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Abstract
Let us define A = [a;;] and B = [b;;] as n X n Toeplitz matrices such
that a;; = F;—; and b;; = L;—; where I’ and L denote the usual
Fibonacci and Lucas numbers, respectively. We have found upper and
lower bounds for the spectral norms of these matrices.
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1. Introduction

Let {tn},—___ be a doubly infinite sequence. A Toeplitz matrix is an n x n matrix

-1
T, = [tlj]z j=0

where t;; = t;—j, i.e., a matrix of the form

to t-1 t-2 o T_(n-1)

t1 to t_1 e t*(n—2)

T, = t2 t o - t_(n-3)
tn—1 tn—2 tn73 e tO

The Fibonacci and Lucas sequences F),, and L, are defined by the recurrence relations
(1) Fo=0, Fi=1, F,=F, 1+ F,_2forn>2
and
(2) Lo = 2, L1 = 1, Lp=Ln 1+ Ly_o forn>2.
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If we start from n = 0, then the Fibonacci and Lucas sequences are given by

n 01 2 3 4 5 6 7
F, 01 1 2 3 5 8 13
L, 2 1 3 4 7 11 18 29
(

The rules (1) and (2) can be used to extend the sequences backwards, thus
Fi.=F—-F, Fo=F—-F1,
Li=I1—1Lo, Ls=Lo—1L_1

and so on [7]. These produce

n 0 1 2 3 4 5 6 7
F, 0 1 -1 2 =3 5 -8 13
L, 2 -1 3 —4 —-11 18 -29

N

Generally,
Fn=(-1)""'F,
and
—n=(=1)"Ly.

In [6], Solak has defined n x n circulant matrices with Fibonacci and Lucas numbers of
the forms

A = [Fmoa(—im)];

v
=1

and

B = [L(mod(jfiy”l))] N

ij=1"
He has given lower and upper bounds for the spectral norms of these matrices.

In [2], Kayabag has defined Toeplitz and Hankel matrices given by
@) Th=(g)

and

n

r,s=1

n

Hi = (g'lrf+s> )

r,s=1

where g¥ is the ith element of the k-Fibonacci sequence [1]. When k = 2, the usual
Fibonacci sequence is obtained. Moreover she has found upper bounds for the Euclidean
norms of T2 and H? as follows:

HTTQL”E <Vn(FnFpi —1)

and

HH’?LHE S \/n (F2nF2n+1 - F7L+1FTL+2)'
In this study, we define Toeplitz matrices involving Lucas numbers of the form

(4) B = [L;i—4]

i,5=1"
We have found the Euclidean norms, and the upper and lower bounds for the spectral
norms of the matrices (3) and (4).
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2. Preliminaries

Let A = (ai;) be an m X n matrix. The £, norm of the matrix A is defined by

m n 1/p
A, = (Z > |az‘j|p> (1<p<o0).

i=1 j=1
If p = oo, then

4]l = lim [|A], = max]a|.

The well-known Frobenius (Euclidean) norm of the matrix A is

1Al = (i i Iaijl2> h

i=1 j=1

and also the spectral norm of the matrix A is

1Al =/ max |Ai|

where the numbers \; are the eigenvalues of the matrix A" A and the matrix A7 is the
conjugate transpose of the matrix A.

The following inequality holds [§]:

1
(5) W Al < 1Al < [[Allg -
Let A = (ai;) and B = (bi;) be m x n matrices. Then, the Hadamard product of A and
B is the entry-wise product given by [5]
A oB = (ai]‘bij).

Define the maximum column length norm ¢;(-) and maximum row length norm 71(-) on
m X n matrices A = (ai;) by

en(4) = max [3 Jay* = max||fa )2,

K3

— 2
ri(4) =max 3 ay|* = m?XH[aij];-L:1HE7
J

respectively. Let A = (as;), B = (b;j) and C' = (¢i5) be m x n matrices. If C = Ao B
then [4]

(6) IClly < 71(A)er(B).

The following sum formulae for the Fibonacci and Lucas numbers are well known [3, 7]:

and

n—1

(7) ZFg:Fnanh

k=1

n—1

(8) > Li=LaLn1-2,

k=1

" F2 n even
9 FpFyp_ = n ’
©) kzzl R {FZ—l n odd,
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and

i L?2 —4 neven
10 LiLx_1 = n ’
(10) kzzl S {Li+1 n odd.

3. Main results

3.1. Theorem. Let the n X n matriz A = [as;] satisfy ai; = Fi—; (as in (3) for k = 2).
Then,

2 2
ZF3 n even,

2(F2—1) n odd,

n

1Al >

and

All, € V(A + FoFoo1) (FuFao1),

where ||-||, is the spectral norm, and F, denotes the n th Fibonacci number.

Proof. The matrix A is of the form

Fo F,. Fo - F_, Fi_,
Fy Iy Fa - F3.4 F,
Iy " Iy oo Fyn F3op
A= . . . . .
Foo Fo3 Fng --- Fo Py
Fno1 Fno Fh3 --- I Iy

We deduce from (7) that

n—1 1
1A% = nFs +2) > FY

i=1 k=1

n—1
=2y FiFipa
=1

=2Y FiF1.
k=1
We conclude from (9) that
1A, = V2F? n even,
B lV2F2=1) nodd
Using inequality (5) we obtain

2F2 n even,
n

Al = 4 Ve
= (F2—-1) nodd.

On the other hand, let the matrices

O:(Ci]‘): Cijzl ]:17
cj=Fij; j#1,

and

dij =1 J# 1L

D = (dij) =
(@) {dij=Fz‘j j=1
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satisfy A = C o D. Then

r1(C) = max > el =
i

n—1

1+ZF2: \/1+F7LF7L71
k=1

= max, [3 2 ldf” =

n—1
=Y. F?=\F.F, 1.
k=1

From (6), we have

1Al < VA F FaFar) (BaFa).
Thus, the proof is completed.

and

C1 (D

~

3.2. Theorem. Let the n X n matriz B = [bj] satisfy b;; = Li—j. Then

/2(L2 —4) n even,
1Blly =4 ¥

2(L24+1) n odd,

n

and

IBll; < V/(LnLn-1 = 1) (LnLn—1 +2),

where ||-||, is the spectral norm, and L, denotes the nth Lucas number.

Proof. The matrix B is of the form

LO L*l L72 e L27n Llfn
L1 Lo L71 e LS—n LQ—n
Lo Ly Lo -+ Lin L3zn
B =
Ln—2 Lp_3 Lp_g --- Lo L,
Lnfl L7L72 Ln—s e L1 Lo

We deduce from (8) that

n—1 1

1Bl =nLg+2>_ Y Li
i=1 k=1

n—1

=4n+2)  (LiLiy1 — 2)

i=1
=2Y LyLy 1.
k=1
We conclude from (10) that

2(L2 —4) n even,
Bl = >
2(L2 +1) nodd.
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Using inequality (5) we obtain

2 (L2 —4) n even,
1Blly =4 ¥
2(LZ+1) nodd.

On the other hand, let the matrices

’ eij = Li—j 771,

and

fiz =1 J# 1L

F=(fy)= {fm =Li—; j=1,

satisfy B = E o F'. Then

and

ri(E) = max Z leis])® =
J
n—1
=\ 1+> L3=\L.L,1—1
k=1
n—1
ci(F) =max [y |ful> =) L2
J i k=0
n—1
=44+ > L2 =+/LoLn1+2.
k=1

From (6), we have

IBll, < vV (LnLn—1 — 1) (LnLn-1 +2).

Thus, the proof is completed. O
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