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Abstract

Let us define A = [aij ] and B = [bij ] as n × n Toeplitz matrices such
that aij ≡ Fi−j and bij ≡ Li−j where F and L denote the usual
Fibonacci and Lucas numbers, respectively. We have found upper and
lower bounds for the spectral norms of these matrices.
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1. Introduction

Let {tn}∞n=−∞
be a doubly infinite sequence. A Toeplitz matrix is an n × n matrix

Tn = [tij ]
n−1
i, j=0

where tij = ti−j , i.e., a matrix of the form

Tn =















t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1 · · · t−(n−2)

t2 t1 t0 · · · t−(n−3)

...
...

...
. . .

...
tn−1 tn−2 tn−3 · · · t0















.

The Fibonacci and Lucas sequences Fn and Ln are defined by the recurrence relations

(1) F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2

and

(2) L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.
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If we start from n = 0, then the Fibonacci and Lucas sequences are given by

n 0 1 2 3 4 5 6 7 · · ·
Fn 0 1 1 2 3 5 8 13 · · ·
Ln 2 1 3 4 7 11 18 29 · · · .

The rules (1) and (2) can be used to extend the sequences backwards, thus

F−1 = F1 − F0, F−2 = F0 − F−1,

L−1 = L1 − L0, L−2 = L0 − L−1

and so on [7]. These produce

n 0 1 2 3 4 5 6 7 · · ·
F−n 0 1 −1 2 −3 5 −8 13 · · ·
L−n 2 −1 3 −4 7 −11 18 −29 · · · .

Generally,

F−n = (−1)n+1
Fn

and

L−n = (−1)n
Ln.

In [6], Solak has defined n × n circulant matrices with Fibonacci and Lucas numbers of
the forms

A =
[

F(mod(j−i,n))

]n

i,j=1

and

B =
[

L(mod(j−i,n))

]n

i,j=1
.

He has given lower and upper bounds for the spectral norms of these matrices.

In [2], Kayabaş has defined Toeplitz and Hankel matrices given by

(3) T
k
n =

(

g
k
r−s

)n

r,s=1

and

H
k
n =

(

g
k
r+s

)n

r,s=1
,

where gk
i is the i th element of the k-Fibonacci sequence [1]. When k = 2, the usual

Fibonacci sequence is obtained. Moreover she has found upper bounds for the Euclidean
norms of T 2

n and H2
n as follows:

∥

∥T
2
n

∥

∥

E
≤
√

n (FnFn+1 − 1)

and
∥

∥H
2
n

∥

∥

E
≤
√

n (F2nF2n+1 − Fn+1Fn+2).

In this study, we define Toeplitz matrices involving Lucas numbers of the form

(4) B = [Li−j ]
n
i,j=1 .

We have found the Euclidean norms, and the upper and lower bounds for the spectral
norms of the matrices (3) and (4).
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2. Preliminaries

Let A = (aij) be an m × n matrix. The ℓp norm of the matrix A is defined by

‖A‖p =

(

m
∑

i=1

n
∑

j=1

|aij |p
)1/p

(1 ≤ p < ∞).

If p = ∞, then

‖A‖
∞

= lim
p→∞

‖A‖p = max
i,j

|aij | .

The well-known Frobenius (Euclidean) norm of the matrix A is

‖A‖E =

(

m
∑

i=1

n
∑

j=1

|aij |2
)1/2

and also the spectral norm of the matrix A is

‖A‖2 =
√

max
1≤i≤n

|λi|

where the numbers λi are the eigenvalues of the matrix AHA and the matrix AH is the
conjugate transpose of the matrix A.

The following inequality holds [8]:

(5)
1√
n
‖A‖E ≤ ‖A‖2 ≤ ‖A‖E .

Let A = (aij) and B = (bij) be m × n matrices. Then, the Hadamard product of A and
B is the entry-wise product given by [5]

A ◦ B = (aijbij).

Define the maximum column length norm c1(·) and maximum row length norm r1(·) on
m × n matrices A = (aij) by

c1(A) ≡ max
j

√

∑

i

|aij |2 = max
j

∥

∥[aij ]
m
i=1

∥

∥

E

and

r1(A) ≡ max
i

√

∑

j

|aij |2 = max
i

∥

∥

∥
[aij ]

n
j=1

∥

∥

∥

E
,

respectively. Let A = (aij), B = (bij) and C = (cij) be m × n matrices. If C = A ◦ B

then [4]

(6) ‖C‖2 ≤ r1(A)c1(B).

The following sum formulae for the Fibonacci and Lucas numbers are well known [3, 7]:

(7)

n−1
∑

k=1

F
2
k = FnFn−1,

(8)

n−1
∑

k=1

L
2
k = LnLn−1 − 2,

(9)
n
∑

k=1

FkFk−1 =

{

F 2
n n even,

F 2
n − 1 n odd,
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and

(10)
n
∑

k=1

LkLk−1 =

{

L2
n − 4 n even,

L2
n + 1 n odd.

3. Main results

3.1. Theorem. Let the n × n matrix A = [aij ] satisfy aij ≡ Fi−j (as in (3) for k = 2).
Then,

‖A‖2 ≥







√

2
n
F 2

n n even,
√

2
n

(F 2
n − 1) n odd,

and

‖A‖2 ≤
√

(1 + FnFn−1) (FnFn−1),

where ‖·‖2 is the spectral norm, and Fn denotes the n th Fibonacci number.

Proof. The matrix A is of the form

A =



















F0 F−1 F−2 · · · F2−n F1−n

F1 F0 F−1 · · · F3−n F2−n

F2 F1 F0 · · · F4−n F3−n

...
...

...
. . .

...
...

Fn−2 Fn−3 Fn−4 · · · F0 F−1

Fn−1 Fn−2 Fn−3 · · · F1 F0



















.

We deduce from (7) that

‖A‖2
E = nF

2
0 + 2

n−1
∑

i=1

i
∑

k=1

F
2
k

= 2

n−1
∑

i=1

FiFi+1

= 2

n
∑

k=1

FkFk−1.

We conclude from (9) that

‖A‖E =

{√
2F 2

n n even,
√

2 (F 2
n − 1) n odd.

Using inequality (5) we obtain

‖A‖2 ≥







√

2
n
F 2

n n even,
√

2
n

(F 2
n − 1) n odd.

On the other hand, let the matrices

C = (cij) =

{

cij = 1 j = 1,

cij = Fi−j j 6= 1,

and

D = (dij) =

{

dij = 1 j 6= 1,

dij = Fi−j j = 1,
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satisfy A = C ◦ D. Then

r1(C) = max
i

√

∑

j

|cij |2 =

√

√

√

√1 +
n−1
∑

k=1

F 2
−k

=

√

√

√

√1 +

n−1
∑

k=1

F 2
k =

√

1 + FnFn−1

and

c1(D) = max
j

√

∑

i

|dij |2 =

√

√

√

√

n−1
∑

k=0

F 2
k

=

√

√

√

√

n−1
∑

k=1

F 2
k =

√

FnFn−1.

From (6), we have

‖A‖2 ≤
√

(1 + FnFn−1) (FnFn−1).

Thus, the proof is completed. �

3.2. Theorem. Let the n × n matrix B = [bij ] satisfy bij ≡ Li−j . Then

‖B‖2 ≥







√

2
n

(L2
n − 4) n even,

√

2
n

(L2
n + 1) n odd,

and

‖B‖2 ≤
√

(LnLn−1 − 1) (LnLn−1 + 2),

where ‖·‖2 is the spectral norm, and Ln denotes the n th Lucas number.

Proof. The matrix B is of the form

B =



















L0 L−1 L−2 · · · L2−n L1−n

L1 L0 L−1 · · · L3−n L2−n

L2 L1 L0 · · · L4−n L3−n

...
...

...
. . .

...
...

Ln−2 Ln−3 Ln−4 · · · L0 L−1

Ln−1 Ln−2 Ln−3 · · · L1 L0



















.

We deduce from (8) that

‖B‖2
E = nL

2
0 + 2

n−1
∑

i=1

i
∑

k=1

L
2
k

= 4n + 2

n−1
∑

i=1

(LiLi+1 − 2)

= 2
n
∑

k=1

LkLk−1.

We conclude from (10) that

‖B‖E =

{

√

2 (L2
n − 4) n even,

√

2 (L2
n + 1) n odd.
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Using inequality (5) we obtain

‖B‖2 ≥







√

2
n

(L2
n − 4) n even,

√

2
n

(L2
n + 1) n odd.

On the other hand, let the matrices

E = (eij) =

{

eij = 1 j = 1,

eij = Li−j j 6= 1,

and

F = (fij) =

{

fij = 1 j 6= 1,

fij = Li−j j = 1,

satisfy B = E ◦ F . Then

r1(E) = max
i

√

∑

j

|eij |2 =

√

√

√

√1 +

n−1
∑

k=1

L2
−k

=

√

√

√

√1 +

n−1
∑

k=1

L2
k =

√

LnLn−1 − 1

and

c1(F ) = max
j

√

∑

i

|fij |2 =

√

√

√

√

n−1
∑

k=0

L2
k

=

√

√

√

√4 +
n−1
∑

k=1

L2
k =

√

LnLn−1 + 2.

From (6), we have

‖B‖2 ≤
√

(LnLn−1 − 1) (LnLn−1 + 2).

Thus, the proof is completed. �

Acknowledgment The authors thank the referees for their helpful suggestions concern-
ing the presentation of this paper.

References

[1] Karaduman, E. An application of Fibonacci numbers in matrices, Applied Mathematics and
Computation 147, 903–908, 2004.
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