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Abstract

In the areas of statistics and econometrics the analysis of binary and
polychotomous response data is widely used. In classical statistics, the
maximum likelihood method is used to model this data and inferences
about the model are based on the associated asymptotic theory. How-
ever, the inferences based on the classical approach are not accurate if
the sample size is small. J.H. Albert and S. Chib (Bayesian Analysis

of Binary and Polychotomous Response Data, J. American Statistical
Association 422, 669–679, 1993) proposed a Bayesian method to model
categorical response data. In this method Gibbs sampling and the data
augmentation algorithm are used together to model the data. In this
article, Albert and Chib’s approach is used to estimate the parameters
in the logit and probit models. Furthermore, the maximum likelihood
and ordinary least-squares methods are discussed briefly, and a simple
example is presented to compare these three methods.

Keywords: Binary probit model, Binary logit model, Bayesian analysis, Albert and
Chib approach, Latent data, Gibbs sampling, Data augmentation.
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1. Introduction

If the dependent variable in a data set is categorical, Generalized Linear Models
(GLMs) are used instead of linear regression models to estimate the model parameters
and to model the data. GLMs can be expresed in the form E(y) = g(x′β), where
y is a response variable which is categorical, x is the vector of explanatory variables,
β is the vector of model parameters and g is the link function. GLMs depend on a
probability model that describes an event’s probability as the distribution function of
the independent variables. The model is binary if the dependent variable takes two
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values (y = 0, 1). However, the model is polychotomous or multinomial if the dependent
variable takes more than two values.

In the Bayesian analysis of linear regression models conjugate prior distributions exist
for the model parameters. Thus, it is easy to make inferences for these models. However,
making inferences in Bayesian GLMs is complicated because there are no conjugate prior
distributions for the model parameters. So, it is hard to make a simulation in Bayesian
GLMs. Albert and Chib [1] proposed an approach for binary probit regression models
to resolve this problem. In this approach the conditional distributions of the model
parameters in GLMs become the same as those in linear regression models by adding a
latent variable to the model [4].

In this article a simulation based approach proposed by Albert and Chib [1] is intro-
duced for computing the exact posterior distribution of β. In this approach, the data set
in the logit and probit models can be augmented by adding a set of latent variables (z)
into the model. Latent variables have a continuous distribution such that yi = 1 when
zi > 0 and yi = 0 otherwise. Thus, the conditional distribution of β given z is a normal
distribution whose mean can be easily computed, and the conditional distribution of z
given β is a truncated normal distribution which is easy to compute. Since the condi-
tional distributions can be calculated using this approach, Gibbs sampling can easily be
used to calculate the exact posterior distribution of β.

This article is organized as follows. Section 2 outlines the Gibbs sampling and data
augmentation algorithm used in simulating the posterior distributions. Section 3 dis-
cuses binary regression models based on latent data. In Section 4, an example using
the data set from the Econometric Toolbox by LeSage [5] is given. In this example, to
estimate the parameters in the logit and probit models, the maximum likelihood (ML),
ordinary least-squares (OLSs) and Bayesian methods are used and the results are com-
pared. In addition, the Bayesian, logit and probit models are compared according to
their convergence behaviours. Finally, Section 5 presents some concluding remarks.

2. Gibbs sampling and the data augmentation algorithm

Gibbs sampling and the data augmentation algorithm are both used to compute the
posterior distribution of β. Albert and Chib [1] used these two methods together to
analyze logit and probit models.

Gibbs sampling allows one to sample from a multivariate distribution using full con-
ditional distributions. A full conditional distribution is the conditional distribution of a
parameter given all of the other parameters in the model. The data set which is obtained
by applying Gibbs sampling to the model converges to the joint posterior distribution of
the parameters [2, 5].

For the parameters βi (i = 1, . . . , p) the initial values are taken as β
(0)
1 , . . . , β

(0)
p . After

the initial values of the parameters are determined, Gibbs sampling is implemented by
sampling from the full conditional distributions successively.
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The cycle (1) is iterated t times and so the sample β(t) = (β
(t)
1 , . . . , β

(t)
p ) is generated. As

t approaches infinity, the joint distribution of β(t) approaches the joint distiribution of
β. In applications, it is necessary to specify how many iterations will be sufficient. If this
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number is t∗, β(t∗) can be described as a value simulated from the posterior distribution
of β.

After t∗ is determined, the draws for t < t∗ are discarded from the sample. Afterwards,

the sample {(β
(t∗)
1j , β

(t∗)
2j , . . . , β

(t∗)
pj ), j = 1, . . . , m} is produced by replicating this process

m times. This sample can be used to to compute estimations for the posterior moments
and density. In this approach as proposed by Albert and Chib [1], one replication is used
and the cycle (1) is run a sufficient number of times to produce convergence.

The main objective of Gibbs sampling is to estimate the marginal posterior distribu-
tions of subsets of β, and to derive posterior moments by simulating a sufficiently large
number of values from the joint posterior distribution of β. It is possible to obtain all
the characteristics of marginal posterior distributions by using the Gibbs sequence. For
example; we can estimate the function g(βk) with the Gibbs sequence of βk. The simu-
lated values of this function can be derived by using the simulated values of βk. Thus,
a density estimate of this function can be obtained by using kernel density estimates of

simulated values of g(βk){g(β
(i)
k ), i = 1, . . . ,m} . According to Gelfand and Smith [2],

Equation (2) can be used to find accurate estimate of this marginal posterior density [1].

(2) π̂
(
g(βk)

)
≈

1

m

m∑
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π
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g(βk)/{β(i)

r , r 6= k}
)
.

A difficulty with Gibbs sampling is that the sequences produced by this method are
not independently identically distributed. Besides, convergence of the sequence to the
posterior distribution is an important point in Gibbs sampling. Theoretically, as the
number of draws (n) in a Gibbs sequence approaches to infinity, the sequence converges
to the posterior distribution. However, a sufficient number of draws for convergence of
the sequence must be determined in practice.

There are many diagnostics for Gibbs sampling to determine whether the sequence
converges to the posterior distribution or not. Some of these convergence diagnostics are
autocorrelation estimates, Raftery-Lewis diagnostics, Geweke numerical standard errors
(NSE) and relative numerical efficiency (RNE) estimates, Geweke Chi-squared test on
the means from the first 20% of the sample versus the last 50%.

Autocorrelation estimates show how much independence exists among the draws in
each β parameter sequence. If the autocorrelation among draws in a parameter sequence
is high, both mixing and convergence of this sequence is slow. So, it is recommended to
increase the thinning interval to reduce the autocorrelation [5].

Besides the above, Raftery and Lewis [6] proposed some convergence diagnostics. The
method proposed by Raftery and Lewis [6] is easy to implement and depends on quantiles
of functionals of the posterior distribution. In this method the total number of iterations
required and the thinning interval, which is an indicator of autocorrelation among the
draws, are determined. In addition to this, the number of initial iterations which should
be discarded from the parameter sequence is calculated [5, 6].

Moreover, the diagnostics proposed by Geweke [3] are used to determine the amount
of autocorrelation among the draws in a parameter sequence, and whether the parameter
sequence has reached an equilibrium state. These diagnostics are based on estimates of
the numerical standard error (NSE) and relative numerical efficiency (RNE) [3, 5].

The second method besides Gibbs sampling which is used to compute the posterior
distributions is the data augmentation algorithm. In this algorithm, the observed data y
is augmented by latent data z. Therefore, it is easy to analyze the observed data y. To
implement this algorithm, samples are drawn from the conditional distributions p(β/y, z)
and p(z/β, y) . The posterior distribution in Equation (3) is derived by implementing
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this algorithm [8].

(3) p(β/y) =

∫

z

p(β/z, y)p(z/y)dz.

To compute the posterior density in Equation (3), the predictive density p(z/y) of z must
be computed using Equation (4).

(4) p(z/y) =

∫

B

p(z/β, y)p(β/y)dβ.

The data augmentation algorithm to compute the posterior density of β can be imple-
mented by applying the following steps. In the ith step of the algorithm, the current
approximation to p(β/y) is taken to be gi(β),

(a) Draw a sample z(1), . . . , z(m) from the current approximation to the predictive
density p(z/y).

(b) Update the current approximation to p(β/y) to give gi+1(β) as a combination of
conditional densities of β given the augmented data which is generated in step
(a). Specifically, gi+1(β) is computed as given below.

gi+1(β) = m−1
m∑

j=1

p(β/zj , y).

In steps (a1) and (a2) below, it is shown how the latent data z is generated from p(z/y)
in step (a). Equation (4) allows us to generate z from p(z/y) in these steps when the
current approximation to p(β/y) is gi(β) .

(a1) Generate β from gi(β)
(a2) Generate z from p(z/y) (β is the value generated in step (a1)).

If the number of draws (m) is sufficiently large, a good approximation to p(β/y) can be
achieved by implementing the steps (a1), (a2), (a) and (b) [7, 8].

3. Bayesian analysis of the binary Logit and Probit models

Some representations for binary regression models are given below.

(5)

yi ∼ Bernoulli(g(ηi))

ηi ∼ x′

iβ

β ∼ π(β).

In the representation (5), yi is a binary response variable that takes only two values 0
and 1 for n observations; x′

i = (xi1, . . . , xip) are p covariate measurements; β is a (p× 1)
vector of regression coefficients and π(·) is the prior distribution of β. Here g(·) is a
link function and ηi a linear predictor. If the link function is the standard Gaussian
cumulative distribution function (cdf), a probit model is obtained. If the link function is
the logistic cdf, the logit model is obtained. [1, 4].

The Ordinary Least Squares (OLSs) method can be used to analyze the binary regres-
sion model, but using this method with a binary response variable causes some problems.
One of the problems is that the errors are heteroscedastic and these heteroscedastic errors
are a function of the parameter vector β. Another problem is that the predicted values
can take values outside the interval (0, 1) when the regression model is analyzed with
OLSs method [5].

The Maximum Likelihood (ML) method can also be used to analyze binary response
regression models. If π(β) is a proper or improper prior density for β, the posterior
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density of β can be calculated using Equation (6).

(6) π(β/y) =
π(β)

∏N

i=1 g(x
′

iβ)yi(1 − g(x′

iβ))1−yi

∫
B
π(β)

∏N

i=1 g(x
′

iβ)yi(1 − g(x′

iβ))1−yidβ
.

A Multivariate normal distribution with p variables can be denoted by Np(µ,Σ), where
µ is the mean vector and Σ is the variance-covariance matrix. According to the usual

asymptotic approximation, the distribution of β is Np(β̂, I(β̂)−1) . In this notation,

β̂ denotes the posterior mode and I(β̂) the negative of the second derivative matrix

evaluated at β̂. If the prior distribution of β is uniform, β̂ and I(·) can be defined
as the maximum likelihood estimate (MLE) of β and the observed information matrix
respectively. However, MLEs are biased for small samples. Hence, it is not accurate to
use a normal approximation for small samples [1].

As mentioned in Section 1, Albert and Chib [1] proposed a Bayesian method to analyze
regression models where the response variable is categorical. This approach depends on
the idea that the posterior distribution of β given the latent variable z in categorical
regression models, and the posterior distribution of β in normal linear regression models
(z = x′β + ε) are the same.

Let the model represented in Equation (5) be analyzed by this Bayesian method for
the probit link. After the latent variables are added to the model, it can be represented
as given below [4].

(7)
yi =

{
1 if zi > 0,

0 otherwise.

zi = x′

iβ + εi, εi = N(0, 1), β ∼ π(β)

It is easy to find the full conditional distributions of β and z by using representation (7).
Since these full conditional distributions can be calculated, Gibbs sampling can easily be
performed to analyze the binary probit model.

If the prior distribution of β is normal, that is π(β) = N(b, v), the full conditional
distribution of β is also normal.

(8) β/z ∼ N(B,V ), B = V (v−1b+ x′z), V = (v−1 + x′x)−1

If β has a diffuse prior distribution, then the full conditional distribution of β is also
normal.

(9) β/y, z ∼ N(β̂Z , (x
′x)−1),

where β̂z = (x′x)−1(x′z).

The full conditional distribution of each latent variable zi is a truncated normal dis-
tribution which is easy to simulate.

(10) zi/β, xi, yi ∼

{
N(x′

iβ, 1)I(zi > 0) if yi = 1,

N(x′

iβ, 1)I(zi ≤ 0) otherwise.

In practice β usually has a flat noninformative prior distribution. When a previous
value of β is given, a cycle of Gibbs sampling simulates z and β from the distributions
(10) and (9), respectively. The initial value β(0) of β can be determined as ML or OLS
estimates of β. Sampling from the distributions (9) and (10) is straightforward [1, 5].

The method proposed by Albert and Chib [1] to analyze binary probit models can be
developed by generalizing the probit link function as a family of t distributions. Thus,
the degree of freedom of the t distribution which is best suited to the data, can be
determined. The most popular link functions for binary data are logit and probit. If
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the degree of freedom is taken as seven, then the link function is logit. Moreover if the
degree of freedom is taken to be a very large number (in practice it is taken to be 100),
then the link function is probit.

If εi has a standard logistic distribution in the representation (7), the binary logit
model is obtained. When the variables λi, i = 1, . . . , n are introduced into the model,
then the binary logit model can be represented as in (11).

(11)
yi =

{
1 if zi > 0,

0 otherwise.

zi = x′

iβ + εi, εi ∼ N(0, λi), λi = (2ψi)
2, ψi ∼ K, β ∼ π(β),

where the random variables ψi, i = 1, . . . , n are independent and have the Kolmogorov-
Smirnov (KS) distribution [4].

If β has a normal prior distribution, π(β) = N(b, v) in the binary logit model, then
the full conditional distribution of β given z, y and λ is normal as represented in (12).

(12)
β/y, z, λ ∼ N(B, V ),

B = V (v−1b+ x′Wz), V = (v−1 + x′Wx)−1, W = diag(λ−1
1 , . . . , λ−1

n ).

If the prior distribution of β is uniform, then the full conditional distribution of β is
normal.

(13) β/y, Z, λ ∼ N(β̂z,λ, (x
′Wx))

where β̂z,λ = (x′Wx)−1x′Wz.

The full conditional distribution of each latent variable zi is truncated normal with
variance λi.

(14) zi/β, xi, yi, λi ∼

{
N(x′

iβ, λi)I(zi > 0) if yi = 1,

N(x′

iβ, λi)I(zi ≤ 0) ∼ otherwise.

The full conditional distribution of λi does not have a standard form, but sampling
from this distribution is easy using rejection sampling. In Bayesian analysis of the bi-
nary logit model, simulations from the full conditional distributions p(β/z, λ), p(z/β, y)
and p(λ/z, β) respectively are implemented using Gibbs sampling. The speed of the
simulation in the logit model is slower than that in the probit model because in the
logit model it is necessary to simulate from λ in addition to z and β, and the posterior
variance-covariance matrix V in Equation (12) changes for each update of λ [4].

4. Illustration

To illustrate the binary logit and probit models a dataset is taken from the Economet-
ric Toolbox in LeSage [5] that contains a binary dependent variable indicating improve-
ment in student grades after exposure to a new teaching method for economics. The
explanatory variables are grade point average, a pre-test for understanding of college-
level economics (TUCE) and a binary variable indicator showing whether the student
was exposed to the new teaching method. For this data set, three estimation methods
(OLSs, ML and Bayesian) are used. The MATLAB program is used to implement these
methods.

The MATLAB functions logit and probit are used to find the OLSs and ML estimates
for the binary logit and probit models, whereas the probit g function is used to find
the Bayesian estimates. If the user assigns a large hyperparameter value r = 100 and a
diffuse prior for β, the parameter estimates are close to those for the traditional probit
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model. On the other hand, setting r = 7 and assigning a diffuse prior for β should
produce estimates close to those from a traditional logit regression.

In the resulting printouts, the logit and probit functions display the usual coefficient
estimatesi t-statistics, marginal probabilities and measures of fit proposed by McFad-
den [?] and Estrella [?]. The probit g function displays posterior estimates of the
parameters and iteration numbers in addition to the measures displayed by logit and
probit functions. Besides, the coda function displays the convergence diagnostics of
the Bayesian estimates, which were mentioned in Section 2. In Table 1, some of these
measures for OLSs estimates, MLEs and Bayesian estimates are given for the models
concerned.

Table 1. Measures of fit (R2) proposed by McFadden and the significance
level of each parameter estimates for OLSs, ML and Gibbs estimates.

OLS ML Bayesian

Logit Probit Logit Probit

R2 = 0.3740 R2 = 0.3775 R2 = 0.3700 R2 = 0.3752

Variables p-level p-level p-level p-level p-level

const 0.007929 0.013382 0.006656 0.000000 0.000500

psi 0.011088 0.033617 0.023445 0.011500 0.005000

tuce 0594361 0.506944 0.542463 0.273500 0.261500

gpa 0.007841 0.033376 0.026459 0.010000 0.003000
∗ : In the Ordinary Least Squares method, the measure of fit value

cannot be found by McFadden’s approach.

Since OLSs estimates for binary regression models don’t ensure the model assumptions,
logit and probit regression models based on these estimates cannot be used to make
reliable interpretations. The R2 value for the OLS method cannot be compared to those
of the other estimation methods since it is not based on McFadden’s approach.

All models give similar results for this data and all models are significant. In the ML
and Bayesian methods, the logit and probit models give very similar results. Generally,
when the dependent variable is binary, logit and probit model results are similar. Mc-
Fadden’s R2 value tends to be smaller than the classical R2 value, and values of 0.2 and
0.4 are considered highly satisfactory. In the models which we examine, McFadden’s R2

values are close to 0.4 so that all models are highly satisfactory. These values are a bit
larger in the probit models than those in the logit models. For this reason it can be said
that the probit model is more appropriate.

The coda function calculates some convergence diagnostics for Bayesian estimates.
Autocorrelations and Raftery & Lewis convergence diagnostics are given in Tables 2a
and 2b, 3a and 3b (Based on a sample size of 2000).

Table 2a. Autocorrelations within each parameter chain
in the logit model

Variable Lag 1 Lag 5 Lag 10 Lag 50

const 0.315 0.150 0.065 0.047

psi 0.311 0.110 0.046 -0.011

tuce 0.236 0.094 0.076 0.056

gpa 0.277 0.130 0.002 0.032
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Table 2b. Raftery-Lewis Diagnostics for each parameter chain
in the logit model

Variable Thin Burn Total(N) (Nmin) I-stat

const 2 9 2311 937 2.466

psi 2 9 2311 937 2.466

tuce 2 9 2311 937 2.466

gpa 2 9 2311 937 2.466

Table 3a. Autocorrelations within each parameter chain
in the probit model

Variable Lag 1 Lag 5 Lag 10 Lag 50

const 0.070 0.031 0.216 0.015

psi 0.042 0.011 0.153 0.001

tuce -0.075 -0.096 0.152 -0.044

gpa 0.042 0.023 0.170 0.006

Table 3b. Raftery-Lewis Diagnostics for each parameter chain
in the probit model

Variable Thin Burn Total(N) (Nmin) I-stat

const 2 12 2350 937 2.508

psi 2 12 2350 937 2.508

tuce 2 12 2350 937 2.508

gpa 2 12 2350 937 2.508

The autocorrelations are not very significant for both models except the the lag 1 au-
tocorrelations for the logit model. After lag 1 the autocorrelations become very small
for the logit model which means that the chains converge rapidly. The coda output
reports Nmin - the minimum number of iterations that would be needed to estimate the
specified quantile to the desired precision if the samples in the chain were independent;
Total(N) - the total number of iterations that should be run for each variable; Burn
- the number of initial iterations to discard as the “burn-in”; and Thin - the thinning
interval to be used.

The final column in the coda output reports I = N/Nmin. This measures the
increase in the number of iterations needed to reach convergence due to dependence
among the samples in the chain. Values of I much greater than 1 indicate high correlations
and probable convergence failure. Raftery and Lewis suggest that I > 5 often indicates
convergence problems with the sampler. The thinning interval for these models is 2.
The number of iterations to be discarded are 9 and 12 for the logit and probit models
respectively. The minimum number of iterations for both models are the same, but the
total number of iterations for the probit model is a bit larger than for the logit model.
Since I-stat values are considerably less than 5 for the logit and probit models, there are
no convergence problems with the sampler.
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The coda function also reports estimates of the NSE and RNE based on 4%, 8%
and 15% tapering or truncation of the periodgram window. Differences among these
estimates reflect autocorrelation in the draws. For this data set it can be said that there
is no autocorrelation in the draws for both models because these estimates are not very
different. The second set of diagnostics suggested by Geweke determine whether the
chains reach an equilibrium state by comparing the means of the first 20% and the last
50% of the sample draws. From the coda output it can be said that the chain of draws
from the Gibbs sampler has reached an equilibrium state.

The convergence behaviour of the parameter chains can also be seen from their plots.
The plots of β1 are displayed in Figures 1a and 1b.

Figure 1a. The plot of β1 Figure 1b. The plot of β1

in the logit model in the probit model
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From Figures 1a and 1b, it can be said that the convergence behaviour of β1 in the logit
and probit model is very similar. For both models the chains belonging to β1 have good
mixing. The plots of β2, β3, and β4 can be derived in the same way, and these plots are
also seen to be very similar in the logit and probit models.

The graphs of the posterior density functions (pdf) of the parameters can also be
drawn. The graphs for β1 are shown in Figures 2a and 2b, respectively, for the logit and
probit models.

Figure 2a. The pdf of β1 Figure 2b. The pdf of β1

for the logit model for the probit model
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The pdf graphs of β1 for the logit and probit models are very similar. The pdf graphs
of the other parameters can also be drawn in the same way, and these graphs are also
found to be very similar in the logit and probit models.

5. Conclusion

The aim of this article is to use the Bayesian method proposed by Albert and Chib
[1] to analyze binary logit and probit models, and to compare this method with other
classical methods. The most important point of this Bayesian approach is that the binary
probit model is obtained from the normal linear regression model by introducing latent
variables into the model. This approach has many advantages. Firstly, in small samples
this method provides accurate inferences about the model, whereas the classical inferences
in small samples are not accurate. Secondly, in this Bayesian method Gibbs sampling is
used to calculate the posterior distributions of the model parameters by simulating from
standard distributions. Thus, this method can be implemented easily in many computer
programs. Lastly, probit model can be easily analyzed by using a suitable mixture of
normal distributions to model the latent data.

One caution in the use of Gibbs sampling is that extra randomness is introduced
into the estimation procedure by simulation, and it is important to understand when a
particular simulation process has converged. Raftery and Lewis’s and Geweke’s methods
for the diagnosis of convergence have been discussed here, and in the example in Section
5 it has been seen that both the logit and probit models converge rapidly.
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