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Abstract

In this paper we introduce the notion of a pair (f, g) being weakly f-
compatible and obtain a common fixed point theorem for self maps in
fuzzy metric spaces which modifies and generalizes some known results.
We also give a common fixed point theorem for self maps in sequentially
compact fuzzy metric spaces.
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1. Introduction and Preliminaries

The concept of a fuzzy set was introduced by Zadeh [18]. In the last two decades
there has been a tremendous development and growth in fuzzy mathematics. George
and Veeramani [7] modified the concept of fuzzy metric space which was introduced by
Kramosil and Michalek [11]. Grabiec [8] extended the well known fixed point theorems
of Banach [1] and Edelstein [4] to fuzzy metric spaces in the sense of [11]. Later many
authors, for example, [2, 3, 5, 7, 8, 10, 11, 13, 16, 17] proved fixed and common fixed
point theorems in fuzzy metric spaces. In this paper we formulate the definition of the
pair (f,g) being weakly f-compatible or weakly g-compatible, and obtain a common
fixed point theorem for such pairs of maps under an implicit relation, which generalizes
[17, Theorem 3.1], [10, Corollary 1], [2, Theorems 3.1 and 3.5] and [13, Corollary 2].
We also prove a common fixed point theorem for pairs of weakly compatible maps in a
sequentially compact fuzzy metric space using an implicit relation.

First of all we give some known definitions and lemmas.
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1.1. Definition. [15] A binary operation * : [0,1]% — [0, 1] is called a continuous t-norm,
if ([0, 1], % ) is an abelian topological monoid with a unit 1 such that a*b < c*d, whenever
a<c, b<dVa,b,cdel0,1].

Two examples of t-norms are a * b = ab and a * b = min{a, b}.

1.2. Definition. [7] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an
arbitrary set, * a continuous ¢ - norm and M a fuzzy set on X2 x (0, 00) satisfying the
following conditions:
(1) M(z,y,t) >0,
(2) M(z,y,t) =1 if and only if z =y,
(3) M(z,y,t) = M(y,=,1),
(4) M(z,y,t)*« M(y,z,s) < M(z,2,t+s),
(5) M(z,y,.): (0,00) — [0,1] is continuous, for all z,y,z € X and ¢,s > 0.
Let (X, M, *) be a fuzzy metric space. For t > 0, the open ball B(z,r,t) with center

z € X and radius 0 < r < 1 is defined by
B(z,rt)={y € X : M(z,y,t) >1—r}.

Now let (X, M, *) be a fuzzy metric space and 7 the set of all A C X with z € A if and
only if there exist ¢ > 0 and 0 < r < 1 such that B(x,r,t) C A. Then 7 is a topology on
X induced by the fuzzy metric M.

1.3. Definition. [8] A sequence {z,} in a fuzzy metric (X, M, %) is said to be convergent
to a point € X if limy— oo M(2n,x,t) = 1. The sequence {z,} is said to be Cauchy if
limp,m—oo M (Zn,Zm,t) = 1. The space (X, M, x) is said to be complete if every Cauchy
sequence in X is convergent in X.

1.4. Lemma. [8] Let (X, M, x) be a fuzzy metric space. Then M (x,y,t) is non-decreasing
forall z,y € X. g

1.5. Lemma. [12] Let (X, M,x) be a fuzzy metric space. Then M is a continuous
function on X? x (0, 00). O

Throughout this paper, we now assume that lim¢—oc M(z,y,t) = 1 and that N is the
set of all natural numbers.

1.6. Lemma. [13] Let {yn} be a sequence in (X, M, «). If there exists a positive number
k <1 such that

M (Ynt2,Yn+1,kt) > M(ynt1,yn,t), t >0, n €N,

then {yn} is a Cauchy sequence in X. O
1.7. Lemma. [13] If there exists k € (0,1) such that M(x,y,kt) > M(z,y,t) for all
z,y € X andt >0, then z =y. O

1.8. Definition. [13] Let f and g be self maps on a fuzzy metric space (X, M, x). The
pair (f,g) is said to be compatible if lim,—oo M(fgzn,gfTn,t) = 1, whenever {z,} is a
sequence in X such that lim,— fz, = limn—oo gxn = 2, for some z € X.

1.9. Definition. [9] Let f and g be self mappings on a fuzzy metric space (X, M, *).
Then the mappings are said to be weakly compatible if they commute at their coincidence
point, that is, fr = ga implies that fgx = gfx.

Now we give:

1.10. Definition. [14] The pair (f, g) is said to be weakly f-compatible if either lim, oo g f2rn =
fz or limp—.oo ggzn = fz, whenever {z,} is a sequence in X such that lim,—oe fzn =
limy— o0 gTn = 2z and limy, oo fgTn = limy— oo ffxn = fz, for some z € X.
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Similarly, we can define weak g-compatibility of the pair (f,g).

Clearly, both Definition 1.8 and 1.10 imply that the pair (f, g) is coincidentally com-
muting or a weakly compatible pair.
We observe that Definition 1.8 implies Definition 1.10. We also note that a weakly
f-compatible pair (f, g) need not be compatible in view of the following example.
1.11. Example. Let X = [0,1], a * b = min{a, b} and
t
M(z,y,t) = ———.
(z,y,t) = 5 P
Define
if0<z<1/2
fr=1—2z, gz= v 1 szl
1 ifl/2<z<1.

Let {x,} be a sequence in X such that z, < 1/2 Vn and lim,—c zn = 1/2. Then

lim fz, = lim 1—2z,=1/2, lim gz, = lim z, =1/2,
n—oo n—oo

i fgzn = lim 1= o = 1/2 = 1(1/2)

nlinolo ffon = nlin;oxn =1/2= f(1/2)
and

Jdim gfe, =1,  lim ggr, = lim z, =1/2= f(1/2).
Since

Jim fa, = lim gz, =1/2,  lim fge, = f(1/2), lim ffz, = f(1/2)
implies

lim ggan = f(1/2),
it follows that (f,g) is weakly f-compatible.

Since

lim M(fgzn,gfxn,t) = lim ¢

v 1
n—oo t + Tn 154-1/27é ’

the pair (f, g) is not compatible.

1.12. Definition. [14] The pair (f, g) is said to be f-continuous if
lim ffx, = lim fgx, = fz,
n—00 n—00

whenever {z,} is a sequence in X such that
lim fz, = lim gz, = 2,

for some z € X.

Recently Seong Hoon Cho [2] fallaciously proved the following theorem:

1.13. Theorem. [2, Theorem 3.1] Let (X, M,*) be a complete fuzzy metric space with
txt>t, Vt€[0,1], and let f,g,S and T be self maps on X such that

(1) f(X) cT(X), g(X)cCS(X),

(2) S and T are continuous,

(3) The pairs (f,S) and (g,T) are compatible,

(4) There exists k € (0,1) such that for every z,y € X and t > 0,

M(fx,gy,kt) > M(Sx,Ty,t) + M(fx, Sz, t) * M(gy, Ty,t) * M(fx,Ty,t),
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(5) limi—noo M(z,y,t) =1, Vz,y € X.
Then f,g,S and T have a unique common fized point in X.

We observe that this theorem is not valid in view of the following example of Fisher
[6] in metric spaces, even when S =T = I, the identity map.

1.14. Example. Let X ={0,1,2,...}, a*b = min{a, b} and
t
M x, 7t = T a .\
(@,y,%) t+d(z,y)
where d(n,n) =0, Vn € X and for n # m,

d( ) 1 if m+ nis odd,
m,n) =
2 if m 4+ n is even.

Define f,9,5, 7 : X — X by S =T = I, the identity map, and
f@n)=f2n+1)=2n+2, g(2n)=2n+1, g(2n+1) = 2n + 3,

forn=0,1,2,3,.... Then all the conditions of Theorem 1.13 are satisfied with k = 1/2,
but neither f nor g has a fixed point in X.

2. Implicit relations
Let ®¢ denote the set of all continuous functions ¢ : [0,1]® — R satisfying the
conditions
(¢1): ¢ is decreasing in t2,t3,t4,ts and te,
(¢2): &(u,v,v,v,v,v) > 0 implies u > v for all u,v € [0, 1].
2.1. Example. ¢(t1,t2,t3,ta,t5,t6) = t1 — min{to, ts,ta,ts,t6}-
2.2. Example. ¢(t1,t2,t3,t4,t5,t6) = t1 — min{tit; : 4,5 € {2,3,4,5,6}}.

2.3. Example. ¢(t1,t2,ts,t4,ts5,t6) = t3 — min{t;t;tx : 4,5,k € {2,3,4,5,6}}.

3. Main result

3.1. Theorem. Let f,g,S and T be self maps on a complete fuzzy metric space (X, M, *)
with txt >t Vt € [0,1] such that
(3.1.1) f(XJ\)/[(QfT(X)}f%(X]&(%S(X), \, M{fo, 55,9
x? gy7 t ) x7 Ty7t ) x7 x7t b
(3.1.2) ¢( )

>0
M(gvayvt)7 M(f$7Ty7O(t)7 M(gy7Sm7 (Q_Oé)t)

forallz,ye X, Vt >0 and Va € (0,2), where k € (0,1) and ¢ € Ps.
Further assume that
(3.1.3) (f,S) is weakly S-compatible, (g,T) is weakly T-compatible and either (f,S) is
S-continuous or (g,T) is T-continuous,
or
(3.1.4) (f,S) is weakly f-compatible, (g,T) is weakly g-compatible and either (f,S) is
f-continuous or (g,T) is g-continuous.

Then f,g,S and T have a unique common fized point z € X, and z is the unique common
fized point of f and S and of g and T.
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Proof. Let o € X be an arbitrary point. By (3.1.1), we can choose a sequence {z,} in
X such that y2n, = fron = TTont1, Y2n+1 = gTont1 = Sxont2 for n = 0,1,2,..., Let
dm(t) = M(ym7ym+17t)7 vt > 0.

Step 1. Putting = zan, Yy = T2n+1, @ =1 —q1 in (3.1.2), where ¢1 € (k, 1), we have
o< ¢(M(y2n7y2n+17 kt), M(yzn,Y2n—1,t), M(y2n,y2n—1,1), )
B M (y2n+1,Y2n,t), M(yan, y2n, (1 — q1)t), M(y2n+1,Y2n—1, (1 +q1)t)
- ¢(M(92n:y2n+1: kt), M(yan,y2n-1,t), M(yan,yan-1,t), )
B M (y2n+1,Y2n,t), 1, M(y2n, y2n—1,t) * M(Y2nt1, Y2n, q1t)
and so
(i) d(dan(kt), don—1(t), don—1(t), d2n(t), 1, don—1(t) * dan(q:1t)) > 0.
If dan(t) < d2n—1(t), then
don (q11) * d2n—1(t) = dan(q1t) * dan(q1t) = dan(qut)
and from (¢1), we have
¢(dan(kt), don(qit), dz2n(qit), dan(qit), d2n(qit), don(qit)) > 0.
Then again from (¢2), we have
dan(kt) > don(q1t),
a contradiction. Hence dan (t) > d2n—1(t) for every n € N and V¢ > 0.
Now from (i) and (¢1) we have
¢(dan (kt), don—1(q1t), dan-1(qit), den—1(q1t), don-1(qit), dan—1(qt) >0
and from (¢2), we have
(i) don (kt) > dan—1(q1t).

Step 2. Similarly, putting z = x2n, ¥ = T2n—1, @ =1 — @2 in (3.1.2), where ¢2 € (k, 1),
we can show that

(i)  dan-1(kt) = dan—2(g2t),

Now let ¢ = min{q1, g2} so that g € (k,1). Then from (ii) and (iii) we have
dn (kt) > dn—1(qt)

for every n € N, and so
M(Yn, Ynt1,t) = M(Yn—1,Yn, (a/k)t)

> M(Yn—2,yn—1, (q/k)*t)

> M(yo,y1, (¢/k)"t).

Hence, by Lemma 1.6, {y,} is a Cauchy sequence and from the completeness of X, {y,}
converges to some point z in X.

Now suppose that the conditions in (3.1.3) are true.

Step 3. Suppose that (f,S) is S-continuous. Then Sfz2, — Sz and SSz2, — Sz as
n — 00. Since (f, S) is weakly S-compatible we have either fSz2, — Sz or ffxa, — Sz
as n — oo.

Case 1. Suppose that fSx2, — Sz asn — co. Then putting z = Sza,, y = Ton4+1, @ =
1in (3.1.2), we get

(M(fogn,gx2n+1,kt), M(Sszn,Tx2n+1,t), M(fS:rzn,SS:Ezn,t), ) 0
M(gxant1, Trant1,t), M(fSw2n, Tx2n41,t), M(granti, SSx2n,1)
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Letting n — oo, we have
0 < ¢(M(Sz, 2, kt), M(Sz,2,t), 1, 1, M(Sz,2,t), M(z,Sz,t))
M(Sz, z,kt), M(Sz,z,t), M(Sz,z,t),
( M(Sz,z,t), M(Sz, z,1), M(z,Sz,t))‘
From (¢2), we have M (Sz, z,kt) > M(Sz, z,t), which implies by Lemma 1.7 that Sz = z.

<o

Case 2. Suppose ffxren — Sz as n — co. Putting x = fxon, y = To2nt1, @« = 1 in
(3.1.2), we get

(M(ffxzn,gxgnH, kt), M(Sfxon, Txont1,t), M(ffxon, Sfxon,t), ) -0
M (gz2n+1, TTon+1,t), M(ffxon, TTont1,t), M(gTont1, Sfron,t)) =
Letting n — oo, we have
0 < @(M(Sz, z,kt), M(Sz,z,t), 1, 1, M(Sz,z,t), M(z,Szt))
M(Sz, z,kt), M(Sz,z,t), M(Sz,z,t),
( M(Sz,2,t), M(Sz,z,1t), M(z,Sz,t))'
From (¢2), we have M (Sz, z, kt) > M(Sz, z,t), which implies that Sz = z.
Step 4. Putting © = 2z, ¥y = Z2n+1, a =1 in (3.1.2) we have
M(fz, gxont1, kt), M(Sz,Txont1,t), M(fz,Sz,t),
( M(gzon+1, Txont1,t), M(fz, Tx2n+1,t), M(gxgnH,Sz,t)) 20
Letting n — oo, we have
(M (fz,z,kt), 1, M(fz,z2,t), 1, M(fz,z2,t), 1) > 0.
From (¢1) and (¢2), we have M (fz, z,kt) > M(fz, z,t), which implies that fz = z.

Step 5. Since f(X) C T(X), there exists w € X such that z = fz = Tw. Putting
T = Ton, y=w, =1 1in (3.1.2), we have

M(fxon, gw, kt), M(Szon, Tw,t), M(fxon, STon,t),
( M(gw,Tw,t), M(fzon,Tw,t), M(gw,Sxon,t) ) 20
Letting n — oo, we have
(M (z,gw, kt), 1, 1, M(gw, z,t), 1, M(gw, z,t)) > 0.

From (¢1) and (¢2), we have M(z, gw,kt) > M (z, gw,t), which implies that gw = z.
Thus Tw = gw.

<¢

Since (g, T') is weakly T-compatible it follows that (g, T) is a weakly compatible pair.
Hence T'gw = gTw, so that Tz = gz.

Step 6. Putting © = x2n, y = 2, @« = 1 in (3.1.2) we have
(M(f:tczmgz,kt)7 M(Szon,Tz,t), M(fzron, Sx2n7t)7) -0
M(gz,Tz,t), M(fxon,Tz,t), M(gz,Sx2n,t) =7
Letting n — oo,we have
d(M (2, Tz, kt), M(2,Tz,t), 1, 1, M(2,Tz,t), M(Tz,z2,t)) > 0.

From (¢1) and (¢2), we have M (z,Tz,kt) > M(Tz,z,t), which implies that Tz = z.
Hence gz = Tz = z and so z is a common fixed point of f,g,S and T

Step 7. Suppose that zp is another common fixed point of f,g,S and T. Putting
=2z, y==z0, a=11in (3.1.2), we have

@(M(z, z0, kt), M(z,z0,t), 1, 1, M(z,z20,t), M(z0,%,t)) > 0.
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From (¢1) and (¢2), we have M (z, z0, kt) > M(z, zo,t), which implies that z = zo. Hence
z is the unique common fixed point of f,g,S and T

Step 8. Suppose that z; is another common fixed point of f and S. Putting x = 21, y =
z, o =11in (3.1.2), we have
O(M(z1,2,kt), M(z1,2,t), 1, 1, M(z1,2,t), M(z,21,t)) > 0.
From (¢1) and (¢2), we have M (z1, z, kt) > M(z, z1,t), which implies that z1 = z. Hence
z is the unique common fixed point of f and S.
Similarly we can show that z is the unique common fixed point of g and T'.
Similarly we can prove the theorem if (g,T") is T-continuous.

Also we can prove the theorem if the conditions in (3.1.4) are true. d

3.2. Example. Let X =[0,1], a *b = min{a, b} and
. t

St —yl

Define fx = gz =1 and

Sp = T — g2 ifo<z <1,
IR ifz=1,

M(z,y,t)

for all x € X. Then all the conditions of Theorem 3.1 are satisfied with
(Z5(2517 t27 t37 1547 t57 ts) = t1 — IIlin{tQ7 2537 t47 1557 tﬁ}.
Clearly 1 is the unique common fixed point of f,g,S and T

Now we give another implicit relation which is useful for the next theorem.

4. An implicit relation.

Let Tg be the set of all functions 4 : [0,1]% — R such that

(¥1): Y (v,u,u,v,w,1) > 0 or ¥(v,u,v,u,1l,w) > 0 implies u < v for all u,v € [0,1)
and w <1,

(¥2): ¥(v,1,1,v,v,1) <0, ¥(v,v,1,1,v,v) <0 and ¥ (v,1,v,1,1,0) <0 for all v €
[0,1).

4.1. Example. ¢(t1,t2,ts,ta,t5,t6) = t1 — min{ts, t3,ta} — b(ts + te), where b > 0.

(
4.2. Example. (t1,t2,t3,t4,t5,t6) = t1 — min{t3,t3ts} — btste, where b > 0.
4.3. Example. (t1,t2,t3,t4,t5,t6) = t5 — tatsts — b(t2te + tsta), where b > 0.

4.4. Definition. (X, M, ) is said to be a sequentially compact fuzzy metric space if
every sequence in X has a convergent sub-sequence.

4.5. Theorem. Let f,g,S and T be self-mappings of a sequentially compact fuzzy metric
space (X, M, *) such that
(1) S(X) € g(X) and T(X) C f(X),
@ d)(M(S%TyJ% M(fz,gy,t), M(fz,Sz,1), )
>
M(gy,Ty,t), M(fz,Ty,t), M(Sz,gy,t)
for every xz,y € X with one of fx # gy, fx # Sz and gy # Ty and for allt > 0,
where Y € Vg,
(3) The pairs (f,S) and (g,T) are weakly compatible,
(4) Either f and S are continuous or g and T are continuous.
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Then f,g,S and T have a unique common fixed point p in X . Further p is the unique
common fixed point of f and S and of g and T'.
Proof. Suppose that f and S are continuous and for any ¢ > 0, let

m = sup{M(fz, Sz,t) : x € X}.

Since f and S are continuous on a sequentially compact fuzzy metric space, there exists
u € X such that m = M(fu, Su,t).

Since S(X) C g(X), there exists v € X such that

(5) Su = gv.
Since T'(X) C f(X), there exists w € X such that
(6) Tv = fw.

Suppose neither f and S nor g and 7" have a coincidence point in X. Then
m = M(fu, Su,t) <1, M(gv,Tv,t) <1 and M(fw,Sw,t) < 1.
We have
M(Su,Tv,t), M(fu,gv,t), M(fu,Su,t),
O<1j)( M(gv,Tv,t), M(fu,Tv,t), M(Smgv,t))
=¢Y(M(Tv,gv,t), m, m, M(gv,Tv,t), M(fu,Tv,t), 1),
and by (1), we have
(7) m < M(gv,Tv,t).
Now from (2), we have
M(Sw,Tv,t), M(fw,gv,t), M(fw,Sw,t),
0< ( M(gv,Tv,t), M(fw,Tv,t), M(Sw,gv,t))
M(fw, Sw,t), M(gv,Tv,t), M(fw, Sw,t),
- 1/’( M(gv,Tv,t), 1, M(Sw, gv,t)) '
By (1), we have
(8) M(gv,Tw,t) < M(fw,Sw,t).
Now from the definition of m and the inequalities (7) and (8) we have
m > M(fw, Sw,t) > M(gv,Tv,t) > m,
a contradiction. Hence there exists o € X such that fa = Sa or ga = Ta.

Case (a): Suppose that fa = Sa. Since S(X) C g(X), there exists a € X such that
Sa = gB. Suppose that M(g3,T3,t) < 1. Then from (2) we have

M(Sa, TS, t), M(fa,gB,t), M(fa, Sa,t),

08" (a0, Mfer T, (S g0)
=y(M(gB,TB,t), 1, 1, M(gB3,T8,t), M(gB,T8,1), 1).
By (¢2), we have M (g3,T3,t) = 1, so that g8 = T 8. Thus
(9) fa=Sa=gB=Tp=p, say.
Since the pair (f,S) is weakly compatible we have
(10) fp= fSa=Sfa=Sp.
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Suppose that M(Sp,p,t) < 1. From (2), we have

0 (M(Sp,TﬂJ), M(fp,gB,t), M(fp,Sp.1), )
M(gB,TB,t), M(fp,TB,t), M(Sp,gp,1)
=¢(M(Sp,p,t), M(Sp,p,t), 1, 1, M(Sp,p,t), M(Sp,p,t)).
Hence from (t2), we have Sp = p. Thus
(11) fp=Sp=p.

Since the pair (g,T") is weakly compatible we have
gp=gTB=TgB=Tp.
Using (2) with £ = «, y = p and (32) we can show that Tp = p. Thus,
(12) gp=Tp=p.
Hence p is a common fixed point of f, g, 5 and T'.
Case (b): Suppose that gao = T'a. Since T'(X) C f(X), there exists 8 € X such that
Ta= fg3.
Suppose that M(f3,S8,t) < 1. From (2), we have
0< M(SB,Ta,t), M(fB,ga,t), M(fB,SB,t),
M(ga, Ta,t), M(fB,Ta,t), M(SB,ga,t)
=(M(SB, [B,1), 1, M(fB,SB,1), 1, 1, M(SB, [B,1)).
Hence from (12), we have f3 = S3. Thus S@ = f3 = Ta = ga = p, say. Now as in
case(a), we can show that p is a common fixed point of f, g, S and T

Suppose that po is another common fixed point of f,g,S and T. Using (2) with
z =p, y=po and (¢2), we can show that po = p. Thus p is the unique common fixed
point of f,g,S and T.

Now suppose that p; is another common fixed point of f and S. Using (2) with
x = p1, y = p and (¢2) we can show that p1 = p. Thus p is the unique common fixed
point of f and S.

Similarly we can show that p is the unique common fixed point of g and 7.

Similarly the theorem holds when g and T are continuous. (]

4.6. Remark. Theorem 4.5 holds if the inequality (2) is replaced by one of the following
inequalities:

(a) M(Sz,Ty,t) > min{M(fz,gy,t), M(fz,Sz,t), M(gy,Ty,t)},

(b) M?(Sz,Ty,t) > min{M?(fz,gy,t), M(fz,Sz,t)M(gy,Ty,t)},

(¢) M?(Sz,Ty,t) > M(fz,gy,t)M(fz, Sz, t)M(gy, Ty,1).
4.7. Example. Let X = [0,1], a * b = min{a, b} and

t
M(z,y,t) = ————.

(9.0 =53 lz =yl

Define Sz =Tz =1, fx = ZT“ and gxr = HT‘"” for all x € X. Then all the conditions of
Theorem 4.5 are satisfied with

¢(t1,t2,t3,t4,t5,t6) =t — min{tz,t37t4}.

Clearly 1 is the unique common fixed point of S, T, f and g.
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