COMMON FIXED POINT THEOREMS IN FUZZY METRIC SPACES UNDER IMPLICIT RELATIONS

K. P. R. Rao^{*}, G. Ravi Babu^{*} and B. Fisher[†]

Received 12:06:2008 : Accepted 21:10:2008

Abstract

In this paper we introduce the notion of a pair (f,g) being weakly fcompatible and obtain a common fixed point theorem for self maps in
fuzzy metric spaces which modifies and generalizes some known results.
We also give a common fixed point theorem for self maps in sequentially
compact fuzzy metric spaces.

Keywords: Weakly *f*-compatible pair (f, g), Sequentially compact, Common fixed points.

2000 AMS Classification: 47 H 10, 54 H 25.

1. Introduction and Preliminaries

The concept of a fuzzy set was introduced by Zadeh [18]. In the last two decades there has been a tremendous development and growth in fuzzy mathematics. George and Veeramani [7] modified the concept of fuzzy metric space which was introduced by Kramosil and Michalek [11]. Grabice [8] extended the well known fixed point theorems of Banach [1] and Edelstein [4] to fuzzy metric spaces in the sense of [11]. Later many authors, for example, [2, 3, 5, 7, 8, 10, 11, 13, 16, 17] proved fixed and common fixed point theorems in fuzzy metric spaces. In this paper we formulate the definition of the pair (f, g) being weakly *f*-compatible or weakly *g*-compatible, and obtain a common fixed point theorem for such pairs of maps under an implicit relation, which generalizes [17, Theorem 3.1], [10, Corollary 1], [2, Theorems 3.1 and 3.5] and [13, Corollary 2]. We also prove a common fixed point theorem for pairs of weakly compatible maps in a sequentially compact fuzzy metric space using an implicit relation.

First of all we give some known definitions and lemmas.

^{*}Department of Applied Mathematics, Acharya Nagarjuna University - Dr. M.R. Appa Row Campus, NUZVID- 521201, Krishna Dt., A.P., India.

E-mail: (K.P. Rao) kprrao2004@yahoo.com (G.R. Babu) ravibabugollapudi@yahoo.co.in

 $^{^{\}dagger}B.Fisher,$ Department of Mathematics, University of Leicester, L
El 7RH, U.K. E-mail: fbr@leicester.ac.uk

1.1. Definition. [15] A binary operation $* : [0, 1]^2 \to [0, 1]$ is called a *continuous t-norm*, if ([0, 1], *) is an abelian topological monoid with a unit 1 such that $a * b \le c * d$, whenever $a \le c, b \le d \forall a, b, c, d \in [0, 1]$.

Two examples of t-norms are a * b = ab and $a * b = \min\{a, b\}$.

1.2. Definition. [7] The 3-tuple (X, M, *) is called a *fuzzy metric space* if X is an arbitrary set, * a continuous t - norm and M a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions:

(1) M(x, y, t) > 0,

(2) M(x, y, t) = 1 if and only if x = y,

(3) M(x, y, t) = M(y, x, t),

(4) $M(x, y, t) * M(y, z, s) \le M(x, z, t+s),$

(5) $M(x, y, .): (0, \infty) \to [0, 1]$ is continuous, for all $x, y, z \in X$ and t, s > 0.

Let (X, M, *) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with center $x \in X$ and radius 0 < r < 1 is defined by

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.$$

Now let (X, M, *) be a fuzzy metric space and τ the set of all $A \subset X$ with $x \in A$ if and only if there exist t > 0 and 0 < r < 1 such that $B(x, r, t) \subset A$. Then τ is a topology on X induced by the fuzzy metric M.

1.3. Definition. [8] A sequence $\{x_n\}$ in a fuzzy metric (X, M, *) is said to be *convergent* to a point $x \in X$ if $\lim_{n\to\infty} M(x_n, x, t) = 1$. The sequence $\{x_n\}$ is said to be *Cauchy* if $\lim_{n,m\to\infty} M(x_n, x_m, t) = 1$. The space (X, M, *) is said to be *complete* if every Cauchy sequence in X is convergent in X.

1.4. Lemma. [8] Let (X, M, *) be a fuzzy metric space. Then M(x, y, t) is non-decreasing for all $x, y \in X$.

1.5. Lemma. [12] Let (X, M, *) be a fuzzy metric space. Then M is a continuous function on $X^2 \times (0, \infty)$.

Throughout this paper, we now assume that $\lim_{t\to\infty} M(x, y, t) = 1$ and that \mathbb{N} is the set of all natural numbers.

1.6. Lemma. [13] Let $\{y_n\}$ be a sequence in (X, M, *). If there exists a positive number k < 1 such that

$$M(y_{n+2}, y_{n+1}, kt) \ge M(y_{n+1}, y_n, t), \ t > 0, \ n \in \mathbb{N},$$

then $\{y_n\}$ is a Cauchy sequence in X.

1.7. Lemma. [13] If there exists $k \in (0,1)$ such that $M(x,y,kt) \ge M(x,y,t)$ for all $x, y \in X$ and t > 0, then x = y.

1.8. Definition. [13] Let f and g be self maps on a fuzzy metric space (X, M, *). The pair (f, g) is said to be *compatible* if $\lim_{n\to\infty} M(fgx_n, gfx_n, t) = 1$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} gx_n = z$, for some $z \in X$.

1.9. Definition. [9] Let f and g be self mappings on a fuzzy metric space (X, M, *). Then the mappings are said to be *weakly compatible* if they commute at their coincidence point, that is, fx = gx implies that fgx = gfx.

Now we give:

1.10. Definition. [14] The pair (f, g) is said to be *weakly* f-compatible if either $\lim_{n\to\infty} gfx_n = fz$ or $\lim_{n\to\infty} ggx_n = fz$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} fx_n = \lim_{n\to\infty} ggx_n = z$ and $\lim_{n\to\infty} fgx_n = \lim_{n\to\infty} ffx_n = fz$, for some $z \in X$.

Similarly, we can define weak g-compatibility of the pair (f, g).

Clearly, both Definition 1.8 and 1.10 imply that the pair (f,g) is coincidentally commuting or a weakly compatible pair.

We observe that Definition 1.8 implies Definition 1.10. We also note that a weakly f-compatible pair (f, g) need not be compatible in view of the following example.

1.11. Example. Let $X = [0, 1], a * b = \min\{a, b\}$ and

$$M(x, y, t) = \frac{t}{t + |x - y|}.$$

Define

$$fx = 1 - x, \quad gx = \begin{cases} x & \text{if } 0 \le x \le 1/2, \\ 1 & \text{if } 1/2 < x \le 1. \end{cases}$$

Let $\{x_n\}$ be a sequence in X such that $x_n < 1/2 \ \forall n$ and $\lim_{n \to \infty} x_n = 1/2$. Then

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} 1 - x_n = 1/2, \quad \lim_{n \to \infty} gx_n = \lim_{n \to \infty} x_n = 1/2,$$
$$\lim_{n \to \infty} fgx_n = \lim_{n \to \infty} 1 - x_n = 1/2 = f(1/2),$$
$$\lim_{n \to \infty} ffx_n = \lim_{n \to \infty} x_n = 1/2 = f(1/2)$$

and

$$\lim_{n \to \infty} gfx_n = 1, \quad \lim_{n \to \infty} ggx_n = \lim_{n \to \infty} x_n = 1/2 = f(1/2).$$

Since

$$\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = 1/2, \quad \lim_{n \to \infty} fgx_n = f(1/2), \quad \lim_{n \to \infty} ffx_n = f(1/2)$$

implies

$$\lim_{n \to \infty} ggx_n = f(1/2),$$

it follows that (f, g) is weakly f-compatible.

Since

$$\lim_{n \to \infty} M(fgx_n, gfx_n, t) = \lim_{n \to \infty} \frac{t}{t + x_n} = \frac{t}{t + 1/2} \neq 1,$$

the pair (f, g) is not compatible.

1.12. Definition. [14] The pair (f, g) is said to be *f*-continuous if

$$\lim_{n \to \infty} ffx_n = \lim_{n \to \infty} fgx_n = fz$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} f x_n = \lim_{n \to \infty} g x_n = z,$$

for some $z \in X$.

Recently Seong Hoon Cho [2] fallaciously proved the following theorem:

1.13. Theorem. [2, Theorem 3.1] Let (X, M, *) be a complete fuzzy metric space with $t * t \ge t$, $\forall t \in [0, 1]$, and let f, g, S and T be self maps on X such that

- (1) $f(X) \subset T(X), \quad g(X) \subset S(X),$
- (2) S and T are continuous,
- (3) The pairs (f, S) and (g, T) are compatible,
- (4) There exists $k \in (0, 1)$ such that for every $x, y \in X$ and t > 0,

 $M(fx, gy, kt) \ge M(Sx, Ty, t) * M(fx, Sx, t) * M(gy, Ty, t) * M(fx, Ty, t),$

(5) $\lim_{t\to\infty} M(x,y,t) = 1, \ \forall x,y \in X.$

Then f, g, S and T have a unique common fixed point in X.

We observe that this theorem is not valid in view of the following example of Fisher [6] in metric spaces, even when S = T = I, the identity map.

1.14. Example. Let $X = \{0, 1, 2, ...\}, a * b = \min\{a, b\}$ and

$$M(x, y, t) = \frac{t}{t + d(x, y)},$$

where d(n,n) = 0, $\forall n \in X$ and for $n \neq m$,

$$d(m,n) = \begin{cases} 1 & \text{if } m+n \text{ is odd,} \\ 2 & \text{if } m+n \text{ is even.} \end{cases}$$

Define $f, g, S, T : X \to X$ by S = T = I, the identity map, and

$$f(2n) = f(2n+1) = 2n+2, g(2n) = 2n+1, g(2n+1) = 2n+3,$$

for n = 0, 1, 2, 3, ... Then all the conditions of Theorem 1.13 are satisfied with k = 1/2, but neither f nor g has a fixed point in X.

2. Implicit relations

Let Φ_6 denote the set of all continuous functions $\phi: [0,1]^6 \longrightarrow \mathbb{R}$ satisfying the conditions

 (ϕ_1) : ϕ is decreasing in t_2, t_3, t_4, t_5 and t_6 ,

 (ϕ_2) : $\phi(u, v, v, v, v, v) \ge 0$ implies $u \ge v$ for all $u, v \in [0, 1]$.

2.1. Example. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4, t_5, t_6\}.$

2.2. Example. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1^2 - \min\{t_i t_j : i, j \in \{2, 3, 4, 5, 6\}\}.$

2.3. Example. $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1^3 - \min\{t_i t_j t_k : i, j, k \in \{2, 3, 4, 5, 6\}\}.$

3. Main result

3.1. Theorem. Let f, g, S and T be self maps on a complete fuzzy metric space (X, M, *) with $t * t \ge t \ \forall t \in [0, 1]$ such that

$$\begin{array}{ll} (3.1.1) & f(X) \subseteq T(X), \ g(X) \subseteq S(X), \\ (3.1.2) & \phi \binom{M(fx, gy, kt), \ M(Sx, Ty, t), \ M(fx, Sx, t), \\ M(gy, Ty, t), \ M(fx, Ty, \alpha t), \ M(gy, Sx, (2-\alpha)t) \end{pmatrix} \geq 0, \end{array}$$

for all $x, y \in X$, $\forall t > 0$ and $\forall \alpha \in (0, 2)$, where $k \in (0, 1)$ and $\phi \in \Phi_6$.

Further assume that

(3.1.3) (f, S) is weakly S-compatible, (g, T) is weakly T-compatible and either (f, S) is S-continuous or (g, T) is T-continuous,

or

(3.1.4) (f, S) is weakly f-compatible, (g, T) is weakly g-compatible and either (f, S) is f-continuous or (g, T) is g-continuous.

Then f, g, S and T have a unique common fixed point $z \in X$, and z is the unique common fixed point of f and S and of g and T.

100

Proof. Let $x_0 \in X$ be an arbitrary point. By (3.1.1), we can choose a sequence $\{x_n\}$ in X such that $y_{2n} = fx_{2n} = Tx_{2n+1}, y_{2n+1} = gx_{2n+1} = Sx_{2n+2}$ for $n = 0, 1, 2, \ldots$, Let $d_m(t) = M(y_m, y_{m+1}, t), \forall t > 0$.

Step 1. Putting $x = x_{2n}$, $y = x_{2n+1}$, $\alpha = 1 - q_1$ in (3.1.2), where $q_1 \in (k, 1)$, we have

$$0 \leq \phi \begin{pmatrix} M(y_{2n}, y_{2n+1}, kt), & M(y_{2n}, y_{2n-1}, t), & M(y_{2n}, y_{2n-1}, t), \\ M(y_{2n+1}, y_{2n}, t), & M(y_{2n}, y_{2n}, (1-q_1)t), & M(y_{2n+1}, y_{2n-1}, (1+q_1)t) \end{pmatrix}$$
$$\leq \phi \begin{pmatrix} M(y_{2n}, y_{2n+1}, kt), & M(y_{2n}, y_{2n-1}, t), & M(y_{2n}, y_{2n-1}, t), \\ M(y_{2n+1}, y_{2n}, t), & 1, & M(y_{2n}, y_{2n-1}, t) * M(y_{2n+1}, y_{2n}, q_1t) \end{pmatrix}$$

and so

(i) $\phi(d_{2n}(kt), d_{2n-1}(t), d_{2n-1}(t), d_{2n}(t), 1, d_{2n-1}(t) * d_{2n}(q_1t)) \ge 0.$ If $d_{2n}(t) < d_{2n-1}(t)$, then

$$d_{2n}(q_1t) * d_{2n-1}(t) \ge d_{2n}(q_1t) * d_{2n}(q_1t) \ge d_{2n}(q_1t)$$

and from (ϕ_1) , we have

$$\phi(d_{2n}(kt), d_{2n}(q_1t), d_{2n}(q_1t), d_{2n}(q_1t), d_{2n}(q_1t), d_{2n}(q_1t), d_{2n}(q_1t)) \ge 0.$$

Then again from (ϕ_2) , we have

 $d_{2n}(kt) > d_{2n}(q_1t),$

a contradiction. Hence $d_{2n}(t) \ge d_{2n-1}(t)$ for every $n \in \mathbb{N}$ and $\forall t > 0$.

Now from (i) and (ϕ_1) we have

$$\phi(d_{2n}(kt), d_{2n-1}(q_1t), d_{2n-1}(q_1t), d_{2n-1}(q_1t), d_{2n-1}(q_1t), d_{2n-1}(q_1t)) \ge 0$$

and from (ϕ_2) , we have

(ii) $d_{2n}(kt) > d_{2n-1}(q_1t).$

Step 2. Similarly, putting $x = x_{2n}$, $y = x_{2n-1}$, $\alpha = 1 - q_2$ in (3.1.2), where $q_2 \in (k, 1)$, we can show that

(iii) $d_{2n-1}(kt) \ge d_{2n-2}(q_2t),$

Now let $q = \min\{q_1, q_2\}$ so that $q \in (k, 1)$. Then from (ii) and (iii) we have

 $d_n(kt) \ge d_{n-1}(qt)$

for every $n \in \mathbb{N}$, and so

$$M(y_n, y_{n+1}, t) \ge M(y_{n-1}, y_n, (q/k)t)$$

$$\ge M(y_{n-2}, y_{n-1}, (q/k)^2 t)$$

.....

 $\geq M(y_0, y_1, (q/k)^n t).$

Hence, by Lemma 1.6, $\{y_n\}$ is a Cauchy sequence and from the completeness of X, $\{y_n\}$ converges to some point z in X.

Now suppose that the conditions in (3.1.3) are true.

Step 3. Suppose that (f, S) is S-continuous. Then $Sfx_{2n} \to Sz$ and $SSx_{2n} \to Sz$ as $n \to \infty$. Since (f, S) is weakly S-compatible we have either $fSx_{2n} \to Sz$ or $ffx_{2n} \to Sz$ as $n \to \infty$.

Case 1. Suppose that $fSx_{2n} \to Sz$ as $n \to \infty$. Then putting $x = Sx_{2n}$, $y = x_{2n+1}$, $\alpha = 1$ in (3.1.2), we get

$$\phi \begin{pmatrix} M(fSx_{2n}, gx_{2n+1}, kt), & M(SSx_{2n}, Tx_{2n+1}, t), & M(fSx_{2n}, SSx_{2n}, t), \\ M(gx_{2n+1}, Tx_{2n+1}, t), & M(fSx_{2n}, Tx_{2n+1}, t), & M(gx_{2n+1}, SSx_{2n}, t) \end{pmatrix} \ge 0$$

Letting $n \to \infty$, we have

$$0 \le \phi(M(Sz, z, kt), \ M(Sz, z, t), \ 1, \ 1, \ M(Sz, z, t), \ M(z, Sz, t)) \\ \le \phi \binom{M(Sz, z, kt), \ M(Sz, z, t), \ M(Sz, z, t), \ M(Sz, z, t), \ M(z, Sz, t))}{M(Sz, z, t), \ M(Sz, z, t), \ M(z, Sz, t))}.$$

From (ϕ_2) , we have $M(Sz, z, kt) \ge M(Sz, z, t)$, which implies by Lemma 1.7 that Sz = z.

Case 2. Suppose $ffx_{2n} \to Sz$ as $n \to \infty$. Putting $x = fx_{2n}$, $y = x_{2n+1}$, $\alpha = 1$ in (3.1.2), we get

$$\phi \begin{pmatrix} M(ffx_{2n}, gx_{2n+1}, kt), & M(Sfx_{2n}, Tx_{2n+1}, t), & M(ffx_{2n}, Sfx_{2n}, t), \\ M(gx_{2n+1}, Tx_{2n+1}, t), & M(ffx_{2n}, Tx_{2n+1}, t), & M(gx_{2n+1}, Sfx_{2n}, t) \end{pmatrix} \ge 0.$$

Letting $n \to \infty$, we have

$$\begin{split} 0 &\leq \phi(M(Sz,z,kt), \ M(Sz,z,t), \ 1, \ 1, \ M(Sz,z,t), \ M(z,Sz,t)) \\ &\leq \phi \binom{M(Sz,z,kt), \ M(Sz,z,t), \ M(Sz,z,t), \ M(Sz,z,t), \ M(z,Sz,t))}{M(Sz,z,t), \ M(Sz,z,t), \ M(z,Sz,t))}. \end{split}$$

From (ϕ_2) , we have $M(Sz, z, kt) \ge M(Sz, z, t)$, which implies that Sz = z.

Step 4. Putting x = z, $y = x_{2n+1}$, $\alpha = 1$ in (3.1.2) we have

$$\phi \begin{pmatrix} M(fz, gx_{2n+1}, kt), \ M(Sz, Tx_{2n+1}, t), \ M(fz, Sz, t), \\ M(gx_{2n+1}, Tx_{2n+1}, t), \ M(fz, Tx_{2n+1}, t), \ M(gx_{2n+1}, Sz, t) \end{pmatrix} \ge 0.$$

Letting $n \to \infty$, we have

$$\phi(M(fz, z, kt), 1, M(fz, z, t), 1, M(fz, z, t), 1) \ge 0.$$

From (ϕ_1) and (ϕ_2) , we have $M(fz, z, kt) \ge M(fz, z, t)$, which implies that fz = z. **Step 5.** Since $f(X) \subseteq T(X)$, there exists $w \in X$ such that z = fz = Tw. Putting $x = x_{2n}, y = w, \alpha = 1$ in (3.1.2), we have

$$\phi \begin{pmatrix} M(fx_{2n}, gw, kt), & M(Sx_{2n}, Tw, t), & M(fx_{2n}, Sx_{2n}, t), \\ M(gw, Tw, t), & M(fx_{2n}, Tw, t), & M(gw, Sx_{2n}, t) \end{pmatrix} \ge 0.$$

Letting $n \to \infty$, we have

 $\phi(M(z, gw, kt), 1, 1, M(gw, z, t), 1, M(gw, z, t)) \ge 0.$

From (ϕ_1) and (ϕ_2) , we have $M(z, gw, kt) \ge M(z, gw, t)$, which implies that gw = z. Thus Tw = gw.

Since (g, T) is weakly T-compatible it follows that (g, T) is a weakly compatible pair. Hence Tgw = gTw, so that Tz = gz.

Step 6. Putting $x = x_{2n}$, y = z, $\alpha = 1$ in (3.1.2) we have

$$\phi \begin{pmatrix} M(fx_{2n}, gz, kt), \ M(Sx_{2n}, Tz, t), \ M(fx_{2n}, Sx_{2n}, t), \\ M(gz, Tz, t), \ M(fx_{2n}, Tz, t), \ M(gz, Sx_{2n}, t) \end{pmatrix} \ge 0$$

Letting $n \to \infty$, we have

 $\phi(M(z,Tz,kt), M(z,Tz,t), 1, 1, M(z,Tz,t), M(Tz,z,t)) \ge 0.$

From (ϕ_1) and (ϕ_2) , we have $M(z, Tz, kt) \ge M(Tz, z, t)$, which implies that Tz = z. Hence gz = Tz = z and so z is a common fixed point of f, g, S and T.

Step 7. Suppose that z_0 is another common fixed point of f, g, S and T. Putting $x = z, y = z_0, \alpha = 1$ in (3.1.2), we have

 $\phi(M(z, z_0, kt), M(z, z_0, t), 1, 1, M(z, z_0, t), M(z_0, z, t)) \ge 0.$

From (ϕ_1) and (ϕ_2) , we have $M(z, z_0, kt) \ge M(z, z_0, t)$, which implies that $z = z_0$. Hence z is the unique common fixed point of f, g, S and T.

Step 8. Suppose that z_1 is another common fixed point of f and S. Putting $x = z_1$, y = z, $\alpha = 1$ in (3.1.2), we have

 $\phi(M(z_1, z, kt), M(z_1, z, t), 1, 1, M(z_1, z, t), M(z, z_1, t)) \ge 0.$

From (ϕ_1) and (ϕ_2) , we have $M(z_1, z, kt) \ge M(z, z_1, t)$, which implies that $z_1 = z$. Hence z is the unique common fixed point of f and S.

Similarly we can show that z is the unique common fixed point of g and T.

Similarly we can prove the theorem if (g, T) is T-continuous.

Also we can prove the theorem if the conditions in (3.1.4) are true.

3.2. Example. Let $X = [0, 1], a * b = \min\{a, b\}$ and

$$M(x, y, t) = \frac{t}{t + |x - y|}$$

Define fx = gx = 1 and

$$Sx = Tx = \begin{cases} \frac{1+x}{2} & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1, \end{cases}$$

for all $x \in X$. Then all the conditions of Theorem 3.1 are satisfied with

 $\phi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4, t_5, t_6\}.$

Clearly 1 is the unique common fixed point of f, g, S and T.

Now we give another implicit relation which is useful for the next theorem.

4. An implicit relation.

Let Ψ_6 be the set of all functions $\psi: [0,1]^6 \longrightarrow \mathbb{R}$ such that

- $(\psi_1): \ \psi(v,u,u,v,w,1) > 0 \ \text{or} \ \psi(v,u,v,u,1,w) > 0 \ \text{implies} \ u < v \ \text{for all} \ u,v \in [0,1) \\ \text{and} \ w \leq 1,$
- $(\psi_2): \psi(v, 1, 1, v, v, 1) \leq 0, \psi(v, v, 1, 1, v, v) \leq 0$ and $\psi(v, 1, v, 1, 1, v) \leq 0$ for all $v \in [0, 1)$.

4.1. Example. $\psi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4\} - b(t_5 + t_6)$, where $b \ge 0$.

4.2. Example. $\psi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1^2 - \min\{t_2^2, t_3t_4\} - bt_5t_6$, where $b \ge 0$.

4.3. Example. $\psi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1^3 - t_2 t_3 t_4 - b(t_5^2 t_6 + t_5 t_6^2)$, where $b \ge 0$.

4.4. Definition. (X, M, *) is said to be a sequentially compact fuzzy metric space if every sequence in X has a convergent sub-sequence.

4.5. Theorem. Let f, g, S and T be self-mappings of a sequentially compact fuzzy metric space (X, M, *) such that

(1)
$$S(X) \subseteq g(X)$$
 and $T(X) \subseteq f(X)$,
(2) $\psi \begin{pmatrix} M(Sx, Ty, t), & M(fx, gy, t), & M(fx, Sx, t), \\ & M(gy, Ty, t), & M(fx, Ty, t), & M(Sx, gy, t) \end{pmatrix} > 0$
for every $x, y \in X$ with one of $fx \neq ay$, $fx \neq Sx$ and $ay \neq Ty$ and

for every $x, y \in X$ with one of $fx \neq gy$, $fx \neq Sx$ and $gy \neq Ty$ and for all t > 0, where $\psi \in \Psi_6$,

- (3) The pairs (f, S) and (g, T) are weakly compatible,
- (4) Either f and S are continuous or g and T are continuous.

Then f, g, S and T have a unique common fixed point p in X. Further p is the unique common fixed point of f and S and of g and T.

Proof. Suppose that f and S are continuous and for any t > 0, let

 $m = \sup\{M(fx, Sx, t) : x \in X\}.$

Since f and S are continuous on a sequentially compact fuzzy metric space, there exists $u \in X$ such that m = M(fu, Su, t).

Since $S(X) \subseteq g(X)$, there exists $v \in X$ such that

(5) Su = gv.

Since $T(X) \subseteq f(X)$, there exists $w \in X$ such that (6) Tv = fw.

Suppose neither f and S nor g and T have a coincidence point in X. Then

$$m = M(fu, Su, t) < 1, \ M(gv, Tv, t) < 1 \ \text{and} \ M(fw, Sw, t) < 1.$$

We have

$$\begin{aligned} 0 &< \psi \bigg(\frac{M(Su, Tv, t), \ M(fu, gv, t), \ M(fu, Su, t),}{M(gv, Tv, t), \ M(fu, Tv, t), \ M(Su, gv, t)} \bigg) \\ &= \psi (M(Tv, gv, t), \ m, \ m, \ M(gv, Tv, t), \ M(fu, Tv, t), \ 1), \end{aligned}$$

and by (ψ_1) , we have

 $(7) \ m < M(gv,Tv,t).$

Now from (2), we have

$$\begin{aligned} 0 &< \psi \bigg(\frac{M(Sw, Tv, t), \ M(fw, gv, t), \ M(fw, Sw, t),}{M(gv, Tv, t), \ M(fw, Tv, t), \ M(Sw, gv, t)} \bigg) \\ &= \psi \bigg(\frac{M(fw, Sw, t), \ M(gv, Tv, t), \ M(fw, Sw, t),}{M(gv, Tv, t), \ 1, \ M(Sw, gv, t)} \bigg). \end{aligned}$$

By (ψ_1) , we have

(8) M(gv, Tv, t) < M(fw, Sw, t).

Now from the definition of m and the inequalities (7) and (8) we have

 $m \ge M(fw, Sw, t) > M(gv, Tv, t) > m,$

a contradiction. Hence there exists $\alpha \in X$ such that $f\alpha = S\alpha$ or $g\alpha = T\alpha$.

Case (a): Suppose that $f\alpha = S\alpha$. Since $S(X) \subseteq g(X)$, there exists $\alpha \in X$ such that $S\alpha = g\beta$. Suppose that $M(g\beta, T\beta, t) < 1$. Then from (2) we have

$$0 < \psi \begin{pmatrix} M(S\alpha, T\beta, t), & M(f\alpha, g\beta, t), & M(f\alpha, S\alpha, t), \\ M(g\beta, T\beta, t), & M(f\alpha, T\beta, t), & M(S\alpha, g\beta, t) \end{pmatrix} = \psi (M(g\beta, T\beta, t), 1, 1, M(g\beta, T\beta, t), M(g\beta, T\beta, t), 1).$$

By (ψ_2) , we have $M(g\beta, T\beta, t) = 1$, so that $g\beta = T\beta$. Thus

(9) $f\alpha = S\alpha = g\beta = T\beta = p$, say.

Since the pair (f, S) is weakly compatible we have

(10) $fp = fS\alpha = Sf\alpha = Sp.$

Suppose that M(Sp, p, t) < 1. From (2), we have

$$\begin{aligned} 0 &< \psi \bigg(\frac{M(Sp, T\beta, t), \ M(fp, g\beta, t), \ M(fp, Sp, t),}{M(g\beta, T\beta, t), \ M(fp, T\beta, t), \ M(Sp, g\beta, t)} \bigg) \\ &= \psi(M(Sp, p, t), \ M(Sp, p, t), \ 1, \ 1, \ M(Sp, p, t), \ M(Sp, p, t)). \end{aligned}$$

Hence from (ψ_2) , we have Sp = p. Thus

(11) fp = Sp = p.

Since the pair (g, T) is weakly compatible we have

$$gp = gT\beta = Tg\beta = Tp$$

Using (2) with $x = \alpha$, y = p and (ψ_2) we can show that Tp = p. Thus,

$$(12) \quad gp = Tp = p.$$

Hence p is a common fixed point of f, g, S and T.

Case (b): Suppose that $g\alpha = T\alpha$. Since $T(X) \subseteq f(X)$, there exists $\beta \in X$ such that $T\alpha = f\beta$.

Suppose that $M(f\beta, S\beta, t) < 1$. From (2), we have

$$0 < \psi \begin{pmatrix} M(S\beta, T\alpha, t), & M(f\beta, g\alpha, t), & M(f\beta, S\beta, t), \\ M(g\alpha, T\alpha, t), & M(f\beta, T\alpha, t), & M(S\beta, g\alpha, t) \end{pmatrix}$$

= $\psi (M(S\beta, f\beta, t), 1, & M(f\beta, S\beta, t), 1, 1, & M(S\beta, f\beta, t)).$

Hence from (ψ_2) , we have $f\beta = S\beta$. Thus $S\beta = f\beta = T\alpha = g\alpha = p$, say. Now as in case(a), we can show that p is a common fixed point of f, g, S and T.

Suppose that p_0 is another common fixed point of f, g, S and T. Using (2) with x = p, $y = p_0$ and (ψ_2) , we can show that $p_0 = p$. Thus p is the unique common fixed point of f, g, S and T.

Now suppose that p_1 is another common fixed point of f and S. Using (2) with $x = p_1$, y = p and (ψ_2) we can show that $p_1 = p$. Thus p is the unique common fixed point of f and S.

Similarly we can show that p is the unique common fixed point of g and T.

Similarly the theorem holds when g and T are continuous.

4.6. Remark. Theorem 4.5 holds if the inequality (2) is replaced by one of the following inequalities:

- (a) $M(Sx, Ty, t) > \min\{M(fx, gy, t), M(fx, Sx, t), M(gy, Ty, t)\},\$
- (b) $M^2(Sx, Ty, t) > \min\{M^2(fx, gy, t), M(fx, Sx, t)M(gy, Ty, t)\},\$
- (c) $M^{3}(Sx, Ty, t) > M(fx, gy, t)M(fx, Sx, t)M(gy, Ty, t).$

4.7. Example. Let $X = [0, 1], a * b = \min\{a, b\}$ and

$$M(x, y, t) = \frac{t}{t + |x - y|}.$$

Define Sx = Tx = 1, $fx = \frac{x+1}{2}$ and $gx = \frac{2+x}{3}$ for all $x \in X$. Then all the conditions of Theorem 4.5 are satisfied with

$$\psi(t_1, t_2, t_3, t_4, t_5, t_6) = t_1 - \min\{t_2, t_3, t_4\}.$$

Clearly 1 is the unique common fixed point of S, T, f and g.

References

- [1] Banach, S. Theoric les operations Lineairar (Manograic Mathematic Zne, Warsaw, 1932).
- [2] Cho, Seong Hoon On common fixed points in fuzzy metric spaces, International Mathematical Forum 1 (10), 471–479, 2006.
- [3] Cho, Y. J., Pathak, H.K., Kang, S. M. and Jung, J. S. Common fixed points of compatible maps of type (β) on fuzzy metric spaces, Fuzzy Sets and Systems, 93, 99–111, 1998.
- [4] Edelstein, M. On fixed and periodic points under contradiction mapping, J. London Math. Soc. 37, 74–79, 1962.
- [5] Fang, J.X. On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 46, 107–113, 1992.
- [6] Fisher, B. Results on common fixed points on bounded metric spaces, Math. Sem. Notes 7, 73-80, 1979.
- [7] George, A. and Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64, 395–399, 1994.
- [8] Grabiec, M. Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems 27, 385–389, 1988.
- [9] Jungck, G. and Rhoades, B.E. Fixed points for set-valued functions without continuity, Indian J. Pure. Appl. Math., 29 (3), 227–238, 1998.
- [10] Khan, M.S., Pathak, H.K. and George, R. Compatible mapping of type (A-1) and type (A-2) and common fixed points in fuzzy metric spaces, International Mathematical Forum 2 (11), 515–524, 2007.
- [11] Kramosil, O. and Michalek, J. Fuzzy metric and statistical metric spaces, Kybernetica 11, 326–334, 1975.
- [12] Lopez, J. Rodrigues and Romaguera, S. The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems 147 (2), 273–283, 2004.
- [13] Mishra, S. N., Sharma, S. N. and Singh, S. L. Common fixed points of maps in fuzzy metric spaces, Internat. J. Math. Sci. 17, 253–258, 1994.
- [14] Naidu, S. V. R. Fixed point theorems for four self maps on a metric space by altering distance, J. Indian Math. Soc., 71 (1-4), 153–173, 2004.
- [15] Schweizer, B. and Sklar, A. Statistical metric spaces, Pacific J. Math. 10, 314–334, 1960.
- [16] Sharma, S. Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 127, 345–352, 2002.
- [17] Singh, Bijenra and Chauhan, M. S. Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy Sets and Systems 115, 471–475, 2000.
- [18] Zadeh, L. A. Fuzzy sets, Inform. and Control, 8, 338–353, 1965.