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Abstract

In this paper, we consider positively and negatively subscripted terms
of a generalized binary sequence {Uy} with indices in arithmetic pro-
gression. We give a factorization of the Pascal matrix by a matrix
associated with the sequence {Ui, } for a fixed positive integer k, gen-
eralizing results of Kilic and Tasci; Lee, Kim and Lee; Stanica; and
Zhizheng and Wang. Some new factorizations and combinatorial iden-
tities are derived as applications. Therefore we generalize the earlier
results on the factorizations of the Pascal matrix.
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1. Introduction

For n > 0, the n x n Pascal matrix P, = [pi;] is defined as follows [4]:
=1\ e
pij = <j71> iz,
0 otherwise.

In [6], it is shown that the matrix P, satisfies
Pn = g:nL'rn

where the n x n Fibonacci matrix F, = [fi;] and the matrix L, = [l;;] are defined by

] = Fiji ifti—j+12>0,
Y 0 otherwise,
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and
_ (-1 i—2 i-3
lij = ((jfl) - (jfl) - (j—1)>7
respectively, where I}, stands for the nth Fibonacci number.

In [7], the authors define an n x n matrix R, = [r; ;] as follows:
i—1 i—1 i—1
Tij = (jfl) - ( j ) - (j+1)7
and show that P, = R,J,. As an example, they give the following result:
(::11) = Fn7r+1 + (Tl - 2) an'r + 1 (TL2 —5n + 2) an'rfl

(n—k)(n—k-1)
+Z [2— e Rt 1) :|Fk7r+1-

Especially, for » = 1 they have

n

> (G2 = () = () =1

k=1

Furthermore they define an n x n matrix U, of the form:

1 000 ... 0 0]
0 1.0 0 0 0
~F 1 1 0 0 0
U= |-F 0 11 0 o]
-F 0 0 1 0 0
|-F, 0 0 0 ... 1 1]

and the matrices Uy, and Ry, by Uy = I,_x ® Uy and R, = [1]® R,—1. Then the authors
give the following factorization:

Rn = EnUru
Rn = U1ﬁ2 e ﬁnflﬁn-
Let

1 00 1 00
So=1|1 1 0|, S.=]0 1 of,
1 0 1 0 1 1
Sk =So® I for k € N, G = In, Go=1In_3® 571, and Gy = I,y @ Si_3 for k > 3.
In [5], the authors give the following factorization:

(1.1)  Frn=Gi1Gz---Gn,

where JF,, is defined as before.
In [1], the authors show that the Stirling matrix S, = (S (4, 7)),; of the second kind
can be written in terms of the Pascal matrix P, :

Sn =P, ([1] @ Snfl) 3

where S (i,7) are the Stirling numbers of the second kind, defined by the following re-
currence:

Sn,k)y=Sn—-1,k—-1)+S(n—-1,k).
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In [3], the authors define the n x n matrix W,, = [w;;] and Pell matrix E, = [e;;] as
below
P, ifj=1,
wi; =41 ifi=j

0  otherwise,

and e;; = Pi—j41 if i—j+1 > 0 and 0 otherwise, where P; is the i th Pell number. Then
they show that

En=Wo(I1i @Wn_1) l2@® Wy_2)-- (In—2 @ W2).

The Fibonacci and Lucas sequences have been discussed in very many studies. Various
further generalizations and matrix representations of these sequences have also been
introduced and investigated by many authors.

For n > 0 and nonnegative integers A and B such that A% + 4B # 0, the generalized
Fibonacci and Lucas type sequences {U,} and {V;,} are defined by

Unt1 = AUn + BUp -1,
V!L+1 = AVn + Banh

where Up = 0, Uy = 1 and Vo = 2, Vi = A, respectively. When A= B =1, U, = F,
(nth Fibonacci number) and V,, = L, (nth Lucas number).

The authors in [2] consider positively and negatively subscripted terms of the sequences
{Ukn} and {Viy} for a fixed positive integer k. They obtain relationships between these
sequences and the determinants of certain tridiagonal matrices. Further, the authors give
more general trigonometric factorizations and representations for the terms of {Uign}
and {Vik,}. Generating functions and combinatorial representations for them are de-
rived. Finally they obtain the following recurrence relations for £ > 0 and n > 1,

Ugn = VkUk(nfl) + (_1)k+1 BkUk(7L72)7
Vien = ViVitn1) + (=1 B*Vy (o).

In this paper, we consider positively and negatively subscripted terms of the generalized
binary sequence {U, }. We give a factorization of the Pascal matrix by a matrix associated
with the sequence {Uxpn}. Also, some new factorizations and combinatorial identities
are derived as applications of our results. Therefore we generalize the results of some
earlier studies on these factorizations.

2. Factorizations of the Pascal matrix via recurrent matrices
associated with {U 1y}

In this section, we define a matrix associated with the sequence {Uikn}. Then we
obtain some factorizations of the Pascal matrix by this new matrix, and derive new
identities as an applications of these factorizations.

Let the n x n lower triangular matrix H, = [hs;] be defined as follows:

e — Us(imjre ifi—3+12>0,
7 0 otherwise.
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Clearly the matrix H,, is in the form

Uik 0
Udtor Uik

H, = | Uk Uiak Uiy
Utin Uskn-1) Uskmn-2) - Ussk

Now, we define an n X n matrix C,, = [¢;;] with

i— U i i— +k\ e - . .
ey = g ((jj) - Y (3 4 (1) (- B) ) if i > j and 0 otherwise.
Then we can give the following theorem.

2.1. Theorem. P, = C,H, forn > 0.

Proof. To prove the theorem, it is sufficient to show PnH,j1 = (). The inverse of H,, is

given by
- 1 -
Uik
_ Vi 1
Utk Utk
(=BEF Vi
gt (h/ ) Utk Utk
n 13 ] — 0 (*B)ik 1
Utk Utk
_Var 1
Uiirkk Utk
0 0 (=B) _ Vik 1
L Utk Ut Utk

In order to prove that PHH,I1 = (', consider first the case where i > 1 and j = 1. By
the definitions of P, and H,, !, we write

Zpi,khﬁw = pi1hi1 + pizha + pishsa
k=1

. ey e

= (5o + () (o) + (5) (S2)
U1 _ (z _ 1) Vik + (i—2)(i—1)

+k

+k
Utk 2y, (BT
By the definition of C,

Uiy 2
and so we get the required conclusion

i

/
E pi,khk,l =Ci,1.
k=1

ci1 = Uik ((’61) _ (1*11)% + (ifl) (_B)j:k:> 7

For ¢ > 1 and j > 2, we obtain

n
/ / / !
E Pikhi; = pi, il  + pij+ihjia; + pij+ehiyo;
k=1

i— i— i— _p)tk
= (Do + (5 () + () S
i i—1\ U i—1\ (=B)EF
= (J*i)%ﬂ N ( jl) Ui;{: + <j+1)( UBi)k )
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From the definition of C,,, we write

n
Y pikhi; = cig.
k=1
Then we obtain that PnH,j1 = (). Thus the proof is complete. O

As a result of Theorem 2.1, we may give the following identity without proof.

2.2. Corollary. Forn >r >0,

n— = n— n— UyGi—r
(2 =20 ((20) = (5 Vaw (520) (-5 ) =,
j=r
In particular, if we take » = 1 in Corollary 2.2, we have

n

ST = (7Y Var+ () (—B)F) e =1,

j=1
2.3. Lemma. For3<i,5 <n,

1

> (62 = GV + (59 <—B>i’“)

+k
=3

= (i-2) P — (Ve + (7)) 22

Proof. (By induction on 7). Clearly the equation holds for ¢ = 3. Assume that the
equation holds for ¢ > 4. Thus

3 (G- (s (59 -0)7) B
=3 (D G (5 )

+§( — (TVar+ () (-B)*)
-3 (- (Vs () )

S (6 (v () (o) s

. V2 i i _ Btk
= (=2 gt = (()Var + (77)

1+1

S 6 s () 2%

(VirUsjn—(— B)TFUy l)k)
X 0T,




310 E. Kilig, N. Omfjr7 G. Tatar, Y. T. Ulutag

After some calculations and using Corollary 2.2, we get

i+1

i—1 i—1 i—1 +k\ Ug;
S (2D = (Evar+ (50 (=B )
j=3
— vE i1 i—1\\ (=B)*F
= (=1 gy = () Var + (7)) 75—
Hence, the proof is complete.
Now, we define the n X n matrices T, C,. and T} by
_ 1 _
% ’
_ Uiog
1 UUik 1
_Uisg
. gik 1 1
n — _ Ytakr )
Ton 0 1 1
_ U‘:tnk ‘
| — o 0o ... 0 1 1]
Cn=[1]®Ch-1 and Ty = I,,_, ® Ty, where C,, is defined as before.
2.4. Lemma. Forn >0,
Cpn=CpThn.
Proof. We denote the (i, j) th element of the matrix C, by Ci,j. Then,
1 ifi=1,7=1,
Cij =40 ifi£l,j=1lori=1,j#1,
Ci—1,j—1 Otherwise.
Let 6nTn = [Ki,j] and T, = [ti’j]. ObViOUSly K171 = ULM =cC1,1, Kz’z = ULM = C2,2,
Kyy = 1;Zt’“ = c¢91 and K;; = 0 for ¢+ < j. Since ;1 = —% fori>3,j=1and

using Lemma 2.3, we have

7 [3
Kix = E Cijtjn = E Ci—1,j-15,1
=2 =2

=S (- B+ () EBT) ot
j=2

= (3 = F2 ) + () -9 e

Ut =

C 3 () - B + () 57Y) e
= (16 va s () %) ()

— (=27 = (v (59) (S22))
= () = (DWVar+ () =B ) 2

Utk

=Ci1-

’
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In general, for i > 2, j > 2, from the definition of C,,, we get
Kij; = Z Ciymlm,j = Ci—1,j-1 -1+ ci—15 -1 =cij.
m=1
Thus the proof is complete. O

2.5. Lemma. Forn >0,

Proof. Follows directly from the definitions of C,, and T,. O

For example, when n = 4 in Lemma 2.5, we obtain

r 1
T ; N
—Vaip 1
Ui Tiv 0 0
Ca=| 12vy, +(-B)*F 2—Vik 1
U U Uir 0
+k +k +k
1-3Vy p +3(=B)EF 3-8V +(-B)EF  3-vy, 1
L Uiy Utk Utk Utk
m o 0 0 1 0 0 0
01 0 0 0 1 0 0
= 1
0 0 1 (1) 0 0 @Uk 0
00 0 w]l0 o0 1——Ui;: 1
1 0 0 00 oo 0 00
0 mp 00 [1-F% 1 0 0
X Utok U
0 1—%z 1 of | _Ussk
Ufi’“ gik 1 1 0
i ———— L +4k
0 oo, L U -FE 011
=T T-T5T,.
Now, define
Uik 0 0 1 0 0
My = Vi 1 0|, Moi= |0 Uxx 01,
—(-B)** 0 1 0 Usor Uik

My, = Mo ® Iy, k € N, and A = I, Ay = I3 @ M_q, A = I, ¢ D My_3, k > 3.
Therefore, we easily obtain the following result which we give without proof.

2.6. Lemma. Forn >0,

H, =A1A>---A,.
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In particular, when n = 4,
[ Uiy 0 0 0
Hy = Utor  Uxk 0 0
Utsk Usar Uxx O
\Uzark Uxsk Uzar Uxk
[1 0 0 O] 1 O 0 0

|01 0 of |0 1 0 0
|0 0 1 0] |0 0 Uxx 0
0 0 0 1] |0 0 Ugar Uz
1 0 0 0 Uik 0 0 O
» 0 Uik 0 0 Vig 1 0 0
0 Vi, 1 0| [-(=B)** 0 1 0
0 —(-B)** 0 1 0 0 0 1
= A1A2A3A,.
2.7. Corollary. Forn >0,
P,=CnHy, =T1T2.. Tn1TnA1Az--- Ap.
Proof. This follows from Theorem 2.1 and Lemma 2.6. d

Now, we define an n x n matrix C;, = [ ;] with

g = ot ((FI) ES 2+ () (—B)ik) if i > j and 0 otherwise.

Cij = T U1 Utp \j—1 Jj—1

We can then give the following theorem.

2.8. Theorem. Let P, H,,C, be the n x n matrices defined above. Then we have:
P, =H,C,.

Proof. Tt is sufficient to show H,'P, = C’,. Let H,;'P, = [2:,;]. Here we note that the
matrix H; ! is in the form

A 0
Utk
_ Vik 1
Utk Utk
(=B)**k _ Vik 1
. Utk Utk Utk
H, = 0 (—ByEk
Utk
: _ Vi 1
Utk Utk
0 0 (=B)**F Vi 1
L Utk Utk  Uspd

Clearly, z1,1 = i1, 22,1 = ¢h1, 22,2 = Ch9, and for ¢ < j, zi,; = ¢;;j = 0. Since all the
_ _Bytk

elements of the first column of P, are 1, we have z;; = % for ¢ > 3 and

j=1

For 4,5 > 2, from the definition of CJ,, we obtain

n
Zig =3 higpk; =hiapig+ i apio1; + hiapio2
j=1
_ 1 (i-1 Vig ) (i—2 (=B)** /i3
T Ui (j71) + (_ Uik> (j71) + [ (jfl)

!
= Ci,j'

Thus the proof is complete.
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From Theorem 2.8, we get the following result:

2.9. Corollary. Forn >r >0,

() = 20 (P ) (62D - 2)Var + (02 (-B)*)

j=r
In particular, when r = 1, we obtain

n

3 (Uﬂag};y:l)k) (1 — () Vi + (57 (_B)i’“> =1

j=1

We define an n X n matrix Q,, by

Utk
1=V +(=B)EF
Utk
Qn = | 1-Vy,+(=B)**
Utk

= = = O
== O O
= o O O
o o o o

1-Vip+(—B)EF
L Uip i

If we take C,, = [1] ® C;,_1, the following result is easily seen.

2.10. Lemma. Forn >0,
Cl = Q0.

For example, when n = 4, we get

[ L 0 0 0
Utk
1-Vig 1 0 0
/ Utk Utk
Ci= | 1-vi+(-B)** 2—Vig 1 0
Utk ik Utk ik Utk
1-Vip+(—B) 3—2Vyr+(—B) 3—Vig 1
L Utk Utk Utk Utk
r 1
Un 0 0 0] 0 0 0
1-Vig 1 0 0 0 1 0 0
Utk 1U$k
= | 1-Vyp+(—B)**F 11 ol lo “Vik 1 0
T Uin Utk ik Utk
17Vik+(7B)ik 1 1 1 0 1-Virp+(—B) 2—Vipg 1
Ll OUxn Utk Utk Utk

QaC.
2.11. Lemma. Let the matriz Qi be defined as before and @k =1In_1®Qr. Then

Ovlz =Q,Q,_1.-Q2Q.
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We can give the following example:

r 1
% .
Vi 1
Cs = Tir Lz
-Vt (=B 2-vi, 1
L Utk Utk Utk
r 1
T OO0 L0 0o o
—Viy, 1
1-Vip+(—B) — Ytk 0 0 +—
I ikUik 1 1 0 Uir 1 Uin
:@362@1-
We consider an n x n matrix 7;, = [t; ;| with
Uy ifi>1, j=1,
ti; =11 ifi=j, i,j>2,

0 otherwise.
Now, we can give the following results:
2.12. Lemma. Forn >1,

Proof. Let Ty, ([1] ® Hn—1) = (yi,;)- Since the (1,1) th element of the matrix [1] ® Hn—1
is 1, and the other elements in the first column of this matrix are zero, we get yi;1 = U+ik-
Fori > 1, j > 2 and i > j, by using the definitions of T}, and [1] ® H,_1, we obtain

Yii = Uk(i—j+k-
For i < j, we obtain y; ; = 0. Finally we get y;,; = hij for 1 < 4,5 < n, which completes
the proof. O

When n = 6 in Lemma 2.12,

2.13.

[ Utr 0 0 0 0 0
Usior Uxi 0 0 0 0
He — Usspk Uxor Uzxk 0 0 0
Utar Uiz Usor Ui 0 0
Ussk Uxar Uxse Uzor  Uzp 0
Utk Uzsk Uxar Uzxsk Uxox Uxp
(U, 0 0 0 O O 1 0 0 0 0 0
U, ' 1 0 0 0 O 0 Uxg 0 0 0 0
_|Ussk 01 0 0 Of |0 Utox Usxx 0 0 0
T |Utar 0 0 1 0 0| |0 Uyar Usor Usxs 0 0
Uish 0 0 0 1 O [0 Usar Uisx Usor Uz 0
Uie 0 0 0 0 1] |0 Ussk Uzar Uzszp Usap Uxx
=Ts([1] ® Hs) .

Lemma. If we define Ty = In_ ® T}, then

=

Hn = T;T;,l . 'T2T1.
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For example, when n =5 in Lemma 2.13, we have

Uk 0 0 0 0
Usar Usp 0 0 0
Hs = |Ussr Uzor  Usi 0 0

Utar Uxsp Uxor  Uxp 0
(Ussk Uzar Uzsp Uxop Uxx

(U, 0 0 0 0] [1 0 0 0 O] (1 O 0 0 0
Uior 1 0 0 0] |0 Ui, 0 0 Of |0 1 0 0 0
=|Utsr 0 1 0 Of |0 Utae 1 0 0] (0 O Uxr 0 O
Usarb 0 0 1 0] [0 Ugse 0 1 0[]0 0 Ugar 1 O
(Utsk 0 0 0 1] [0 Uxar 0 O 1] |0 O Uxse 0 1
1 0 0 0 o {1 0 0 O 0
0 1 0 0 0 0 1 0 O 0
x |10 0 1 0 0 0 0 1 0O 0
0 0 0 Ugr 0] ]0 O 0 1 0
0 0 0 Uz 1[0 0 0 0 Udygg
=TT\ T5ToT,
Now, we define an n X n matrix D,, of the form:
Uik 0 0 O 0
Vik 1 0 O 0
—(=B** 0 1 0 0
Dn = 0 0 0 1 0
0 o0 o0 --- 1

Then we have the following factorization.
2.14. Lemma. Forn > 1,
H, = ([1] ® Hn-1) Dn.

Proof. Since the (4, j) th element of [1]@ Hy—1 is hi;, and in view of the definition of Dy,
the result is readily seen. g
For n = 4 in Lemma 2.14, we obtain

[ Uis 0 0 0
Utar Usp 0 0

H, —
* Ussrk Usar Uxg 0
(Utar Uzse Uz Usg
1 0 0 0 Uiy 0 0 O
|10 Uz 0 0 Vik 1 0 0
10 Ugor Usk O | |[=(=B)** 0 1 0
10 Ussk Uxor Uxx 0 0 0 1
= ([1] ® Hs) Da.

If we define an n X n matrix Dy with Dy = I,,—x ® Dy, then we can obtain the following
result.

2.15. Lemma. Forn > 1,
Hn - ﬁlﬁZ o 'ﬁnflﬁn-
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When n =4 in Lemma 2.15, we get

[ Uir 0 0 0
Hy = Utior Uig 0 0
Usspk Uxor Uz 0
|Utar Uzsr Uzor Uszg
1 0 0 0 1 0 0 0
{01 0 0 0 1 0 0
10 0 1 0 0 0 Uxr O
0 0 0 Us] [0 0 Vi 1
1 0 0 0 Uytg 0 0 0
« 0 Uik 0 0 Vik 1 0 O
0 Vi 1L 0| |[-(=B)** 0 1 o0
0 —(-B)** 0 1 0 0 0 1
=D1DyDsDy.
Conclusion

In the present paper we introduce the n x n matrix H,, whose entries are Uy, satisfying

the general second order recurrence formula Uk, = ViUprn—1) + (—1)kJrl BkUk(n,z), with
initial conditions 0, Uy for k > 0 and n > 1. We use the matrix H,, instead of the n x n
Fibonacci matrix ¥, in the factorizations P, = R,F, and P, = F,L,, given in [7] and
[6], respectively. Here we obtain new matrices corresponding to the matrices R, and

Ly.

Therefore, we give more generalized factorizations of the n x n Pascal matrix P,.

Further, using these factorizations, the sequence {Uikn} and the matrix H, associated
with the sequence {Uign}, we generalize various results in [1, 3, 5, 6, 7].
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