € N such that
|z — z| < e for all m > my,
which implies

sup |7rn (2™ — )| < £ for all m > mo,
rm

and so that
|L(m) — L| < ¢ for all m > myg, as above in (2.5).

Hence we easily get

|x§€m) — x| < ¢ for all m > myo, and for all k,

that is |1:,(cm) — k] — 0 as m — oo, and this proves the continuity of the coordinate
projection. Hence V,(0) is a BK space.
This completes the proof of the theorem. O

3. Matrix transformations into V°(0)

Let X and Y be two sequence spaces and A = (@nk)nx—1 an infinite matrix of real or
complex numbers. We write Az = (An(z)), An(z) = >, anrxr provided that the series
on the right converges for each n. If x = (zx) € X implies that Az € Y, then we say
that A defines a matrix transformation from X into Y and we denote the class of such
matrices by (X,Y).

In this section, we characterize the matrix classes (I1, V;°(0)) and (loo, V5°(0)).

Let Ax be defined. Then, for all r,n, we write

oo

Trn(Ax) = t(n,k,r)zg,

where

t(n,k,r) = — > a(o?(n), k),

and a(n, k) denotes the element a, of the matrix A.

3.1. Theorem. A € (I1,V;°(0)) if and only if
(3.1) sup [t(n, k,7)| < co.

n,k,r

Proof. Sufficiency. Suppose that x = (z1) € l1. We have
7o (Az)| < [t(n, b, )2k
k

< (supt(n, b)) (3 Il

k

Taking the supremum over n,r on both sides and using (3.1), we get Az € V;°(0) for
T €.
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Necessity. Let us define a continuous linear functional @, on I; by

Qrn(z) = Trn(Az) = Zt(n, k,r)xk.

k

Now

32 |@m(x)] < Sl;plt(mkﬂ“)ﬂlﬂlu

1Qunll= sup 1Ll
lelli=1 2l

and hence

(3.3)  [|@rnll< suplt(n, k)],
by (3.2). For any fixed r and n € N, define z = (z;) by

(34) 2= sgnt(n,k,r); fori==k
' o 0; for i # k;

Then ||z |1= 1, and
|an($)| = |t(n7 k77‘)$k|

= |t(n, k, 7).
Further,
lelh=1 Izl

=[1Qrn(2) ], since [[z[l=1

= sup |an(x)| 2 |Q7"7‘L(m)|

= ‘ Z t(n,i,m)x;

= [t(n, k,7)],

for x; as defined in (3.4), hence

335) @z Sgplt(nvk,r)l-

Now, by (3.3) and (3.5),
| Qrn l|= sup [t(n, k,7)|.

Therefore, by the Banach-Steinhauss Theorem
sup || Qrn [|= sup [t(n, k,7)| < oo,

r,n r,n,k

since A € (11, V52 (0)) gives

sup |Qrn(x)| = sup Zt(n, k,r)xk‘ < 00.

r,n =
This completes the proof of the theorem. d
3.2. Theorem. A € (lo, V;°(0)) if and only if

(3.6) supz [t(n, k, )| < oco.

L
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Proof. Sufficiency. Suppose that (3.6) holds and = = (z1) € loc. We have
ren(A2) < S ’t(n,k,r)xk’
k

< <Z |t(n,k,r)|> (Sllip|$k|)

Taking the supremum over n,r on both sides and using (3.6), we get Az € V;°(0) for
T € lso.

Necessity. Let A € (I, V5 (0)). Write ¢n(z) = sup,. |7rn(Ax)|. It is easy to see that
gn is a continuous seminorm on /., since for x € [

lgn ()| < M|z |, M > 0.

Suppose (3.6) is not true. Then there exists z € lo with sup,, gn(z) = co. By the
principle of condensation of singularities (cf. [9]), the set { € ls : sup,, gn(z) = oo}
is of the second category in l-, and hence non-empty, that is, there is x € lo with
sup,, gn(x) = co. But this contradicts the fact that ¢, is pointwise bounded on lo. Now
by the Banach-Steinhauss Theorem, there is a constant M such that

B7)  gulz) < Mz
Now define x = (zx) by

sgnt(n, k,r); for each r,n (1 <k < ko),
T =
. 0; for k > ko.

Then z € l. Applying this sequence to (3.7), we get (3.6).
This completes the proof of the theorem. O
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