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Abstract

Let Li(x) denote the dilogarithm integral. The goal of this paper is to
evaluate several commutative neutrix convolution products involving
the dilogarithm integral and its associated functions Li+(x) and Li−(x).
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1. Introduction

The dilogarithm integral Li(x) is defined by

(1) Li(x) = −

∫

x

0

ln |1 − t|

t
dt

(see [1]), and the associated functions Li+(x) and Li−(x) are defined by

Li+(x) = H(x) Li(x), Li−(x) = H(−x)Li(x) = Li(x) − Li+(x),

where H(x) denotes Heaviside’s function.

Next, the distribution ln |1 − x|x−1 is defined by

ln |1 − x|x−1 = −Li′(x),

and its associated distributions ln |1 − x|x−1

+ and ln |1 − x|x−1

−
are defined by

ln |1 − x|x−1

+ = H(x) ln |1 − x|x−1 = −Li′+(x),

ln |1 − x|x−1

−
= H(−x) ln |1 − x|x−1 = −Li′−(x).
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We define the function Ir(x) by

Ir(x) =

∫

x

0

u
r ln |1 − u| du

for r = 0, 1, 2, . . . , and it was shown in [5] that

Ir(x) =
1

r + 1
(xr+1 − 1) ln |1 − x| −

1

r + 1

r
∑

i=0

xi+1

i + 1
.

The classical definition of the convolution product of two functions f and g is as follows:

1.1. Definition. Let f and g be functions. Then the convolution f ∗ g is defined by

(f ∗ g)(x) =

∫

∞

−∞

f(t)g(x − t) dt

for all points x for which the integral exist.

It follows easily from the definition that if f ∗g exists then g∗f exists and f ∗g = g∗f .
Further, if (f ∗ g)′ and f ∗ g′ (or f ′ ∗ g) exist, then

(2) (f ∗ g)′ = f ∗ g
′ (or f

′ ∗ g).

Definition 1.1 can be extended to define the convolution f ∗g of two distributions f and g

in D
′, the space of infinitely differentiable functions with compact support, see Gel’fand

and Shilov [6].

1.2. Definition. Let f and g be distributions in D
′. Then the convolution f ∗g is defined

by the equation

〈(f ∗ g)(x), ϕ〉 = 〈f(y), 〈g(x),ϕ(x + y)〉〉

for arbitrary ϕ in D, provided f and g satisfy either of the conditions

(a) Either f or g has bounded support,
(b) The supports of f and g are bounded on the same side.

Note that if f and g are locally summable functions satisfying either of the above
conditions, and the classical convolution f ∗ g exists, then it is in agreement with Defini-
tion 1.1.

The following convolutions were proved in [5] for r = 0, 1, 2, . . . .

(3) Li+(x) ∗ x
r

+ =
1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)r−i
Ir−i(x)xi

+ +
1

r + 1
x

r+1 Li+(x)

(4) ln |1 − x|x−1

+ ∗ x
r

+ =
r−1
∑

i=0

(

r

i

)

(−1)r−i
Ir−i−1(x)xi

+ − x
r Li+(x).

The convolution product of distributions may be defined without any restriction on the
supports. One of the best known is the definition given by V.S.Vladimirov, although
several other definitions of the convolution product are equivalent to that of Vladimirov.
However, the convolution product in the sense of any of these definitions does not exist
for many pairs of distributions.

In [3] the commutative neutrix convolution product is defined, and this exists for a
considerably larger class of pairs of distributions. In that definition, unit-sequences of
function in D are used which allows one to approximate a given distribution by a sequence
of distributions of bounded support.

To recall the definition of the commutative neutrix convolution product we first let τ

be a function in D, see [7], satisfying the conditions:
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(i) τ (x) = τ (−x),
(ii) 0 ≤ τ (x) ≤ 1,
(iii) τ (x) = 1 for |x| ≤ 1

2
,

(iv) τ (x) = 0 for |x| ≥ 1.

The function τn is then defined by

τn(x) =











1, |x| ≤ n,

τ (nn − nn+1), x > n,

τ (nnx + nn+1), x < −n,

for n = 1, 2, . . ..

We now have the following definition of the commutative neutrix convolution product.

1.3. Definition. Let f and g be distributions in D
′, and let fn = fτn and gn = gτn for

n = 1, 2, . . . . Then the commutative neutrix convolution product f ∗ g is defined as the
neutrix limit of the sequence {fn ∗ gn}, provided that the limit h exists in the sense that

N−lim
n→∞

〈fn ∗ gn, ϕ〉 = 〈h, ϕ〉

for all ϕ in D, where N is the neutrix (see van der Corput [2]), having domain N ′ =
{1, 2, . . . , n, . . . } and range N ′′ the real numbers, with negligible functions finite linear
sums of the functions

n
λ lnr−1

n, lnr
n, (λ 6= 0, r = 1, 2, . . .),

and all functions which converge to zero in the usual sense as n tends to infinity.

Note that in this definition the convolution product fn ∗ gn is in the sense of Defini-
tion 1.1, the distributions fn and gn having bounded support since the support of τn is
contained in the interval [−n − n−n, n + n−n]. This neutrix convolution product is also
commutative.

It is obvious that any results proved with the original definition hold with the new
definition. The following theorem (proved in [3]) therefore holds, showing that the com-
mutative neutrix convolution product is a generalization of the convolution product. So
the idea of a neutrix lies in neglecting certain numerical sequences diverging to ±∞,
which makes for a wider class of pairs of distributions f and g for which the product
exists. It should be noted that, in general, the definition of a commutative neutrix con-
volution product depends on the choice of the sequence τn as well as the set of negligible
sequences.

1.4. Theorem. Let f and g be distributions in D
′, satisfying either condition (a) or con-

dition (b) of Gel’fand and Shilov’s definition. Then the commutative neutrix convolution

product f ∗ g exists and

f ∗ g = f ∗ g.

Note, however, that (f ∗ g)′ is not necessarily equal to f ′ ∗ g, although we do have
the following theorem proved in [4].

1.5. Theorem. Let f and g be distributions in D
′ and suppose that the commutative

neutrix convolution product f ∗ g exists. If N−lim
ν→∞

〈(fτ ′

n) ∗ gn, ϕ〉 exists and equals 〈h, ϕ〉

for all ϕ in D, then f ′ ∗ g exists and

(f ∗ g)′ = f
′ ∗ g + h.
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2. Main result

In the following, we need to extend our set of negligible functions to include finite
linear sums of the functions ns Li(nr), for s = 0, 1, 2, . . . and r = 1, 2, . . .. Before proving
some further results we need the following lemma proved in [5]:

2.1. Lemma.

N−lim
n→∞

Ir(n) = −
1

(r + 1)2

2.2. Theorem. The commutative neutrix convolution product Li+(x) ∗ xr exists and

(5) Li+(x) ∗ x
r =

1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)r−i

(r − i + 1)2
x

i

for r = 0, 1, 2, . . . .

Proof. We put [Li+(x)]n = Li+(x)τn(x) and [xr]n = xrτn(x) for n = 1, 2, . . . . Since
these functions have compact support, the classical convolution product [Li+(x)]n ∗ [xr ]n
exists by Definition 1.1, and we have:

(6)

[Li+(x)]n ∗ [xr]n =

∫

∞

−∞

Li+(t)(x − t)r
τn(x − t)τn(t) dt

=

∫

n

0

Li(t)(x − t)r
τn(x − t) dt

+

∫

n+n
−n

n

Li(t)(x − t)r
τn(x − t)τn(t) dt

= I1 + I2.

If 0 ≤ x ≤ n we see that

I1 =

∫

n

0

Li(t)(x − t)r
τn(x − t) dt

= −

∫

n

0

(x − t)r

∫

t

0

ln |1 − u|

u
du dt

= −

∫

n

0

ln |1 − u|

u

∫

n

u

(x − t)r
dt du

=
1

r + 1

r+1
∑

i=0

(−1)r−i
x

i

(

r + 1

i

)

∫

n

0

u
−1 ln |1 − u|{ur−i+1 − n

r−i+1} du

=
1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)r−i
x

i
Ir−i(n) +

1

r + 1
x

r+1 Li(n)+

+
1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)r−i
x

i Li(n)nr−i+1
.

Thus using Lemma 2.1 we have,

(7) N−lim
n→∞

I1 =
1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)r−i

(r − i + 1)2
x

i
.
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Next, if −n ≤ x ≤ 0 we have

(8)

I1 =

∫

n

0

Li(t)(x − t)r
τn(x − t) dt

=

∫

x+n

0

Li(t)(x − t)r
dt +

∫

x+n+n
−n

x+n

Li(t)(x − t)r
τn(x − t) dt,

where

(9)

∫

x+n

0

Li(t)(x − t)r
dt = −

∫

x+n

0

(x − t)r

∫

t

0

u
−1 ln |1 − u| du dt

= −

∫

x+n

0

u
−1 ln |1 − u|

∫

x+n

u

(x − t)r
dt du

=
1

r + 1

∫

x+n

0

u
−1 ln |1 − u|

[

(−n)r+1 − (x − u)r+1
]

du

=
1

r + 1

(

(−n)r+1 − x
r+1
)

Li(x + n)

+
1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)r−i
x

i
Ir−i(x + n).

Further, it is easily seen that, for each fixed x and K = sup{|Li+(x)|} we have
∣

∣

∣

∣

∫

x+n+n
−n

x+n

Li(t)(x − t)r
τn(x − t) dt

∣

∣

∣

∣

≤ K

∫

x+n+n
−n

x+n

|x − t|r dt

and so

(10) lim
n→∞

∫

x+n+n
−n

x+n

Li(t)(x − t)r
τ (x− t) dt = 0.

Using the fact that

N−lim
n→∞

Ir(x + n) = N−lim
n→∞

Ir(n) = −
1

(r + 1)2
,

and noting that the function Li(x + n) is negligible we have from (8), (9) and (10) that
in this case also equation (7) holds.

Further, it is easily seen that for each fixed x

(11) lim
n→∞

I2 = lim
n→∞

∫

n+n
−n

n

Li(t)(x − t)r
τn(x − t)τn(t) dt = 0

and now (5) follows immediately from (6), (7) and (11), so proving the theorem. �

2.3. Corollary. The commutative neutrix convolution product Li+(x) ∗ xr

− exists and

(12)

Li+(x) ∗ x
r

− =
1

r + 1

r
∑

i=0

(

r + 1

i

)

(−1)i

[

1

(r − i + 1)2
x

i − Ir−i(x)xi

+

]

+
(−1)r+1

r + 1
x

r+1 Li+(x)

for r = 0, 1, 2, . . .

Proof. Since the commutative neutrix convolution product is distributive with respect
to addition, we have

Li+(x) ∗ x
r = Li+(x) ∗ x

r

+ + (−1)r Li+(x) ∗ x
r

− ,

and equation (12) follows from equation (5) and (3). �
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2.4. Theorem. The commutative neutrix convolution product ln |1 − x|x−1

+ ∗ xr exists

and

(13) ln |1 − x|x−1

+ ∗ x
r =

r−1
∑

i=0

(

r

i

)

(−1)r−i

(r − i)2
x

i

for r = 0, 1, 2, . . .

Proof. Using Theorem 2 we have

(14) ln |1 − x|x−1

+ ∗ x
r = r Li+(x) ∗ x

r−1 − N−lim
n→∞

[Li+(x)τ ′

n(x)] ∗ [xr]n

when, on integration by parts we have

(15)

[Li+(x)τ ′

n(x)] ∗ (xr)n =

∫

n+n
−n

n

Li(t)(x − t)r
τn(x − t) dτn(t)

= −Li(n)(x − n)r
τn(x − n)

−

∫

n+n
−n

n

ln |1 − t|t−1(x − t)r
τn(t)τn(x − t) dt

+ r

∫

n+n
−n

n

Li(t)(x − t)r−1
τn(t)τn(x − t) dt

+

∫

n+n
−n

n

Li(t)(x − t)r
τn(t)τ ′

n(x − t) dt.

Now τn(x − n) is either 0 or 1 for large enough n, and so

(16) N−lim
n→∞

Li(n)(x − n)r
τn(x − n) = 0.

Next we have
∣

∣

∣

∣

∫

n+n
−n

n

ln |1−t|t−1(x−t)r
τn(t)τn(x−t) dt

∣

∣

∣

∣

≤

∫

n+n
−n

n

∣

∣

∣

∣

ln |1−t|t−1(x−t)r

∣

∣

∣

∣

dt

and it follows that

(17) lim
n→∞

∫

n+n
−n

n

ln |1 − t|t−1(x − t)r
τn(t)τn(x − t) dt = 0.

Similarly,

(18) lim
n→∞

∫

n+n
−n

n

Li(t)(x − t)r−1
τn(t)τn(x − t) dt = 0.

Noting that τ ′

n(x − t) = 0 for large enough n and x 6= 0, it follows that

(19) lim
n→∞

∫

n+n
−n

n

Li(t)(x − t)r
τn(t)τ ′

n(x − t) dt = 0.

If x = 0, then

∫

n+n
−n

n

Li(t)(x − t)r
τn(t)τ ′

n(−t) dt

=
1

2

∫

n+n
−n

n

Li(t)(x − t)r
dτ

2
n(t) dt

=
1

2
Li(n)(x − n)r +

∫

n+n
−n

n

[

ln |1 − t|t−1(x − t) − r Li(t)

]

(x − t)r−1
τ

2
n(t) dt,
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and it follows that

(20) N−lim
n→∞

∫

n+n
−n

n

Li(t)(x − t)r
τn(t)τ ′

n(−t) dt = 0.

It now follows from Equations (15) to (20) that

N−lim
n→∞

[Li+(x)τ ′

n(x)] ∗ [xr]n = 0,

and the equation (13) follows directly from (14) and (5), so proving the theorem. �

2.5. Corollary. The commutative neutrix convolution product ln |1 − x|x−1

+ ∗ xr

− exists

and

(21) ln |1−x|x−1

+ ∗ x
r

− =

r−1
∑

i=0

(

r

i

)

(−1)i

[

1

(r − i)2
x

i − Ir−i−1(x)xi

+

]

+(−1)r
x

r Li+(x)

for r = 0, 1, 2, . . ..

Proof. Because we have

ln |1 − x|x−1

+ ∗ x
r = ln |1 − x|x−1

+ ∗ x
r

+ + (−1)r ln |1 − x|x−1

+ ∗ x
r

− ,

equation (21) follows from equation (13) and (4). �
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