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Abstract

Using the results of first order differential subordinations and super-
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1. Preliminaries
Let H be the class of functions analytic in A = {z € C: |z| < 1} and H(a,n) the
subclass of H consisting of functions of the form f(z) = a+ anz™ + i1zt

Let V, denote the class of all analytic functions of the form

(11)  fe)=2"4 > arz", (z€A)

k=p+1
and let V := V. For two functions f(z) given by (1.1) and g(z) = 2" + 3277 | b2",
the Hadamard product (or convolution) of f and g is defined by

(12)  (f*g)(z):=2"+ > axbpz" =: (g f)(2).

k=p+1
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Fora; e C(j=1,2,...,1)and 8; € C\{0,—,1,-2,...} (j =1,2,...m), the generalized
hypergeometric function ; Fpn(aa,...a;; B1,...,Bm; 2) is defined by the infinite series

oo

1Fm(a1,...,a;61, ..., Bm; 2) 1= Z

n=0

(@) -~ ()n 2"

(B1)n - (Bm)n n!
(I<m+1;meNy:={0,1,2,...}),
where (M), is the Pochhammer symbol defined by
), = DO+ ) _{1 (n=0)

I'(A) AA+1D)A+2)---(A+n—-1) (neN:={1,23,...}).
Corresponding to the function
(1.3)  hp(at, ., a3 81,5 Bm; 2) =2 (F(Q1, .. a5 61, -+, Bms 2),
the Dziok-Srivastava operator [8] (see also [21]) H,(,l’m)(al, coo,ai; B, ..., Bm) is defined
by the Hadamard product
HS™ (o, .. a3 Buy - Bn) £(2)
=hp(ai,...,qu; B, Bm; 2) * f(2)
(@)np (o)n—p anz"

(B1)n—p - (Bn)n—p (n—p)!~

Special cases of the Dziok-Srivastava linear operator include the Hohlov linear operator
[9], the Carlson-Shaffer linear operator [5], the Ruscheweyh derivative operator [19], the
generalized Bernardi-Libera-Livingston operator (cf. [2], [11],[12]) and the Srivastava-
Owa fractional derivative operators (cf. [17], [18]).

(1.4)

n=p+1

Corresponding to the function hp(ai,...,ae B, ..., Bm; 2), defined by (1.3), we in-
troduce a function Fj(au, ..., a0, B1,...,0m; 2) given by

2P

@3 By s 2) 2 Pty 0, B B 2) =

(z€U, p>0).

Analogous to Hp(aa,...,ou, B1,...,0m), the linear operator Jy(a1,...,a0,B1,...,0m)
on H is defined as follows:

Julaa, ..., 01,0, Bm) f(2) = Fu(ax,...,ae, B1,. .., Bm; 2) * f(2)
(138, €C\Zg;i=1,...,5;5=1,....m,u>0;z€U; f € V).
For convenience, we write
(15)  J™(en) = Ju(a,. .., a6 61, ..., Bm).
Special cases of this operator are when p = 1 [10], the generalized integral operator in [1]

when p =1 and p = 2, and Noor’s integral operator [15].

For two analytic functions f and F', we say that F' is superordinate to f if f is subor-
dinate to F. Recently Miller and Mocanu [14] considered certain second order differential
superordinates. Using the results of Miller and Mocanu [14], Bulboa has considered cer-
tain classes of first order differential superordinations [4] and superordination-preserving
integral operators [3].

In the present investigation, we introduce new classes of p-valent functions defined by
the Dziok-Srivastava linear operator and the multiplier transformation, and study their
properties by using certain first order differential subordinations and superordinations.
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1.1. Definition. A function f € V(p,n) is said to be in the class
V(p,n,al,---,al;ﬂl,--.,ﬁm;@)
if it satisfies the following subordination:

Hy"[on +11£(2)

zP

(1.6) < ¢(2), (f €V(p,n)),

and is said to be in

V(p,n,al,---,al;ﬂl,--.,ﬁm;@)
if f satisfies the following superordination:

(10 o)< 2 WC) v ),
where ¢(z) is analytic in A, ¢(0) =1 and

H,l,'m[ozl]f(z) = H,l,'m(ozl7 cey 0 By B f(2).
To make the notation simple, we also write

V(p,n,a1;¢) :=V(p,n,a1,...,00;01,...,0m; )

and

V(p,n,a1;0) =V(p,n,a1,...,aq;501, -, Bm; ®).

Also we define the class V(p,n, a1; 91, ¢2) by the following:
V(p,n, a1; 01, ¢2) := V(p, 1, a1591) NV (p, 1, @15 p2).

1.2. Definition. A function f € V(p,n) is said to be in the class
Alp,n,a1,...,00; 81, .., Bm; @)

if it satisfies the following subordination:

JEm e +1f()

zPb

(1.8) e(2), (f €V(p,n)),

and is said to be in

A(p7n7a17"'7al§517"'7ﬁm;§0)

if f satisfies the following superordination:

_ i + 14(3)

zP

(19)  ¢(2) » (f €V(p,n)),
where ¢(z) is analytic in A, ¢(0) =1 and
Ji" el f(2) = Ju(on, . on Brs . Bn) f(2).
To make the notation simple, we also write
Alp,n,a1;9) = Ap,n, a1, ..., 81, - -y Bmi )
and
Alp,n,a1;0) == Alp,n,an,...,a;01, ..., Bm; ).
Also we define the class A(p,n, a1; @1, p2) by the following:
A(p,n, ar;¢1,92) == A(p,n, a1591) N A(p, n, a5 92).

117
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Motivated by the multiplier transformation on V, we define the operator I,(r, A) on
V, by the following infinite series

n4+ A
p+A

(110)  L(r A f(z) =2"+ > (

n=p+1

) anz", (A >0).

The operator I,(r,A) is closely related to the Salagean derivative operator [20]. The
operator I3 := Ii(r, \) was studied recently by Cho and Srivastva [6], and by Cho and
Kim [7] The operator I, := I;(r,1) was studied by Uralagaddi and Somanatha [22]. By
using the Hadamard product:

n4+ A
p+A

(1.11)  Iy(r, N f(2) := Fi(2) * f(2) where F)(z) = 2P + Z (

n=p+1

)Tz"7 (A > 0).

Corresponding to the function F%(z) defined by (1.5), we introduce a function I} ,(2)
given by
T T Zp
(112) 75 *95,(2) = Ty (€U 0>0).
Using Ip,(r, A), we define the multiplier transformations 7}, (r, \) as follows:
(113) TM(T7 )‘)f(z) = ?;,u(z) * f(2)7 ()‘ 2 07 /1/ > 07 zZ € U7 f € VP)

For p = 1, we note that a special case of this operator is the integral operator defined in
[16].

1.3. Definition. A function f € V(p,n) is said to be the class V(p,n, r, A; ) if it satisfies
the following subordination:

I(r+1,0)[(2)

zP

(1.14) < ¢(2), (f €V(p,n)),

and is said to be in V(p,n,, \; ) if f satisfies the following superordination:

Ip(r+1,2)f(2)

(1.15)  p(z) <

where ¢(z) is analytic in A and ¢(0) = 1. Also we define the class V(p,n,r, \; o1, ¢2) by
the following:

, (f €V(p,n)),

V(p7 n,r, A, ®1, 902) = V(p7 n,r, )‘1 901) N V(p7 n,r, A 902)

1.4. Definition. A function f € V(p,n) is said to be in the class A(p,n,r, A; ) if it
satisfies the following subordination:

Tu(r+1,01(2)

2P

(1.16) < ¢(2), (f €V(p,n)),

and is said to be in A(p,n,, \; ) if f satisfies the following superordination:

Tu(r+1,M/f(2)

(L17)  o(z) <

where ¢(z) is analytic in A and ¢(0) = 1. Also we define the class A(p,n,r, A; @1, p2) by
the following:

, (f €V(p,n)),

A(p,n, 7, X501, 02) = A(p,n, 7, X 01) N A(p,n, 7, X; 02).

In our present investigation of the above defined classes, we need the following:
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1.5. Definition. [14, Definition 2, p. 817]. Denote by Q, the set of all functions f()
that are analytic and injective on A — E(f), where

B(f) =€ €A Tim f(2) = oo},
and are such that f'(£) # 0 for € € OA — E(f).

1.6. Lemma. (cf. Miller and Mocanu [13, Theorem 3.4h, p. 132]). Let ¥(z) be univalent
in the unit disc A and 0, ¢ analytic in a domain D D Y(A) with p(w) # 0, when
w € P(A). Set

Q(2) = 29 (2)p(¥(2)), h(z) == 0(¥(2)) + Q(2).
Suppose that

1) Q(z) is starlike in A, and
2zl (2)
2) Re >0 for z € A.
) Qe 70
If q(2) is analytic in A, with ¢(0) = (0),q(A) C D and

(1.18)  0(q(2)) + 24 (2)(a(2)) < 0(¥(2)) + 2’ (2)p(¥(2)),
then q(z) < ¥ (z) and ¥(z) is the best dominant.

1.7. Lemma. [4]. Let 1¥(z) be univalent in the unit disc A and 0 analytic in a domain
D containing ¥ (A). Suppose that

(1) Relf (4(2))/0((=))] > 0 for = € A.
(2) 20" (2)p(¥(2)) is starlike in A.

If q(2) € H(¥(0),1) N Q, with ¢(A) C D, and 6(q(2)) + 24’ (2)¢(q(2)) is univalent in A,
then

(1.19)  0(¥(2)) + 20 (2)p(¥(2)) < 0(a(2)) + 24’ (2)¢(a(2)).

implies ¥ (z) < q(z) and ¢(z) is the best subordinant.

2. Results involving the Dziok-Srivastava linear operator

2.1. Theorem. Let ¥(z) be univalent in A,(0) = 1. Assume that ¢ is convex in A,
a1 be a complex number and Re{a1} > —1. Let x(z) be defined by

_ 2y’ (2)
21)  x(2) =9(2) + it 1) (ar # —1).

Iff € V(p7n7a1 + 1)X)? then f € V(p7n7a1§¢)' Iff € V(p7n7041 + 1;X)?

(22) o0z Bl ¥ 1) w

then f € V(p,n,a1;9).

€ H(1,1)NQ, 15 univalent in A,

z

Proof. Define the function ¢(z) by

21 ge) - BT HUIE)

Then, clearly, ¢(z) is analytic in A, we find from (2.3) that
op G I )

4G~ HE e+ 1f(2)
By making use of the identity

(25)  2(Hy"aalf(2)) = an Hy™ [on + 1]f(2) = (e = p)H " [a]f (2),
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we have from (2.4) that
I,m

o) AT _ L 4 1)) 420 ()
Since f € V(p,n, a1 + 1;x), we have from (2.6) that

(a1 + Da(2) + 24'(2) < (a1 + 1)(2) + 20'(2)
and this can be written as (1.18), by defining

O(w) = (a1 + 1w and p(w)=1.
Note that p(w) # 0 and 6(w), ¢(w) are analytic in C. Set
(27) Q) = =/(2),
(28)  h(=) = 0(6() + Q(2) = (a1 + D(2) + 20/ (2).
By the hypothesis of Theorem 2.1, @) is starlike and

Re{Zh,(z)} - Re{(on +2)+ w”(z)} > 0.

Q(2) ¥(2)
By an application of Lemma 1.6, we obtain that ¢(z) < (z) or w < YP(z),
which shows that f € V(p,n,a1;v).
The other half of Theorem 2.1 follows by a similar application of Lemma 1.7. d

Using Theorem 2.1, we obtain the following “sandwich result”:

2.2. Corollary. Let 1;(z) be univalent in A and 1;(0) = 1, (i = 1,2). Further assume
that ¥;(2) is convezr univalent in A, a1 s a complex number and Re{an} > —1, (i =1,2).
If f € V(p,n, a1 + 1;x1, x2) satisfies (2.2), then f € V(p,n,aq;1,12), where
2i(z)
i(2)=vi(z)+ ———, (i=1,2,;« —1). O
x(2) = () + T 1 # 1)
2.3. Theorem. Let ¢ be univalent in A,¢(0) = 1, and A a complex number. Assume
that ¢ is convex in A and Re{\} > —p. Define the functions F' and x by
F(z) =212 / Pt
Jo

2

(2.9)

_ [
@) = [ 22 o] 0 -

Iff € V(p7n7 O(I;X)7 then F € V(p7n7a1;¢)' Iff € V(pfnyozl;XL

Hl’m[ozl +1)F(2) H,l,'m[ozl +1]f(2)

(210) 0# =2 € H(1,1)NQ and g is univalent in A,

2P
then F € V(p,n, a1;1).
Proof. From the definition of F(z), we obtain that

(211) (A p)HS™[n + 1 (2) = AHS™ [ + F(2) + 2(HE ™ o + 1F ()’
Define the function ¢(z) by

H)™ 1]F

(212) q(z) = Dl H1EE)
zP

Then, clearly, ¢(z) is analytic in A. Using (2.11) and (2.12), we have

HL™[a+1)F/ (2)
(13 Hllea+Ui()  MET ()
’ 2P - A+p
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Upon logarithmic differentiation of (2.13), we get
Hf,’m[al +1]f(2) _ 2¢'(2)

2.14 = .
(214) - ) 4 g
Since f € V(p,n, a1, x), we have from (2.14),
/ !
2q'(2) z¢'(2)
= ST
)+ 3L <)+ ZEE

and this can be written as (1.18) by defining 0(w) = w and ¢(w) = ——
Note that ¢(w) # 0 and 0(w), ¢(w) are analytic in C. Set

2’ (2)

A+p
h(z) = 0(6() + Q) = () + F1C.

By the hypothesis of Theorem 2.3, Q(z) is starlike and

Re{Zh/(z)} - Re{()\ +p)+ (1 + ZW(Z))} > 0.

Q(z) =

Q(2) Y'(2)
By an application of Lemma 1.6, we obtain that
q(z) < P(2),
or

l,m
H, [04122— 1]F(2) < 0(2),

which shows that F' € V(p,n, a1;v).
The second half of Theorem 2.3 follows by a similar application of Lemma 1.7. d

Using Theorem 2.3, we have the following result:

2.4. Corollary. Let v; be univalent in A, ¥;(0) =1, (i = 1,2) and A a complex number.

Assume that :(z) is convex in A and Re{\} > —p, (i =1,2). If f € V(p,n,a1;x1, X2)

satisfies (2.10), then the function F defined by (2.9) belongs to V(p,n, a1;41,12), where
2i(2)

xi(z) = {m +¢i(2):| , (1=1,2, A # —p).

Now we will give some particular cases of Theorem 2.1 obtained for different choices
of ¥(z).
2.5. Example. Let p=1,l=m+1and az = b1,...,c10 = Bm, we get H1[1]f(2) = f(2)
and H1[2]f(2) = zf'(2). Let x(2) = 1+ Az, (0 < A < 1). Then:

fl(z2) <1+ = @<1+%z

and
L+dz < f'(z) = 1—|—%z< @
2.6. Theorem. Let 1)(z) be univalent in A and ¥(0) = 1. Assume that 1) is convez in
A, ay is a complex number and Re{a1} > —1. Let x(z) be defined by
2’ (2)

(2.15)  x(2) :=9(z) + ot 1) (a1 # =1).
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If f € A(p,n,a1;%), then f € A(p,n,a+ 1;9). If f € A(p,n,a1;X),

(2.16) 0# £ € H(1,1)NQ, " is univalent in A,

zP

then f € A(p,n, a1 + 1;9).

Proof. Define the function ¢(z) by

Jm 2
(217) q(z) = 2 la P27
zP
Then, clearly g(z) is analytic in A. We find from (2.9) that

2q(2) 205" en +2AF(2))

(2.18) a(z) IS+ 2)f(2)

By making use of the identity
(2.19)  2(Jy" (a1 + 1) f(2)) = ar(Jp" (1) f(2) = (a1 = p) ™ (1 + 1) f(2).

We complete the proof using the same steps as in proof of Theorem 2.1. O

Using Theorem 2.6, we obtain the following “Sandwich result”.

2.7. Corollary. Let ©;(z) be univalent in A and ;(0) =1, (i = 1,2). Further assume

that ; is convex in A and Re{a1} > =1, (i = 1,2). If f € A(p,n, a1;x1,X2) satisfies

(2.16), then f € A(p,n,cq + 1;91,12), where xi(z) = ¥i(z) +Z(o¢¢1§7(j)1)’ (i=1,2,00 #

—1). O
The proof of the next theorem is the same as the proof of Theorem 2.3.

2.8. Theorem. Let ¢ be univalent in A, ¥(0) = 1 and X\ a complex number. Assume
that v is convez in A and Re{\} > —p. Define the functions F' and x by

F(z) = 212 /Zt**lf(t)dt

22 Jo
2’ (2)
A+p

@)= v+ Z22] oz

Iff € A(pﬂ%alix), then F € A(pﬂh 041”/))' Iff € Z(p7 n, 0417X);

" F " 1
(2.21) 0# W € H(1,1)NQ and w is univalent in A,
then F € A(p,n,a1;1). ]

Using Theorem 2.8, we have the following result:

2.9. Corollary. Let ¥; be univalent in A,1;(0) =1, (i =1,2) and X a complex number.
Assume that 1; is convex in A and Re{\} > —p. If f € A(p,n,a1;x1,Xx2) satisfies
(2.21), then F defined by (2.20) belongs to A(p,n,aq;11,12), where

2Pi(2)
A+p

Xz(z) :¢z(z)+ ) (7::1727)‘7{_]))'



On Classes of Multivalent Functions 123

3. Results Involving Multiplier Transformation

3.1. Theorem. Let ¥(z) be univalent in A, ¥(0) = 1, ¢ conver in A, X a complex
number and Re{\} > —p. Let x(z) be defined by

X(2) = () + T (V£ )
If f €V(p,n,r +1,Xx), then f € V(p,n,r, X;9). If f € V(p,n,7+ 1, x),
(31) 0# W e H(1,1)NQ, W is univalent in A,

then f € V(p,r, \;9).
Proof. Define the function ¢(z) by

zP
Then, clearly, g(z) is analytic in A. Also by a simple computation, we find from (3.2)
that

q(2) Ip(r+1,2)f(2)
By making use of the identity
(34)  2(Lp(r,\)f(2))" = (p+ NIp(r + 1, X) f(2) = My (1, X) f(2)
we have from (3.3) that

L(r+2,M)f(z) _ 2q'(2)
(3.5) pz—p =q(z) + CESY)
Since f € V(p,n,r + 1, \; x), and in view of (3.5), we have

2q'(2) 2 (2)

(z) + CESY < Y(z) + S

The first result follows by an application of Lemma 1.6.

—p.

Similarly, the second result follows from Lemma 1.7. O
Using Theorem 3.1, we obtain the following “sandwich result”:

3.2. Corollary. Let 1;(z) be univalent in A, 1;(0) = 1, ¢;(z) convex in A, X\ a complex
number and Re{\} > —p for i =1,2. Define

o) = [+ 228 =120 2 ).
If f € V(p,n,m+ 1, x1,x2) satisfies (3.1), then f € V(p,n,r, X\;41,2). 0O

3.3. Theorem. Let v be univalent in A, ¥(0) = 1, § a complex number, 1p convezr in A
and Re{0} > —p. Define the functions F(z) and x(z) by
_0+p 75

F(z) = o /o t° f(t)dt
_ 20/(2) )
@) = v+ 2D 64 ).

If f €V(p,n,7,X5X), then F € V(p,n,r, X ¢). If f € V(p,n,7,A5X),
(3.7) 0 # Li(r+1, M) F(2) L(r+1,A)f(2)

zP zP

then F € V(p,n,r, \;9).

(3.6)

€ H(1,1)NQ, is univalent in A,
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Proof. Similar to that of Theorem 2.3. g

Using Theorem 2.3, we have the following result:

3.4. Corollary. Let 1; be univalent in A, ¥;(0) =1 and § a complex number. Assume
that i (z) is convex in A and Re{d} > —p. Define the functions x; by

PR/ O R .
(@) =vi(e) + 222 (=12, 5% p).

If f € V(p,n,r, \; x1, x2) satisfies (3.7), then F defined by (3.6) belongs to the class
V(p7n7T7A;1/)171/)2). O
3.5. Theorem. Let f(z) € V(p,n). Then f € V(p,n,r, X\;¢) if and only if

_p+A
==

(3.8)  F(2) /0 P dE € V(p,n, T+ 1,05 0).

Also f € V(p,n,r, X;¢) if and only if F € V(p,n,r+ 1, \;¢).

Proof. From (3.8), we have
(3.9)  (p+Nf(z) =AF(2)+ 2F'(2).

By convoluting (3.9) with ¢,(n, \;2) = 2P + Z (Z::__ ;\) 2™ and using the fact that
n=p+1

2(f * g)'(2) = f(2) * 29’ (2), we obtain

(P + NIp(r, N) f(2) = Mp(r, \)F(2) + 2(Ip(r, \)F(2))',
and by using (3.4) we get
(3.10)  Ip(r,\)f(z) = I(r+ 1, \)F(z)

and

(0 + NI (r + 1,0 f(2) = 2(Ip(r, ) f(2)) + Mp(r,A) f(2)
2(Ip(r + 1, N F(2)) + Mp(r + 1, \)F(2)

= (p+ N I(r +2, ) F(z).

(3.11)

Therefore, from (3.11), we have

L(r+2,MF(z) _ Li(r+1,))/(2)

2P zP

I

and the desired result follows at once. O

Using Theorem 3.5, we have

3.6. Corollary. Let f(z) € V(p,n). Then f € V(p,n,r,\; p1,p2) if and only if F given
by (3.8) is in V(p,n,r + 1, A; 01, ¢2). |

Now we will give some particular cases of Theorem 3.1 obtained for different choices
of ¥(z).

3.7. Example. Letp=1andr =X =0. Weget I1(1,0)f(z) = zf'(z) and I1(2,0) f(2) =
2(f'(2) + 2f"(2)). Let x(2) = (1 + z)e*. Then

F)+2f"(2) = (1+2)e = f(2) <€
or

(L+2)e” < f/(2) +2f"(2) = & < f(2).
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3.8. Theorem. Let ¢(z) be univalent in A, ¥(0) = 1, ¥ convex, X\ a complex number
and Re(A\) > —p. Let x(z defined by

)

) be

_ 2’ (2) _

X() = () + TCL ()

Tu(r+1,0)f(2)

2P

(3.12) 0# M{W € H(1,1)NQ, is univalent in A,
z

then f € A(p,n,r+ 1, \;%).
Proof. Define the function ¢(z) by

2P
Then, clearly, ¢(z) is analytic in A. Also by a simple computation, we find by (3.13) that
24/ (2) _ 2(Tulr +2,M)f(2))

az) ~  T.r+2,Mf(2)
By making use of the identity
(3.14)  2(Tu(r + LA = (p+ N)Tulr, N) f(2) = XTu(r + 1, M) f(2),

we complete the proof using the same steps as in the proof of Theorem 3.1. O

Using Theorem 3.8, we obtain the following “sandwich result”:

3.9. Corollary. Let v;(2) be univalent in A,1;(0) = 1, 1;(z) convezr in A, X\ a complex
number and Re{\} > —p for i =1,2. Define

P 2i(2) B
() = () + Tk (v )
If f € A(p,n, 7, A; x1, X2) satisfies (3.12), then f € A(p,n,r+ 1, X\;¢1,¢2). O

The proof of the next theorem is the same as the proof of Theorem 3.3.

3.10. Theorem. Let ¢ be univalent in A, ¥(0) = 1 and X\ a complex number. Assume
that v is convez in A and Re{\} > —p. Define the functions F' and x by

F(z) = 2P / A1 p()dt

zPJy

(3.15)

A+p
If f € A(p,n, 7, A; x), then F € A(p,n,r, \;¢). If f GZ(pﬂl,n}\;X),

(3.16) 0 w W

then F € Z(p7 n,7, A 1). -

\(z) = [wz) n ZW)} (£ -p).

e H(1,1)NQ, s univalent in A,

Using Theorem 3.10, we have the following result:

3.11. Corollary. Let ; be univalent in A, 1;(0) = 1 and A a complex number. Assume
that 1; is convex in A and Re{\} > —p. Define the function x; by
z1);(2) )
i(z) = [Yi(z) + ——=|, (1 =1,2, A # —p).
) = [+ 4 %)
If f € Alp,n,r,A;x1,x2) satisfies (3.16), then F defined (3.15) belongs to the class

A(p7n77“7)\;1/)171/)2). u
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3.12. Theorem. Let f(z) € V(p,n). Then f € A(p,n,r + 1, X, ¢) if and only if

p+X [7 a_
:7/() M E(E) dt € A(pyn, Ty A, ).

Also f € A(p,n,r + 1, ;) if and only if F € A(p,n,7, \; ).

(3.17)  F(z)

Proof. From (3.17), we have
(3.18)  (p+ N)f(2) = AF(2) + zF'(z).
By convoluting (3.18) with ¢p(n, A\;2) =27+ 372 (p+p—1n—p <%§)T (7%;)!7 and
using the fact that z(f x g)'(2) = f(2) x 2¢'(2), we obtain

(p+ NTu(r +3,0)f(2) = XTu(r + 3, \)F(2) + 2(Tu(r + 3, ) F(2)),
and by using (3.14), we get
(3.19) Tu(r+3,N)f(z) =Tu(r+2,\)F(2)
and

P+ NTu(r +2,0)f(2) = 2(Tu(r + 3, ) f(2))" + ATu(r +3,1) f(2)
(Tu(r + 2, ) F(2)) + XTu(r + 2, \)F(2)
= (p+ NTu(r+1,N)F(2).

(3.20)

z

Therefore, from (3.20), we have
Tu(r+ LVF() _ Tl +20/(2)
zP - 2P
and the desired result follows at once. O

)

Using Theorem 3.12, we have

3.13. Corollary. Let f € V(p,n). Then f € A(p,n,m + 1, X;¢1,p2) if and only if F
given by (3.17) is in A(p,n,r, \; o1, 92).
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