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Abstract

In this paper, some additional concepts relating to subtraction alge-
bras, the so called subalgebra, bounded subtraction algebra and unions
of subtraction algebras, are introduced, and some properties are inves-
tigated.
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1. Introduction

B. M. Schein [7] considered systems of the form (Φ; ◦, \), where Φ is a set of functions
closed under the composition ”◦” of functions (and hence (Φ; ◦) is a function semigroup),
and set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the sense of
[1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup
of invertible functions. B. Zelinka [8] discussed a problem proposed by B. M. Schein con-
cerning the structure of multiplication in a subtraction semigroup. He solved the problem
for subtraction algebras of a special type, called atomic subtraction algebras. Y.B. Jun,
H. S. Kim and E. H. Roh [2] introduced the notion of ideals in subtraction algebras and
discussed characterization of ideals. In [3], Y.B. Jun and H. S. Kim established the ideal
generated by a set, and discussed related results. In [4], Y. B. Jun, Y.H. Kim and K.A.
Oh introduced the notion of complicated subtraction algebras and investigated some re-
lated properties. In [6], K. J. Lee, Y.B. Jun, and Y.H. Kim introduced the notion of
weak subtraction algebras and provided a method to make a weak subtraction algebra
from a quasi-ordered set.

In this paper, some additional concepts concerning subtraction algebras, so called
subalgebras, bounded subtraction algebras and unions of subtraction algebras, are intro-
duced, and some properties are investigated.
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2. Preliminaries

An algebra (X;−) with a single binary operation “−” is called a subtraction algebra
if for all x, y, z ∈ X the following conditions hold:

(S1) x − (y − x) = x,
(S2) x − (x − y) = y − (y − x),
(S3) (x − y) − z = (x − z) − y.

The subtraction determines an order relation on X: a ≤ b ⇐⇒ a − b = 0, where
0 = a − a is an element that does not depend on the choice of a ∈ X.

The ordered set (X;≤) is a semi-Boolean algebra in the sense of [1], that is, it is
a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with
respect to the induced order. Here a∧ b = a− (a− b) and the complement of an element
b ∈ [0, a] is a − b.

In a subtraction algebra, the following are true [2, 5]:

(a1) (x − y) − y = x − y,

(a2) x − 0 = x and 0 − x = 0,

(a3) (x − y) − x = 0,

(a4) x − (x − y) ≤ y,

(a5) (x − y) − (y − x) = x − y,

(a6) x − (x − (x − y)) = x − y,

(a7) (x − y) − (z − y) ≤ x − z,

(a8) x ≤ y if and only if x = y − w for some w ∈ X,

(a9) x ≤ y implies x − z ≤ y − z and z − y ≤ z − x for all z ∈ X,

(a10) x, y ≤ z implies x − y = x ∧ (z − y),
(a11) (x ∧ y) − (x ∧ z) ≤ x ∧ (y − z),
(a12) (x − y) − z = (x − z) − (y − z).

2.1. Definition. [2] A nonempty subset A of a subtraction algebra X is called an ideal
of X if it satisfies

(1) 0 ∈ A,

(2) (∀ x ∈ X)(∀ y ∈ A)(x − y ∈ A =⇒ x ∈ A).

2.2. Lemma. [5] An ideal A of a subtraction algebra X has the following property:

(∀ x ∈ X)(∀ y ∈ A)(x ≤ y =⇒ x ∈ A).

2.3. Definition. [4] Let X be a subtraction algebra. For any a, b ∈ X, let G(a, b) =
{x ∈ X : x − a ≤ b}. Then X is said to be complicated if for any a, b ∈ X the set G(a, b)
has a greatest element.

Note that 0, a, b ∈ G(a, b). The greatest element of G(a, b) is denoted by a + b.

3. Results

3.1. Proposition. Let X be a subtraction algebra and I a subset of X. Then I is an
ideal of X if and only if G(x, y) ⊆ I for all x, y ∈ I.

Proof. =⇒. Let I be an ideal and x, y any elements of I. For any z ∈ G(x, y), we have
z − x ≤ y. Hence z − x ∈ I from Lemma 2.2. Then we obtain z ∈ I since I is an ideal.

⇐=. If G(x, y) ⊆ I , for all x, y ∈ I we have 0 ∈ I since 0 ∈ G(x, y). For any b ∈ I

and a ∈ X, let a − b ∈ I . Then G(a − b, b) ⊆ I. Hence, since a − (a − b) ≤ b from (a4),
we obtain a ∈ G(a − b, b) ⊆ I . Hence, a ∈ I . �
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3.2. Definition. Let X be a subtraction algebra and Y a nonempty subset of X. Then
Y is called a subalgebra of X if x − y ∈ Y whenever x, y ∈ Y .

3.3. Theorem. Let X be a subtraction algebra and Y a subalgebra of X. Then the
following conditions hold:

(a) 0 ∈ Y,

(b) Y is a subtraction algebra,
(c) {0} is a subalgebra of X,

(d) X is a subalgebra of X,
(e) For any x, y in X, G(x, y) is a subalgebra of X.
(f) Any ideal I of X is a subtraction algebra.

Proof. (a)-(d) follow easily from the definition.

(e) For a, b ∈ G(x, y), we have a − x ≤ y and b − x ≤ y. Then, from (a12) and (a10)
and the fact that u ∧ v = v ∧ u ≤ u, v, we obtain

(a − b) − x = (a − x) − (b − x)

= (a − x) ∧ (y − (b − x))

≤ y − (b − x)

≤ y.

Hence a − b ∈ G(x, y).

(f) For any x, y ∈ I , from (a3) we have (x − y) − x = 0 ∈ I , then x − y ∈ I . �

3.4. Definition. Let X be a subtraction algebra and x ∈ X. Then, the set A(x) =
{y ∈ X : y ≤ x} is called the initial section of x.

3.5. Theorem. In a subtraction algebra X, A(x)∩ A(y) = A(x ∧ y) for all x, y ∈ X.

Proof. Let z ∈ A(x)∩ A(y). Then we have z ≤ x and z ≤ y. From (a9) we obtain

(3.1) z − (x − y) ≤ x − (x − y)

and since x − y ≤ x − z,

(3.2) z − (x − z) ≤ z − (x − y).

From (3.1), (3.2) and (S1), we get z = z − (x − z) ≤ z − (x − y) ≤ x − (x − y) = x ∧ y.
Hence z ∈ A(x ∧ y).

Now let z ∈ A(x ∧ y). We have z ≤ x − (x − y) ≤ y from (a4), and we get z ∈ A(y).
Using (S2) and (a4), we obtain z ≤ x − (x − y) = y − (y − x) ≤ x. Hence z ∈ A(y). So
z ∈ A(x) ∩ A(y). �

3.6. Definition. Let X be a subtraction algebra. If there is an element 1 of X satisfying
x ≤ 1 for all x in X, then X is called a bounded subtraction algebra.

In a bounded subtraction algebra X, we denote 1 − x by x́.

3.7. Example. [4] Let X = {0, a, b, c} be a subtraction algebra with the following Cayley
table:

− 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b a 0

Then for all x ∈ X we have x − c = 0. Hence X is a bounded subtraction algebra.
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3.8. Theorem. In a bounded subtraction algebra, the following properties hold:

(i) 1́ = 0, 0́ = 1,
(ii) ( x́ )́ ≤ x,

(iii) x́ − ý ≤ y − x,

(iv) x ≤ y implies ý ≤ x́,

(v) x́ − y = ý − x,

(vi) x − x́ = x, x́ − x = x́,
(vii) x ∧ x́ = 0,

(vii) (( x́ )́ )́ = x́.

Proof. (i) 1́ = 1 − 1 = 0, 0́ = 1 − 0 = 1,

(ii) ( x́ )́ = 1 − x́ = 1 − (1 − x) ≤ x,

(iii) From (a7) and (S3), we have

0 = ((x − y) − (z − y)) − (x − z) = ((x − y) − (x − z)) − (z − y).

Hence we have ((x−y)−(x−z)) ≤ (z−y). So, we obtain x́− ý = (1−x)−(1−y) ≤ y−x.

(iv) If x ≤ y then, with (a9), we get 1 − y ≤ 1 − x.

(v) x́ − y = (1 − x) − y = (1 − y) − x = ý − x, (from (S3)).

(vi) x − x́ = x − (1 − x) = x, and x́ − x = (1 − x) − x = 1 − x = x́, (from (S1)).

(vii) x ∧ x́ = x − (x − x́) = x − x = 0.

(viii) (( x́ )́ )́ = 1 − (1 − (1 − x)) = 1 − x = x́, (from (a6)). �

3.9. Proposition. If X is a bounded subtraction algebra, then for all x ∈ X the following
hold:

x + 1 = 1 + x = 1 and x + x́ = 1.

Proof. Since x + 1 ∈ X and X is bounded, we have x + 1 ≤ 1. Also, for all y ∈ X, since
y − x ≤ 1 we have y ≤ x + 1. Then, we obtain 1 ≤ x + 1. Hence x + 1 = 1. Furthermore,
since y ≤ 1, we get y − x ≤ 1− x = x́, or y ≤ x + x́ for all y ∈ X. So we have 1 ≤ x + x́,
and therefore x + x́ = 1. �

Let S(X) = {x ∈ X : (x́ )́ = x}, where X is a bounded subtraction algebra. Since
(1́ )́ = 0́ = 1 and (0́ )́ = 1́ = 0, we have 0, 1 ∈ S(X).

3.10. Theorem. If X is a bounded subtraction algebra, then

x − ý = y − x́

for all x, y ∈ S(X).

Proof. Using Theorem 3.3 (v), we have x − ý = ( x́ )́ − y = ( ý )́ − x́ = y − x́. �

3.11. Theorem. If X is a bounded subtraction algebra, then S(X) is a bounded sub-
algebra of X.
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Proof. We know that 1 ∈ S(X). Let x, y ∈ S(X). We need to show that x − y ∈ S(X),
that is, ((x− y)́ )́ = x− y. From Theorem 3.8 (ii), we have ((x− y)́ )́ ≤ x− y. Also we get

(x − y) − ((x − y)́ )́ = (x − ((x − y)́ )́ ) − y, (using (S3))

= ((x − y)́ − x́ ) − y, (from Theorem 3.10)

= ((x − y)́ − y) − x́, (using (S3))

= (ý − (x − y)) − x́, (from Theorem 3.8 (v))

= (ý − x́) − (x − y), (using (S3))

= ((x́ )́ − y) − (x − y), (from Theorem 3.10)

= (x − y) − (x − y), (since x ∈ S(X))

= 0.

Then we obtain x − y ∈ S(X), and hence S(X) is a bounded subalgebra of X. �

3.12. Theorem. Suppose X is a bounded complicated subtraction algebra. Then S(X)
is a complicated subalgebra.

Proof. For all a, b ∈ S(X), it suffices to show that a + b ∈ S(X). We know from [4,
Proposition 3.4] that a, b ≤ a + b. From Theorem 3.8 (vi), we have (a + b)́ ≤ á, b́.
Hence a = (á )́ ≤ ((a + b)́ )́ and b = (b́ )́ ≤ ((a + b)́ )́. Then from [4, Proposition 3.4 and
Proposition 3.5], and the property x + x = x, we obtain

a ≤ ((a+ b)́ )́ =⇒ a+ b ≤ ((a+ b)́ )́+ b ≤ ((a+ b)́ )́+ ((a+ b)́ )́ = ((a+ b)́ )́ ≤ a+ b.

Then it follows that a + b = ((a + b)́ )́, and so we have a + b ∈ S(X). �

3.13. Theorem. Let (X1;−1) and (X2;−2) be two subtraction algebras and X1 ∩X2 =
{0}. We define the operation − on X = X1 ∪ X2 as follows

x − y =











x −1 y, if x, y ∈ X1,

x −2 y, if x, y ∈ X2,

x, if x and y belong to different algebras.

Then, X is a subtraction algebra.

Proof. It is easy to verify the axioms (S1)-(S3), and the proof is omitted. �

3.14. Definition. Let X1 and X2 be two subtraction algebras and X1∩X2 = {0}. If the
set X = X1 ∪X2 is the subtraction algebra with the operation defined in Theorem 3.12,
then X is called the union of X1 and X2, and is denoted by X = X1 ⊕ X2.

Note that in X = X1 ⊕ X2, if x and y do not belong to same algebra, then x and y

are not comparable. Furthermore X1 and X2 are subalgebras of X.

Similarly, if Xi are subtraction algebras for all i ∈ I and Xi ∩ Xj = {0} for i, j ∈ I ,
i 6= j, where I is an index set, the union algebra X =

⊕

i∈I

Xi can be defined in a similar

way.

3.15. Example. Let X1 = {0, a, b, c, d} and X2 = {0, e, f, g} be two subtraction algebras
with Cayley tables as follows:

−1 0 a b c d

0 0 0 0 0 0
a a 0 a a a

b b b 0 b b

c c c c 0 c

d d d d d 0

,

−2 0 e f g

0 0 0 0 0
e e 0 e 0
f f f 0 0
g g f e 0

.
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Then X = {0, a, b, c, d, e, f, g} is the union subtraction algebra with the following Cayley
table:

−1 0 a b c d e f g

0 0 0 0 0 0 0 0 0
a a 0 a a a a a a

b b b 0 b b b b b

c c c c 0 c c c c

d d d d d 0 d d d

e e e e e e 0 e 0
f f f f f f f 0 0
g g g g g g f e 0

.

3.16. Theorem. Let (X1;−1) and (X2;−2) be two subtraction algebras which have at
least two elements. Then the union X = X1⊕X2 is not a complicated subtraction algebra.

Proof. Suppose x, y are non-zero elements in X and x ∈ X1, y ∈ X2. Then x, y ∈ G(x, y),
but there is no non-zero c such that x ≤ c and y ≤ c. This means that G(x, y) does not
have a greatest element. So X is not a complicated subtraction algebra. �

3.17. Lemma. Let x, y be any elements of a subtraction algebra X. If A(x ∧ y) = {0}
then x − y = x and y − x = y.

Proof. By (a4), since x ∧ y ≤ y and x ∧ y ≤ x, we have x ∧ y ∈ A(x) and x ∧ y ∈ A(y).
Since A(x∧ y) = {0} we have x∧ y = x− (x− y) = 0 or x ≤ x∧ y. We also know that by
(a3), (x − y) − x = 0 or x − y ≤ x. Then x − y = x is valid. Similarly it can be proved
that y − x = y. �

3.18. Theorem. Let X be a subtraction algebra, {Xi : i ∈ I} a family of subsets of X.
If the conditions

a) X =
⋃

i∈I

Xi,

b) Xi ∩ Xj = {0}, i 6= j,
c) x ∈ Xi implies A(x) ⊆ Xi for any i ∈ I,

are satisfied, then all the Xi are subalgebras of X and X is the union of the Xi.

Proof. For any x, y ∈ Xi, from (a3) since (x − y) − x = 0, we have x − y ≤ x or
x− y ∈ A(x). Hence by (c), x − y ∈ Xi and so Xi is a subalgebra of X. Now let x ∈ Xi

and y ∈ Xj , i 6= j. By using the hypothesis and Lemma 3.17, we have x − y = x and
y − x = y. So we obtain X is the union of all the Xi. �
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