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Abstract
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1. Preliminaries

Let H be the class of functions analytic in ∆ = {z ∈ C : |z| < 1} and H(a, n) the
subclass of H consisting of functions of the form f(z) = a+ anz

n + an+1z
n+1 + · · · .

Let Vp denote the class of all analytic functions of the form

(1.1) f(z) = zp +
∞

∑

k=p+1

akz
k, (z ∈ ∆)

and let V := V1. For two functions f(z) given by (1.1) and g(z) = zp +
∑

∞

k=p+1 bkz
k,

the Hadamard product (or convolution) of f and g is defined by

(1.2) (f ∗ g)(z) := zp +

∞
∑

k=p+1

akbkz
k =: (g ∗ f)(z).
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For αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C\{0,−, 1,−2, . . .} (j = 1, 2, . . .m), the generalized
hypergeometric function lFm(α1, . . . αl; β1, . . . , βm; z) is defined by the infinite series

lFm(α1, . . . , αl;β1, . . . , βm; z) :=

∞
∑

n=0

(α1)n · · · (αl)n

(β1)n · · · (βm)n

zn

n!

(l ≤ m+ 1;m ∈ N0 := {0, 1, 2, . . .}),

where (λ)n is the Pochhammer symbol defined by

(λ)n :=
Γ(λ+ n)

Γ(λ)
=

{

1 (n = 0)

λ(λ+ 1)(λ+ 2) · · · (λ+ n− 1) (n ∈ N := {1, 2, 3, . . .}).

Corresponding to the function

(1.3) hp(α1, . . . , αl; β1, . . . , βm; z) := zp
lFm(α1, . . . , αl;β1, . . . , βm; z),

the Dziok-Srivastava operator [8] (see also [21]) H
(l,m)
p (α1, . . . , αl;β1, . . . , βm) is defined

by the Hadamard product

(1.4)

H(l,m)
p (α1, . . . , αl;β1, . . . , βm)f(z)

= hp(α1, . . . , αl;β1, . . . , βm; z) ∗ f(z)

= zp +
∞

∑

n=p+1

(α1)n−p · · · (αl)n− p

(β1)n−p · · · (βn)n−p

anz
n

(n− p)!
.

Special cases of the Dziok-Srivastava linear operator include the Hohlov linear operator
[9], the Carlson-Shaffer linear operator [5], the Ruscheweyh derivative operator [19], the
generalized Bernardi-Libera-Livingston operator (cf. [2], [11],[12]) and the Srivastava-
Owa fractional derivative operators (cf. [17], [18]).

Corresponding to the function hp(α1, . . . , αℓ;β1, . . . , βm; z), defined by (1.3), we in-
troduce a function Fµ(α1, . . . , αℓ, β1, . . . , βm; z) given by

hp(α1, . . . , αℓ;β1, . . . , βm; z) ∗ Fµ(α1, . . . , αℓ, β1, . . . , βm; z) =
zp

(1 − z)µ+p−1
,

(z ∈ U, µ > 0).

Analogous to Hp(α1, . . . , αℓ, β1, . . . , βm), the linear operator Jµ(α1, . . . , αℓ, β1, . . . , βm)
on H is defined as follows:

Jµ(α1, . . . , αℓ, β1, . . . , βm)f(z) = Fµ(α1, . . . , αℓ, β1, . . . , βm; z) ∗ f(z)

(α1;βj ∈ C \ Z
−

0 ; i = 1, . . . , l; j = 1, . . . ,m, µ > 0; z ∈ U; f ∈ Vp).

For convenience, we write

(1.5) Jℓ,m
µ (α1) := Jµ(α1, . . . , αℓ;β1, . . . , βm).

Special cases of this operator are when p = 1 [10], the generalized integral operator in [1]
when p = 1 and µ = 2, and Noor’s integral operator [15].

For two analytic functions f and F , we say that F is superordinate to f if f is subor-
dinate to F . Recently Miller and Mocanu [14] considered certain second order differential
superordinates. Using the results of Miller and Mocanu [14], Bulboa has considered cer-
tain classes of first order differential superordinations [4] and superordination-preserving
integral operators [3].

In the present investigation, we introduce new classes of p-valent functions defined by
the Dziok-Srivastava linear operator and the multiplier transformation, and study their
properties by using certain first order differential subordinations and superordinations.
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1.1. Definition. A function f ∈ V(p, n) is said to be in the class

V(p, n, α1, . . . , αl;β1, . . . , βm;ϕ)

if it satisfies the following subordination:

(1.6)
Hℓ,m

p [α1 + 1]f(z)

zp
≺ ϕ(z), (f ∈ V(p, n)),

and is said to be in

V(p, n, α1, . . . , αl;β1, . . . , βm;ϕ)

if f satisfies the following superordination:

(1.7) ϕ(z) ≺
H l,m

p [α1 + 1]f(z)

zp
, (f ∈ V(p, n)),

where ϕ(z) is analytic in ∆, ϕ(0) = 1 and

H l,m
p [α1]f(z) := H l,m

p (α1, . . . , αl;β1, . . . , βm)f(z).

To make the notation simple, we also write

V(p, n, α1;ϕ) := V(p, n, α1, . . . , αl;β1, . . . , βm;ϕ)

and

V(p, n, α1;ϕ) = V(p, n, α1, . . . , αl;β1, . . . , βm;ϕ).

Also we define the class V(p, n, α1;ϕ1, ϕ2) by the following:

V(p, n, α1;ϕ1, ϕ2) := V(p, n, α1;ϕ1) ∩ V(p, n, α1;ϕ2).

1.2. Definition. A function f ∈ V(p, n) is said to be in the class

A(p, n, α1, . . . , αl;β1, . . . , βm;ϕ)

if it satisfies the following subordination:

(1.8)
J l,m

µ [α1 + 1]f(z)

zp
≺ ϕ(z), (f ∈ V(p, n)),

and is said to be in

A(p, n, α1, . . . , αl;β1, . . . , βm;ϕ)

if f satisfies the following superordination:

(1.9) ϕ(z) ≺
J l,m

µ [α1 + 1]f(z)

zp
, (f ∈ V(p, n)),

where ϕ(z) is analytic in ∆, ϕ(0) = 1 and

J l,m
µ [α1]f(z) = Jµ(α1, . . . , αl;β1, . . . , βm)f(z).

To make the notation simple, we also write

A(p, n, α1;ϕ) := A(p, n, α1, . . . , αl;β1, . . . , βm;ϕ)

and

A(p, n, α1;ϕ) := A(p, n, α1, . . . , αl;β1, . . . , βm;ϕ).

Also we define the class A(p, n, α1;ϕ1, ϕ2) by the following:

A(p, n, α1;ϕ1, ϕ2) := A(p, n, α1;ϕ1) ∩ A(p, n, α1;ϕ2).
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Motivated by the multiplier transformation on V, we define the operator Ip(r, λ) on
Vp by the following infinite series

(1.10) Ip(r, λ)f(z) = zp +
∞

∑

n=p+1

(

n+ λ

p+ λ

)r

anz
n, (λ ≥ 0).

The operator Ip(r, λ) is closely related to the Salagean derivative operator [20]. The
operator Ir

λ := I1(r, λ) was studied recently by Cho and Srivastva [6], and by Cho and
Kim [7] The operator Ir := I1(r, 1) was studied by Uralagaddi and Somanatha [22]. By
using the Hadamard product:

(1.11) Ip(r, λ)f(z) := F
r
λ(z) ∗ f(z) where F

r
λ(z) = zp +

∞
∑

n=p+1

(

n+ λ

p+ λ

)r

zn, (λ ≥ 0).

Corresponding to the function F
r
λ(z) defined by (1.5), we introduce a function F

r
λ,µ(z)

given by

(1.12) F
r
λ(z) ∗ F

r
λ,µ(z) =

zp

(1 − z)µ+p−1
, (z ∈ U, µ > 0).

Using Ip(r, λ), we define the multiplier transformations Tµ(r, λ) as follows:

(1.13) Tµ(r, λ)f(z) = F
r
λ,µ(z) ∗ f(z), (λ ≥ 0, µ > 0, z ∈ U, f ∈ Vp).

For p = 1, we note that a special case of this operator is the integral operator defined in
[16].

1.3. Definition. A function f ∈ V(p, n) is said to be the class V(p, n, r, λ;ϕ) if it satisfies
the following subordination:

(1.14)
Ip(r + 1, λ)f(z)

zp
≺ ϕ(z), (f ∈ V(p, n)),

and is said to be in V(p, n, r, λ;ϕ) if f satisfies the following superordination:

(1.15) ϕ(z) ≺
Ip(r + 1, λ)f(z)

zp
, (f ∈ V(p, n)),

where ϕ(z) is analytic in ∆ and ϕ(0) = 1. Also we define the class V(p, n, r, λ;ϕ1, ϕ2) by
the following:

V(p, n, r, λ, ϕ1, ϕ2) := V(p, n, r, λ;ϕ1) ∩ V(p, n, r, λ;ϕ2).

1.4. Definition. A function f ∈ V(p, n) is said to be in the class A(p, n, r, λ;ϕ) if it
satisfies the following subordination:

(1.16)
Tµ(r + 1, λ)f(z)

zp
≺ ϕ(z), (f ∈ V(p, n)),

and is said to be in A(p, n, r, λ;ϕ) if f satisfies the following superordination:

(1.17) ϕ(z) ≺
Tµ(r + 1, λ)f(z)

zp
, (f ∈ V(p, n)),

where ϕ(z) is analytic in ∆ and ϕ(0) = 1. Also we define the class A(p, n, r, λ;ϕ1, ϕ2) by
the following:

A(p, n, r, λ;ϕ1, ϕ2) := A(p, n, r, λ;ϕ1) ∩A(p, n, r, λ;ϕ2).

In our present investigation of the above defined classes, we need the following:
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1.5. Definition. [14, Definition 2, p. 817]. Denote by Q, the set of all functions f(z)

that are analytic and injective on ∆ −E(f), where

E(f) = {ξ ∈ ∂∆ : lim
z =⇒ ξ

f(z) = ∞},

and are such that f ′(ξ) 6= 0 for ξ ∈ ∂∆ −E(f).

1.6. Lemma. (cf. Miller and Mocanu [13, Theorem 3.4h, p. 132]). Let ψ(z) be univalent
in the unit disc ∆ and θ, ϕ analytic in a domain D ⊃ ψ(∆) with ϕ(w) 6= 0, when
w ∈ ψ(∆). Set

Q(z) := zψ′(z)ϕ(ψ(z)), h(z) := θ(ψ(z)) +Q(z).

Suppose that

1) Q(z) is starlike in ∆, and

2) Re
zh′(z)

Q(z)
> 0 for z ∈ ∆.

If q(z) is analytic in ∆, with q(0) = ψ(0), q(∆) ⊂ D and

(1.18) θ(q(z)) + zq′(z)ϕ(q(z)) ≺ θ(ψ(z)) + zψ′(z)ϕ(ψ(z)),

then q(z) ≺ ψ(z) and ψ(z) is the best dominant.

1.7. Lemma. [4]. Let ψ(z) be univalent in the unit disc ∆ and θ analytic in a domain
D containing ψ(∆). Suppose that

(1) Re[θ′(ψ(z))/ϕ(ψ(z))] > 0 for z ∈ ∆.
(2) zψ′(z)ϕ(ψ(z)) is starlike in ∆.

If q(z) ∈ H(ψ(0), 1) ∩ Q, with q(∆) ⊆ D, and θ(q(z)) + zq′(z)ϕ(q(z)) is univalent in ∆,
then

(1.19) θ(ψ(z)) + zψ′(z)ϕ(ψ(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)).

implies ψ(z) ≺ q(z) and ψ(z) is the best subordinant.

2. Results involving the Dziok-Srivastava linear operator

2.1. Theorem. Let ψ(z) be univalent in ∆, ψ(0) = 1. Assume that ψ is convex in ∆,
α1 be a complex number and Re{α1} > −1. Let χ(z) be defined by

(2.1) χ(z) = ψ(z) +
zψ′(z)

(α1 + 1)
, (α1 6= −1).

If f ∈ V(p, n, α1 + 1;χ), then f ∈ V(p, n, α1;ψ). If f ∈ V(p, n, α1 + 1;χ),

(2.2) 0 6=
H l,m

p [α1 + 1]f(z)

zp
∈ H(1, 1) ∩ Q,

H l,m
p [α1 + 2]f(z)

zp
is univalent in ∆,

then f ∈ V(p, n, α1;ψ).

Proof. Define the function q(z) by

(2.3) q(z) =
H l,m

p [α1 + 1]f(z)

zp
.

Then, clearly, q(z) is analytic in ∆, we find from (2.3) that

(2.4)
zq′(z)

q(z)
=
z(H l,m

p [α1 + 1]f(z))′

H l,m
p [α1 + 1]f(z)

− p.

By making use of the identity

(2.5) z(H l,m
p [α1]f(z))′ = α1H

l,m
p [α1 + 1]f(z) − (α1 − p)H l,m

p [α1]f(z),
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we have from (2.4) that

(2.6)
H l,m

p [α1 + 2]f(z)

zp
=

1

α1 + 1
[(α1 + 1)q(z) + zq′(z)].

Since f ∈ V(p, n, α1 + 1;χ), we have from (2.6) that

(α1 + 1)q(z) + zq′(z) ≺ (α1 + 1)ψ(z) + zψ′(z)

and this can be written as (1.18), by defining

θ(w) = (α1 + 1)w and ϕ(w) = 1.

Note that ϕ(w) 6= 0 and θ(w), ϕ(w) are analytic in C. Set

Q(z) = zψ′(z),(2.7)

h(z) = θ(ψ(z)) +Q(z) = (α1 + 1)ψ(z) + zψ′(z).(2.8)

By the hypothesis of Theorem 2.1, Q is starlike and

Re

{

zh′(z)

Q(z)

}

= Re

{

(α1 + 2) +
zψ′′(z)

ψ(z)

}

> 0.

By an application of Lemma 1.6, we obtain that q(z) ≺ ψ(z) or
Hl,m

p [α1+1]f(z)

zp ≺ ψ(z),
which shows that f ∈ V(p, n, α1;ψ).

The other half of Theorem 2.1 follows by a similar application of Lemma 1.7. �

Using Theorem 2.1, we obtain the following “sandwich result”:

2.2. Corollary. Let ψi(z) be univalent in ∆ and ψi(0) = 1, (i = 1, 2). Further assume
that ψi(z) is convex univalent in ∆, α1 is a complex number and Re{α1} > −1, (i = 1, 2).
If f ∈ V(p, n, α1 + 1;χ1, χ2) satisfies (2.2), then f ∈ V(p, n, α1;ψ1, ψ2), where

χi(z) = ψi(z) +
zψ′

i(z)

(α1 + 1)
, (i = 1, 2, ;α1 6= −1). �

2.3. Theorem. Let ψ be univalent in ∆, ψ(0) = 1, and λ a complex number. Assume
that ψ is convex in ∆ and Re{λ} > −p. Define the functions F and χ by

(2.9)

F (z) =
λ+ p

zλ

∫ z

0

tλ−1f(t)dt

χ(z) =

[

zψ′(z)

(λ+ p)
+ ψ(z)]

]

, (λ 6= −p).

If f ∈ V(p, n, α1;χ), then F ∈ V(p, n, α1;ψ). If f ∈ V(p, n, α1;χ),

(2.10) 0 6=
H l,m

p [α1 + 1]F (z)

zp
∈ H(1, 1) ∩Q and

H l,m
p [α1 + 1]f(z)

zp
is univalent in ∆,

then F ∈ V(p, n, α1;ψ).

Proof. From the definition of F (z), we obtain that

(2.11) (λ+ p)H l,m
p [α1 + 1]f(z) = λH l,m

p [α1 + 1]F (z) + z(H l,m
p [α1 + 1]F (z))′.

Define the function q(z) by

(2.12) q(z) =
H l,m

p [α1 + 1]F (z)

zp
.

Then, clearly, q(z) is analytic in ∆. Using (2.11) and (2.12), we have

(2.13)
H l,m

p [α1 + 1]f(z)

zp
=
λq(z) + z

(

Hl,m
p [α+1]F ′(z)

zp

)

λ+ p
.
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Upon logarithmic differentiation of (2.13), we get

(2.14)
H l,m

p [α1 + 1]f(z)

zp
=
zq′(z)

λ+ p
+ q(z).

Since f ∈ V(p, n, α1, χ), we have from (2.14),

q(z) +
zq′(z)

λ+ p
≺ ψ(z) +

zψ′(z)

λ+ p
,

and this can be written as (1.18) by defining θ(w) = w and ϕ(w) = 1
λ+p

.

Note that ϕ(w) 6= 0 and θ(w), ϕ(w) are analytic in C. Set

Q(z) :=
zψ′(z)

λ+ p

h(z) := θ(ψ(z)) +Q(z) = ψ(z) +
zψ′(z)

λ+ p
.

By the hypothesis of Theorem 2.3, Q(z) is starlike and

Re

{

zh′(z)

Q(z)

}

= Re

{

(λ+ p) +

(

1 +
zψ′′(z)

ψ′(z)

)}

> 0.

By an application of Lemma 1.6, we obtain that

q(z) ≺ ψ(z),

or

H l,m
p [α1 + 1]F (z)

zp
≺ ψ(z),

which shows that F ∈ V(p, n, α1;ψ).

The second half of Theorem 2.3 follows by a similar application of Lemma 1.7. �

Using Theorem 2.3, we have the following result:

2.4. Corollary. Let ψi be univalent in ∆, ψi(0) = 1, (i = 1, 2) and λ a complex number.
Assume that ψi(z) is convex in ∆ and Re{λ} > −p, (i = 1, 2). If f ∈ V(p, n, α1;χ1, χ2)
satisfies (2.10), then the function F defined by (2.9) belongs to V(p, n, α1;ψ1, ψ2), where

χi(z) =

[

zψ′

i(z)

(λ+ p)
+ ψi(z)

]

, (i = 1, 2, λ 6= −p).

Now we will give some particular cases of Theorem 2.1 obtained for different choices
of ψ(z).

2.5. Example. Let p = 1, l = m+1 and α2 = β1, . . . , αl = βm, we get H1[1]f(z) = f(z)
and H1[2]f(z) = zf ′(z). Let χ(z) = 1 + λz, (0 ≤ λ ≤ 1). Then:

f ′(z) ≺ 1 + λz =⇒
f(z)

z
≺ 1 +

λ

2
z

and

1 + λz ≺ f ′(z) =⇒ 1 +
λ

2
z ≺

f(z)

z
.

2.6. Theorem. Let ψ(z) be univalent in ∆ and ψ(0) = 1. Assume that ψ is convex in
∆, α1 is a complex number and Re{α1} > −1. Let χ(z) be defined by

(2.15) χ(z) := ψ(z) +
zψ′(z)

(α1 + 1)
, (α1 6= −1).
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If f ∈ A(p, n, α1;χ), then f ∈ A(p, n, α+ 1;ψ). If f ∈ A(p, n, α1;χ),

(2.16) 0 6=
J l,m

µ [α1 + 2]f(z)

zp
∈ H(1, 1) ∩ Q,

J l,m
µ [α1 + 1]f(z)

zp
is univalent in ∆,

then f ∈ A(p, n, α1 + 1;ψ).

Proof. Define the function q(z) by

(2.17) q(z) :=
J l,m

µ [α1 + 2]f(z)

zp
.

Then, clearly q(z) is analytic in ∆. We find from (2.9) that

(2.18)
zq′(z)

q(z)
=
z(J l,m

µ [α1 + 2]f(z))′

J l,m
µ [α+ 2]f(z)

− p.

By making use of the identity

(2.19) z(J l,m
µ (α1 + 1)f(z))′ = α1(J

l,m
µ (α1)f(z) − (α1 − p)J l,m

µ (α1 + 1)f(z).

We complete the proof using the same steps as in proof of Theorem 2.1. �

Using Theorem 2.6, we obtain the following “Sandwich result”.

2.7. Corollary. Let ψi(z) be univalent in ∆ and ψi(0) = 1, (i = 1, 2). Further assume
that ψi is convex in ∆ and Re{α1} > −1, (i = 1, 2). If f ∈ A(p, n, α1;χ1, χ2) satisfies

(2.16), then f ∈ A(p, n, α1 + 1;ψ1, ψ2), where χi(z) = ψi(z) + z
ψ′

i(z)

(α1 + 1)
, (i = 1, 2, α1 6=

−1). �

The proof of the next theorem is the same as the proof of Theorem 2.3.

2.8. Theorem. Let ψ be univalent in ∆, ψ(0) = 1 and λ a complex number. Assume
that ψ is convex in ∆ and Re{λ} > −p. Define the functions F and χ by

(2.20)

F (z) :=
λ+ p

zλ

∫ z

0

tλ−1f(t)dt

χ(z) :=

[

ψ(z) +
zψ′(z)

λ+ p

]

, (λ 6= −p).

If f ∈ A(p, n, α1;χ), then F ∈ A(p, n, α1;ψ). If f ∈ A(p, n, α1, χ),

(2.21) 0 6=
J l,m

µ [α1 + 1]F (z)

zp
∈ H(1, 1) ∩ Q and

J l,m
µ [α1 + 1]f(z)

zp
is univalent in ∆,

then F ∈ A(p, n, α1;ψ). �

Using Theorem 2.8, we have the following result:

2.9. Corollary. Let ψi be univalent in ∆, ψi(0) = 1, (i = 1, 2) and λ a complex number.
Assume that ψi is convex in ∆ and Re{λ} > −p. If f ∈ A(p, n, α1;χ1, χ2) satisfies
(2.21), then F defined by (2.20) belongs to A(p, n, α1;ψ1, ψ2), where

χi(z) = ψi(z) +
zψ′

i(z)

λ+ p
, (i = 1, 2, λ 6= −p).
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3. Results Involving Multiplier Transformation

3.1. Theorem. Let ψ(z) be univalent in ∆, ψ(0) = 1, ψ convex in ∆, λ a complex
number and Re{λ} > −p. Let χ(z) be defined by

χ(z) = ψ(z) +
zψ′(z)

(p+ λ)
, (λ 6= −p).

If f ∈ V(p, n, r + 1, λ;χ), then f ∈ V(p, n, r, λ;ψ). If f ∈ V(p, n, r + 1, λ;χ),

(3.1) 0 6=
Ip(r + 1, λ)f(z)

zp
∈ H(1, 1) ∩Q,

Ip(r + 2, λ)f(z)

zp
is univalent in ∆,

then f ∈ V(p, r, λ;ψ).

Proof. Define the function q(z) by

(3.2) q(z) =
Ip(r + 1, λ)f(z)

zp
.

Then, clearly, q(z) is analytic in ∆. Also by a simple computation, we find from (3.2)
that

(3.3)
zq′(z)

q(z)
=
z(Ip(r + 1, λ)f(z))′

Ip(r + 1, λ)f(z)
− p.

By making use of the identity

(3.4) z(Ip(r, λ)f(z))′ = (p+ λ)Ip(r + 1, λ)f(z) − λIp(r, λ)f(z)

we have from (3.3) that

(3.5)
Ip(r + 2, λ)f(z)

zp
= q(z) +

zq′(z)

(p+ λ)
.

Since f ∈ V(p, n, r + 1, λ;χ), and in view of (3.5), we have

q(z) +
zq′(z)

(p+ λ)
≺ ψ(z) +

zψ′(z)

(p+ λ)
.

The first result follows by an application of Lemma 1.6.

Similarly, the second result follows from Lemma 1.7. �

Using Theorem 3.1, we obtain the following “sandwich result”:

3.2. Corollary. Let ψi(z) be univalent in ∆, ψi(0) = 1, ψi(z) convex in ∆, λ a complex
number and Re{λ} > −p for i = 1, 2. Define

χi(x) =

[

ψi(z) +
zψ′

i(z)

p+ λ

]

, (i = 1, 2, λ 6= −p).

If f ∈ V(p, n, r + 1, λ;χ1, χ2) satisfies (3.1), then f ∈ V(p, n, r, λ;ψ1, ψ2). �

3.3. Theorem. Let ψ be univalent in ∆, ψ(0) = 1, δ a complex number, ψ convex in ∆
and Re{δ} > −p. Define the functions F (z) and χ(z) by

(3.6)

F (z) =
δ + p

zp

∫ z

0

tδ−1f(t)dt

χ(z) = ψ(z) +
zψ′(z)

p+ δ
, (δ 6= −p).

If f ∈ V(p, n, r, λ;χ), then F ∈ V(p, n, r, λ;ψ). If f ∈ V(p, n, r, λ;χ),

(3.7) 0 6=
Ip(r + 1, λ)F (z)

zp
∈ H(1, 1) ∩ Q,

Ip(r + 1, λ)f(z)

zp
is univalent in ∆,

then F ∈ V(p, n, r, λ;ψ).
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Proof. Similar to that of Theorem 2.3. �

Using Theorem 2.3, we have the following result:

3.4. Corollary. Let ψi be univalent in ∆, ψi(0) = 1 and δ a complex number. Assume
that ψi(z) is convex in ∆ and Re{δ} > −p. Define the functions χi by

χi(z) = ψi(z) +
zψ′

i(z)

p+ δ
, (i = 1, 2, δ 6= −p).

If f ∈ V(p, n, r, λ;χ1, χ2) satisfies (3.7), then F defined by (3.6) belongs to the class
V(p, n, r, λ;ψ1, ψ2). �

3.5. Theorem. Let f(z) ∈ V(p, n). Then f ∈ V(p, n, r, λ;ϕ) if and only if

(3.8) F (z) =
p+ λ

zλ

∫ z

0

tλ−1f(t)dt ∈ V(p, n, r + 1, λ;ϕ).

Also f ∈ V(p, n, r, λ;ϕ) if and only if F ∈ V(p, n, r + 1, λ;ϕ).

Proof. From (3.8), we have

(3.9) (p+ λ)f(z) = λF (z) + zF ′(z).

By convoluting (3.9) with φp(n, λ; z) = zp +
∞

∑

n=p+1

(

n+ λ

p+ λ

)r

zn and using the fact that

z(f ∗ g)′(z) = f(z) ∗ zg′(z), we obtain

(p+ λ)Ip(r, λ)f(z) = λIp(r, λ)F (z) + z(Ip(r, λ)F (z))′,

and by using (3.4) we get

(3.10) Ip(r, λ)f(z) = Ip(r + 1, λ)F (z)

and

(3.11)

(p+ λ)Ip(r + 1, λ)f(z) = z(Ip(r, λ)f(z))′ + λIp(r, λ)f(z)

= z(Ip(r + 1, λ)F (z))′ + λIp(r + 1, λ)F (z)

= (p+ λ)Ip(r + 2, λ)F (z).

Therefore, from (3.11), we have

Ip(r + 2, λ)F (z)

zp
=
Ip(r + 1, λ)f(z)

zp
,

and the desired result follows at once. �

Using Theorem 3.5, we have

3.6. Corollary. Let f(z) ∈ V(p, n). Then f ∈ V(p, n, r, λ;ϕ1, ϕ2) if and only if F given
by (3.8) is in V(p, n, r + 1, λ;ϕ1, ϕ2). �

Now we will give some particular cases of Theorem 3.1 obtained for different choices
of ψ(z).

3.7. Example. Let p = 1 and r = λ = 0. We get I1(1, 0)f(z) = zf ′(z) and I1(2, 0)f(z) =
z(f ′(z) + zf ′′(z)). Let χ(z) = (1 + z)ez. Then

f ′(z) + zf ′′(z) ≺ (1 + z)ez =⇒ f ′(z) ≺ ez

or

(1 + z)ez ≺ f ′(z) + zf ′′(z) =⇒ ez ≺ f ′(z).
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3.8. Theorem. Let ψ(z) be univalent in ∆, ψ(0) = 1, ψ convex, λ a complex number
and Re(λ) > −p. Let χ(z) be defined by

χ(z) = ψ(z) +
zψ′(z)

(p+ λ)
, (λ 6= −p).

If f ∈ A(p, n, r, λ;χ), then f ∈ A(p, n, r + 1, λ;ψ). If f ∈ A(p, n, r, λ;χ),

(3.12) 0 6=
Tµ(r + 2, λ)f(z)

zp
∈ H(1, 1) ∩ Q,

Tµ(r + 1, λ)f(z)

zp
is univalent in ∆,

then f ∈ A(p, n, r + 1, λ;ψ).

Proof. Define the function q(z) by

(3.13) q(z) =
Tµ(r + 2, λ)f(z)

zp
.

Then, clearly, q(z) is analytic in ∆. Also by a simple computation, we find by (3.13) that

zq′(z)

q(z)
=
z(Tµ(r + 2, λ)f(z))′

Tµ(r + 2, λ)f(z)
− p.

By making use of the identity

(3.14) z(Tµ(r + 1, λ)f)′ = (p+ λ)Tµ(r, λ)f(z) − λTµ(r + 1, λ)f(z),

we complete the proof using the same steps as in the proof of Theorem 3.1. �

Using Theorem 3.8, we obtain the following “sandwich result”:

3.9. Corollary. Let ψi(z) be univalent in ∆, ψi(0) = 1, ψi(z) convex in ∆, λ a complex
number and Re{λ} > −p for i = 1, 2. Define

χi(z) = ψi(z) +
zψ′

i(z)

(p+ λ)
, (λ 6= −p).

If f ∈ A(p, n, r, λ;χ1, χ2) satisfies (3.12), then f ∈ A(p, n, r + 1, λ;ψ1, ψ2). �

The proof of the next theorem is the same as the proof of Theorem 3.3.

3.10. Theorem. Let ψ be univalent in ∆, ψ(0) = 1 and λ a complex number. Assume
that ψ is convex in ∆ and Re{λ} > −p. Define the functions F and χ by

(3.15)

F (z) =
λ+ p

zp

∫ z

0

tλ−1f(t)dt

χ(z) =

[

ψ(z) +
zψ(z)

λ+ p

]

, (λ 6= −p).

If f ∈ A(p, n, r, λ;χ), then F ∈ A(p, n, r, λ;ψ). If f ∈ A(p, n, r, λ;χ),

(3.16) 0 6=
Tµ(r + 1, λ)F (z)

zp
∈ H(1, 1) ∩ Q,

Tµ(r + 1, λ)f(z)

zp
is univalent in ∆,

then F ∈ A(p, n, r, λ;ψ). �

Using Theorem 3.10, we have the following result:

3.11. Corollary. Let ψi be univalent in ∆, ψi(0) = 1 and λ a complex number. Assume
that ψi is convex in ∆ and Re{λ} > −p. Define the function χi by

χi(z) =

[

ψi(z) +
zψi(z)

λ+ p

]

, (i = 1, 2, λ 6= −p).

If f ∈ A(p, n, r, λ;χ1, χ2) satisfies (3.16), then F defined (3.15) belongs to the class
A(p, n, r, λ;ψ1, ψ2). �



126 H.A. Al-Kharsani, N. M. Al-Areefi

3.12. Theorem. Let f(z) ∈ V(p, n). Then f ∈ A(p, n, r + 1, λ, ϕ) if and only if

(3.17) F (z) =
p+ λ

zλ

∫ z

0

tλ−1f(t) dt ∈ A(p, n, r, λ, ϕ).

Also f ∈ A(p, n, r + 1, λ;ϕ) if and only if F ∈ A(p, n, r, λ;ϕ).

Proof. From (3.17), we have

(3.18) (p+ λ)f(z) = λF (z) + zF ′(z).

By convoluting (3.18) with φp(n, λ; z) = zp +
∑

∞

n=p+1(µ+ p− 1)n−p

(

p+λ

n+λ

)r
zn

(n−p)!
, and

using the fact that z(f ∗ g)′(z) = f(z) ∗ zg′(z), we obtain

(p+ λ)Tµ(r + 3, λ)f(z) = λTµ(r + 3, λ)F (z) + z(Tµ(r + 3, λ)F (z))′,

and by using (3.14), we get

(3.19) Tµ(r + 3, λ)f(z) = Tµ(r + 2, λ)F (z)

and

(3.20)

(p+ λ)Tµ(r + 2, λ)f(z) = z(Tµ(r + 3, λ)f(z))′ + λTµ(r + 3, λ)f(z)

= z(Tµ(r + 2, λ)F (z))′ + λTµ(r + 2, λ)F (z)

= (p+ λ)Tµ(r + 1, λ)F (z).

Therefore, from (3.20), we have

Tµ(r + 1, λ)F (z)

zp
=
Tµ(r + 2, λ)f(z)

zp
,

and the desired result follows at once. �

Using Theorem 3.12, we have

3.13. Corollary. Let f ∈ V(p, n). Then f ∈ A(p, n, r + 1, λ;ϕ1, ϕ2) if and only if F
given by (3.17) is in A(p, n, r, λ;ϕ1, ϕ2).
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