SOME MATRIX TRANSFORMATIONS ON SEQUENCE SPACES OF INVARIANT MEANS

Mursaleen*

Received 30:01:2009: Accepted 05:08:2009

Abstract

In this paper we define new sequence spaces $V_{\sigma}(\theta)$ and $V_{\sigma}^{\infty}(\theta)$ which are related to the concept of σ -mean and lacunary sequence $\theta = (k_r)$, and characterize the matrix classes $(l_1, V_{\sigma}^{\infty}(\theta))$ and $(l_{\infty}, V_{\sigma}^{\infty}(\theta))$.

Keywords: Lacunary sequence, Matrix transformation, Invariant mean, Almost lacunary convergence.

2000 AMS Classification: 40 C 05, 40 H 05, 46 A 45.

1. Introduction and preliminaries

We shall write w for the set of all complex sequences $x=(x_k)_{k=0}^\infty$. Let $\varphi,\, l_\infty,\, c$ and c_0 denote the sets of all finite, bounded, convergent and null sequences respectively. We write $l_p:=\{x\in w: \sum_{k=0}^\infty |x_k|^p<\infty\}$ for $1\leq p<\infty$. By e and $e^{(n)}$ $(n\in\mathbb{N})$, we denote the sequences such that $e_k=1$ for $k=0,1,\ldots,\,e_n^{(n)}=1$ and $e_k^{(n)}=0$ $(k\neq n)$. For any sequence $x=(x_k)_{k=0}^\infty$, let $x^{[n]}=\sum_{k=0}^n x_k e^{(k)}$ be its n-section.

Note that c_0 , c, and l_{∞} are Banach spaces with the sup-norm $||x||_{\infty} = \sup_k |x_k|$, and l^p $(1 \le p < \infty)$ are Banach spaces with the norm $||x||_p = (\sum |x_k|^p)^{1/p}$ while φ is not a Banach space with respect to any norm.

A sequence $(b^{(n)})_{n=0}^{\infty}$ in a linear metric space X is called a $Schauder\ basis$ if for every $x\in X$ there is a unique sequence $(\beta_n)_{n=0}^{\infty}$ of scalars such that $x=\sum_{n=0}^{\infty}\beta_nb^{(n)}$. A sequence space X with a linear topology is called a K-space if each of the maps $p_i:X\to\mathbb{C}$ defined by $p_i(x)=x_i$ is continuous for all $i\in\mathbb{N}$. A K-space is called an FK-space if X is a complete linear metric space, and a BK-space is a normed FK-space. An FK-space $X\supset\varphi$ is said to have AK if every sequence $x=(x_k)_{k=0}^{\infty}\in X$ has a unique representation $x=\sum_{k=0}^{\infty}x_ke^{(k)}$, that is, $x=\lim_{n\to\infty}x^{[n]}$. We use here standard notations as in [7].

^{*}Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India. E-mail: mursaleenm@gmail.com

260 Mursaleen

Let σ be a one-to-one mapping from the set $\mathbb N$ of natural numbers into itself. A continuous linear functional ϕ on the space l_{∞} is said to be an *invariant mean* or a σ -mean if and only if

- (i) $\phi(x) \geq 0$, when the sequence $x = (x_k)$ has $x_k \geq 0$ for all k,
- (ii) $\phi(e) = 1$, where e = (1, 1, 1, ...), and
- (iii) $\phi(x) = \phi((x_{\sigma(k)}))$ for all $x \in \ell_{\infty}$.

Throughout this paper we assume the mapping σ has no finite orbits, that is, $\sigma^p(k) \neq k$ for all integers $k \geq 0$ and $p \geq 1$, where $\sigma^p(k)$ denotes the p^{th} iterate of σ at k. Note that, a σ -mean extends the limit functional on the space c in the sense that $\phi(x) = \lim x$ for all $x \in c$, (cf. [6]). Consequently $c \subset V_{\sigma}$, the set of bounded sequences all of whose σ -means are equal. We say that a sequence $x = (x_k)$ is σ -convergent if and only if $x \in V_{\sigma}$, where

$$V_{\sigma} := \{x \in l_{\infty} : \lim_{n \to \infty} t_{pn}(x) = L \text{ uniformly in } n; \ L = \sigma\text{-}\lim x\}, \text{ where}$$

$$t_{pn}(x) = \frac{1}{p+1} \sum_{m=0}^{p} x_{\sigma^m(n)}.$$

Using this concept, Schaefer [8] defined and characterized the σ -conservative, σ -regular and σ -coercive matrices. If σ is translation then the σ -mean is often called a Banach limit [2] and the set V_{σ} reduces to the set f of almost convergent sequences studied by Lorentz [5].

By a lacunary sequence we mean an increasing sequence $\theta = (k_r)$ of integers such that $k_0 = 0$ and $h_r := k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r := (k_{r-1}, k_r]$, and the ratio k_r/k_{r-1} will be abbreviated by q_r (see Fredman et al [4]). Recently, Aydin [1] defined the concept of almost lacunary convergence as follows: A bounded sequence $x = (x_k)$ is said to be almost lacunary convergent to the number l if and only if

$$\lim_{r} \frac{1}{h_r} \sum_{j \in I_r} x_{j+n} = l, \text{ uniformly in } n.$$

Quite recently, this idea has been studied for double sequences by Çakan et al [3]. In this paper, we define new sequence spaces $V_{\sigma}(\theta)$ and $V_{\sigma}^{\infty}(\theta)$, which are related to the concept of σ -mean and the lacunary sequence $\theta = (k_r)$, and characterize the matrix classes $(l_1, V_{\sigma}^{\infty}(\theta))$ and $(l_{\infty}, V_{\sigma}^{\infty}(\theta))$.

2. σ -lacunary convergent sequences

We define the following:

2.1. Definition. A bounded sequence $x = (x_k)$ is said to be σ -lacunary convergent to the number l if and only if $\lim_{r} \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma^j(n)} = l$, uniformly in n, and we let $V_{\sigma}(\theta)$ denote the set of all such sequences, i.e.

$$V_{\sigma}(\theta) := \{ x \in l_{\infty} : \lim_{r} \frac{1}{h_{r}} \sum_{j \in I_{r}} x_{\sigma^{j}(n)} = l, \text{ uniformly in } n \}.$$

Note that for $\sigma(n) = n + 1$, σ -lacunary convergence is reduced to almost lacunary convergence. Results similar to that of Aydin [1] can easily be proved for the space $V_{\sigma}(\theta)$.

2.2. Definition. A bounded sequence $x=(x_k)$ is said to be σ -lacunary bounded if and only if $\sup_{r,n} \left| \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma^j(n)} \right| < \infty$, and we let $V_{\sigma}^{\infty}(\theta)$ denote the set of all such sequences,

i.e.

$$V_{\sigma}^{\infty}(\theta) := \{ x \in l_{\infty} : \sup_{r,n} |\tau_{rn}(x)| < \infty \},$$

where

$$\tau_{rn}(x) =: \frac{1}{h_r} \sum_{j \in I_r} x_{\sigma^j(n)}.$$

Note that $c \subset V_{\sigma}(\theta) \subset V_{\sigma}^{\infty}(\theta) \subset l_{\infty}$.

2.3. Theorem. The spaces $V_{\sigma}(\theta)$ and $V_{\sigma}^{\infty}(\theta)$ are both BK spaces with the norm

(2.1)
$$||x|| = \sup_{r,n} |\tau_{rn}(x)|.$$

Proof. We consider the space $V_{\sigma}(\theta)$. The case $V_{\sigma}^{\infty}(\theta)$ can be proved similarly. Let $(x^{(i)}) = ((x_k^{(i)})_{k=0}^{\infty})$ be a Cauchy sequence in $V_{\sigma}(\theta)$, i.e. for $\varepsilon > 0$, there is an N > 0 such that $\|x^{(i)} - x^{(m)}\| = \sup_{r,n} |\tau_{rn}(x^{(i)} - x^{(m)})| < \varepsilon$ for all $i, m \ge N$. Since $|x_k^{(i)}| \le \|x^{(i)}\|$ for each i, and $V_{\sigma}(\theta) \subset l_{\infty}$, we have $|x^{(i)} - x^{(m)}| < \varepsilon$ for all $i, m \ge N$. So $(x^{(i)})$ is a Cauchy sequence in \mathbb{R} , and hence convergent in \mathbb{R} (since \mathbb{R} is complete). That is, for each k, $x_k^{(i)} \to x_k$, say, as $i \to \infty$. Let $x = (x_k)_{k=0}^{\infty}$. Then by the definition of $V_{\sigma}(\theta)$, we have $\|x^{(i)} - x\| = \sup_{m,n} |\tau_{mn}(x^{(i)} - x)| \to 0$, $(i \to \infty)$, since $x_n^{(i)} \to x_n$ and $\tau_{rn}(x^{(i)} - x) = \frac{1}{h_r} \sum_{j \in I_r} T^j(x_n^{(i)} - x_n) \to 0$, where $T^j x_n$ means $x_{\sigma^j(n)}$.

Now, we have to show that $x \in V_{\sigma}(\theta)$. Since $(x^{(i)})$ is a Cauchy sequence in $V_{\sigma}(\theta)$, we have that for a given $\varepsilon > 0$ there is a positive integer N depending upon ε such that, for all $i, m \geq N$,

$$||x^{(i)} - x^{(m)}|| < \varepsilon.$$

Hence by (2.1) we have

$$\sup_{r,n} |\tau_{rn}(x^{(i)} - x^{(m)})| < \varepsilon.$$

This implies that

(2.2)
$$|\tau_{rn}(x^{(i)} - x^{(m)})| < \varepsilon$$
, for each r, n ;

or

$$(2.3) |L^{(i)} - L^{(m)}| < \varepsilon.$$

where $L^{(i)} = \sigma - \lim x^{(i)}$. Let $L = \lim_{m \to \infty} L^{(m)}$. Then the σ -mean of x is $\phi(x) = \lim_i \phi(x^{(i)})$ (since $x = \lim_i x^{(i)}$ and ϕ is continuous and linear). Further $\lim_i \phi(x^{(i)}) = \lim_i L^{(i)} = L$ (since $\phi(x^{(i)})$ means σ - $\lim_i x^{(i)}$). Now letting $m \to \infty$ in (2.2) and (2.3), we get

(2.4)
$$|\tau_{rn}(x^{(i)}-x)| < \varepsilon$$
, for each r, n ; (since $x = \lim_{m} x^{(m)}$)

and

(2.5)
$$|L^{(i)} - L| < \varepsilon$$
, (since $\lim_{m} L^{(m)} = L$)

for i > N. Now fix i in the above inequalities. Since $x^{(i)} \in V_{\sigma}(\theta)$ for fixed i, we obtain $\lim_{r} \tau_{rn}(x^{(i)}) = L^{(i)}$, uniformly in n

(since $L^{(i)} = \sigma$ - $\lim x^{(i)} = \lim_r \tau_{rn}(x^{(i)})$ uniformly in n). Hence, for a given ε , there exists a positive integer r_0 (depending upon i and ε but not on n) such that

(2.6)
$$|\tau_{rn}(x^{(i)}) - L^{(i)}| < \varepsilon$$
, (since $x = \lim_{m} x^{(m)}$)

262 Mursaleen

for $r \geq r_0$ and for all n. Now by (2.4), (2.5) and (2.6), we get

$$|\tau_{rn}(x) - L| \le |\tau_{rn}(x) - \tau_{rn}(x^{(i)}) + \tau_{rn}(x^{(i)}) - L^{(i)} + L^{(i)} - L|$$

$$\le |\tau_{rn}(x) - \tau_{rn}(x^{(i)})| + |\tau_{rn}(x^{(i)}) - L^{(i)}| + |L^{(i)} - L|$$

$$< \varepsilon + \varepsilon + \varepsilon = 3\varepsilon.$$

for $r \geq r_0$ and for all n. Then $x \in V_{\sigma}(\theta)$, which proves the completeness of $V_{\sigma}(\theta)$.

Now, let $||x^{(m)} - x|| \to 0$ as $m \to \infty$. Then, for given $\varepsilon > 0$, there is $m_0 \in \mathbb{N}$ such that

$$||x^{(m)} - x|| < \varepsilon \text{ for all } m \ge m_0,$$

which implies

$$\sup_{r,n} |\tau_{rn}(x^{(m)} - x)| < \varepsilon \text{ for all } m \ge m_0,$$

and so that

$$|L^{(m)} - L| < \varepsilon$$
 for all $m \ge m_0$, as above in (2.5).

Hence we easily get

$$|x_k^{(m)} - x_k| < \varepsilon$$
 for all $m \ge m_0$, and for all k ,

that is $|x_k^{(m)} - x_k| \to 0$ as $m \to \infty$, and this proves the continuity of the coordinate projection. Hence $V_{\sigma}(\theta)$ is a BK space.

This completes the proof of the theorem.

3. Matrix transformations into $V_{\sigma}^{\infty}(\theta)$

Let X and Y be two sequence spaces and $A = (a_{nk})_{n;k=1}^{\infty}$ an infinite matrix of real or complex numbers. We write $Ax = (A_n(x))$, $A_n(x) = \sum_k a_{nk}x_k$ provided that the series on the right converges for each n. If $x = (x_k) \in X$ implies that $Ax \in Y$, then we say that A defines a matrix transformation from X into Y and we denote the class of such matrices by (X,Y).

In this section, we characterize the matrix classes $(l_1, V_{\sigma}^{\infty}(\theta))$ and $(l_{\infty}, V_{\sigma}^{\infty}(\theta))$.

Let Ax be defined. Then, for all r, n, we write

$$\tau_{rn}(Ax) = \sum_{k=1}^{\infty} t(n, k, r) x_k,$$

where

$$t(n,k,r) = \frac{1}{h_r} \sum_{j \in I_r} a(\sigma^j(n),k),$$

and a(n,k) denotes the element a_{nk} of the matrix A.

3.1. Theorem. $A \in (l_1, V_{\sigma}^{\infty}(\theta))$ if and only if

$$(3.1) \qquad \sup_{n,k,r} |t(n,k,r)| < \infty.$$

Proof. Sufficiency. Suppose that $x = (x_k) \in l_1$. We have

$$|\tau_{rn}(Ax)| \le \sum_{k} |t(n, k, r)x_{k}|$$

$$\le (\sup_{k} |t(n, k, r)|) \Big(\sum_{k} |x_{k}|\Big).$$

Taking the supremum over n, r on both sides and using (3.1), we get $Ax \in V_{\sigma}^{\infty}(\theta)$ for $x \in l_1$.

Necessity. Let us define a continuous linear functional Q_{rn} on l_1 by

$$Q_{rn}(x) = \tau_{rn}(Ax) = \sum_{k} t(n, k, r) x_k.$$

Now

$$(3.2) |Q_{rn}(x)| \le \sup_{k} |t(n,k,r)| ||x||_1,$$

$$||Q_{rn}|| = \sup_{||x||_1=1} \frac{|Q_{rn}(x)|}{||x||_1}$$

and hence

(3.3)
$$||Q_{rn}|| \le \sup_{k} |t(n,k,r)|,$$

by (3.2). For any fixed r and $n \in \mathbb{N}$, define $x = (x_i)$ by

(3.4)
$$x_i = \begin{cases} \operatorname{sgn} t(n, k, r); & \text{for } i = k \\ 0; & \text{for } i \neq k; \end{cases}$$

Then $||x||_1 = 1$, and

$$|Q_{rn}(x)| = |t(n, k, r)x_k|$$
$$= |t(n, k, r)|.$$

Further,

$$||Q_{rn}|| = \sup_{|||x||_1=1} \frac{||Q_{rn}(x)||}{||x||_1}$$

$$= ||Q_{rn}(x)||, \text{ since } ||x||_1=1$$

$$= \sup_{r,n} |Q_{rn}(x)| \ge |Q_{rn}(x)|$$

$$= \left|\sum_{i} t(n, i, r)x_i\right|$$

$$= |t(n, k, r)|,$$

for x_i as defined in (3.4), hence

(3.5)
$$||Q_{rn}|| \ge \sup_{k} |t(n, k, r)|.$$

Now, by (3.3) and (3.5),

$$||Q_{rn}|| = \sup_{k} |t(n,k,r)|.$$

Therefore, by the Banach-Steinhauss Theorem

$$\sup_{r,n} \|Q_{rn}\| = \sup_{r,n,k} |t(n,k,r)| < \infty,$$

since $A \in (l_1, V_{\sigma}^{\infty}(\theta))$ gives

$$\sup_{r,n} |Q_{rn}(x)| = \sup_{r,n} \left| \sum_{k} t(n,k,r) x_k \right| < \infty.$$

This completes the proof of the theorem.

3.2. Theorem. $A \in (l_{\infty}, V_{\sigma}^{\infty}(\theta))$ if and only if

$$(3.6) \qquad \sup_{n,r} \sum_{k} |t(n,k,r)| < \infty.$$

264 Mursaleen

Proof. Sufficiency. Suppose that (3.6) holds and $x = (x_k) \in l_{\infty}$. We have

$$|\tau_{rn}(Ax)| \le \sum_{k} |t(n,k,r)x_{k}|$$

$$\le \left(\sum_{k} |t(n,k,r)|\right) (\sup_{k} |x_{k}|).$$

Taking the supremum over n, r on both sides and using (3.6), we get $Ax \in V_{\sigma}^{\infty}(\theta)$ for $x \in l_{\infty}$.

Necessity. Let $A \in (l_{\infty}, V_{\sigma}^{\infty}(\theta))$. Write $q_n(x) = \sup_r |\tau_{rn}(Ax)|$. It is easy to see that q_n is a continuous seminorm on l_{∞} , since for $x \in l_{\infty}$

$$|q_n(x)| \le M ||x||, M > 0.$$

Suppose (3.6) is not true. Then there exists $x \in l_{\infty}$ with $\sup_{n} q_{n}(x) = \infty$. By the principle of condensation of singularities (cf. [9]), the set $\{x \in l_{\infty} : \sup_{n} q_{n}(x) = \infty\}$ is of the second category in l_{∞} , and hence non-empty, that is, there is $x \in l_{\infty}$ with $\sup_{n} q_{n}(x) = \infty$. But this contradicts the fact that q_{n} is pointwise bounded on l_{∞} . Now by the Banach-Steinhauss Theorem, there is a constant M such that

$$(3.7) q_n(x) \le M \|x\|_1.$$

Now define $x = (x_k)$ by

$$x_k = \begin{cases} \operatorname{sgn} t(n, k, r); & \text{for each } r, n \ (1 \le k \le k_0), \\ 0; & \text{for } k > k_0. \end{cases}$$

Then $x \in l_{\infty}$. Applying this sequence to (3.7), we get (3.6).

This completes the proof of the theorem.

Acknowledgment: The present research was supported by the Department of Science and Technology, New Delhi, under grant number SR S4 MS:505 07.

References

- Aydin, B. Lacunary almost summability in certain linear topological spaces, Bull. Malays. Math. Sci. Soc. (2), 217–223, 2004.
- [2] Banach, S. Théorie des operations linéaires (Warsaw, 1932).
- [3] Çakan, C., Altay, B. and Çoşkun, H. Double lacunary density and lacunary statistical convergence of double sequences, Studia Sci. Math. Hung. DOI:10.1556/SScMath.2009.1110.
- [4] Freedman, A. R., Sember, J. J. and Raphael, M. Some Cesàro type summability spaces, Proc. London Math. Soc. 37, 508–520, 1978.
- [5] Lorentz, G. G. A contribution to the theory of divergent sequences, Acta Math. 80,167–190, 1948.
- [6] Mursaleen, Some new invariant matrix methods of summability, Quart. J. Math. Oxford 34 (2), 77–86, 1983.
- [7] Mursaleen, Elements of Metric Spaces (Anamaya Publ., New Delhi, 2005).
- [8] Schaefer, P. Infinite matrices and invariant means, Proc. Amer. Math. Soc. 36, 104--110.
- [9] Yosida, Y. Functional Analysis (Springer-Verlag, Berlin Heidelberg, New York, 1966).